This commit is contained in:
Denis Blank 2016-09-16 17:43:17 +02:00
parent b57d14caa9
commit 3182c4d258

View File

@ -115,6 +115,16 @@ auto appendHandlerToContinuation(Continuation&& cont, Handler&& handler) {
#include <utility> #include <utility>
#include <string> #include <string>
#include <memory> #include <memory>
#include "Continuable.h"
// Equivalent to C++17's std::void_t which is targets a bug in GCC,
// that prevents correct SFINAE behavior.
// See http://stackoverflow.com/questions/35753920 for details.
template<typename...>
struct deduce_to_void : std::common_type<void> { };
template<typename... T>
using always_void_t = typename deduce_to_void<T...>::type;
struct SelfDispatcher { struct SelfDispatcher {
template<typename T> template<typename T>
@ -123,6 +133,9 @@ struct SelfDispatcher {
} }
}; };
template<typename T>
struct Identity { };
template<typename Config> template<typename Config>
class ContinuableBase; class ContinuableBase;
@ -139,6 +152,24 @@ auto applyTuple(std::integer_sequence<S, I...>, T&& tuple, F&& function) {
return std::forward<F>(function)(std::get<I>(std::forward<T>(tuple))...); return std::forward<F>(function)(std::get<I>(std::forward<T>(tuple))...);
} }
template<unsigned... LeftI, unsigned... RightI,
typename... Left, typename... Right>
auto tupleMerge(std::integer_sequence<unsigned, LeftI...>,
std::integer_sequence<unsigned, RightI...>,
std::tuple<Left...>&& left, std::tuple<Right...>&& right) {
return std::make_tuple(std::get<LeftI>(std::move(left))...,
std::get<RightI>(std::move(right))...);
}
/// Merges the left and the right tuple together in one.
template<typename... Left, typename... Right>
auto tupleMerge(std::tuple<Left...>&& left,
std::tuple<Right...>&& right) {
return tupleMerge(std::make_integer_sequence<unsigned, sizeof...(Left)>{},
std::make_integer_sequence<unsigned, sizeof...(Right)>{},
std::move(left), std::move(right));
}
class Ownership { class Ownership {
public: public:
Ownership() { } Ownership() { }
@ -166,6 +197,61 @@ private:
bool isOwning{ true }; bool isOwning{ true };
}; };
template<typename Function>
struct undecorate_function;
template<typename ReturnType, typename... Args>
struct undecorate_function<ReturnType(Args...)> {
/// The return type of the function.
typedef ReturnType return_type;
/// The argument types of the function as pack in Identity.
typedef Identity<Args...> argument_type;
};
/// Mutable function pointers
template<typename ReturnType, typename... Args>
struct undecorate_function<ReturnType(*)(Args...)>
: undecorate_function<ReturnType(Args...)> { };
/// Const function pointers
template<typename ReturnType, typename... Args>
struct undecorate_function<ReturnType(*const)(Args...)>
: undecorate_function<ReturnType(Args...)> { };
/// Mutable class method pointers
template<typename ClassType, typename ReturnType, typename... Args>
struct undecorate_function<ReturnType(ClassType::*)(Args...)>
: undecorate_function<ReturnType(Args...)> { };
/// Const class method pointers
template<typename ClassType, typename ReturnType, typename... Args>
struct undecorate_function<ReturnType(ClassType::*)(Args...) const>
: undecorate_function<ReturnType(Args...)> { };
/// Mutable volatile class method pointers
template<typename ClassType, typename ReturnType, typename... Args>
struct undecorate_function<ReturnType(ClassType::*)(Args...) volatile>
: undecorate_function<ReturnType(Args...)> { };
/// Const volatile class method pointers
template<typename ClassType, typename ReturnType, typename... Args>
struct undecorate_function<ReturnType(ClassType::*)(Args...) const volatile>
: undecorate_function<ReturnType(Args...)> { };
template<typename Function>
using do_undecorate = std::conditional_t<
std::is_class<Function>::value,
decltype(&Function::operator()),
Function>;
template<typename Function, typename = always_void_t<>>
struct is_undecorateable : std::false_type { };
template<typename Function>
struct is_undecorateable<Function, always_void_t<
typename do_undecorate<Function>::return_type
>> : std::true_type { };
/// Decorates single values /// Decorates single values
template<typename Value> template<typename Value>
struct CallbackResultDecorator { struct CallbackResultDecorator {
@ -322,42 +408,61 @@ private:
Data data; Data data;
}; };
template<typename... TargetArgs, typename... CombinedData>
auto undecorateCombined(Identity<TargetArgs...>,
std::tuple<CombinedData...> combined) {
}
template<typename Callback, typename... CombinedData>
auto undecorateCombined(std::tuple<CombinedData...> combined) {
// using TargetArgs = typename do_undecorate<Callback>::argument_type;
// return undecorateCombined(TargetArgs{}, std::move(combined));
}
template<typename Combined> template<typename Combined>
class LazyCombineDecoration { class LazyCombineDecoration {
public: public:
// TODO // TODO
explicit LazyCombineDecoration(Ownership ownership_, Combined combined_) explicit LazyCombineDecoration(Combined combined_)
: ownership(std::move(ownership_)), combined(std::move(combined_)) { } : combined(std::move(combined_)) { }
// using Config = typename Data::Config; // using Config = typename Data::Config;
template<typename Callback>
static void requiresUndecorateable() {
static_assert(is_undecorateable<Callback>::value,
"Can't retrieve the signature of the given callback. "
"Consider to pass an untemplated function or functor "
"to the `then` method invocation to fix this.");
}
/// Return a r-value reference to the data /// Return a r-value reference to the data
template<typename Callback> template<typename Callback>
void undecorate()&& { void undecorate()&& {
requiresUndecorateable<Callback>();
return undecorateCombined<Callback>(std::move(combined));
} }
template<typename Callback> template<typename Callback>
/// Return a copy of the data /// Return a copy of the data
void undecorate() const& { void undecorate() const& {
requiresUndecorateable<Callback>();
return undecorateCombined<Callback>(combined);
} }
template<typename RightLazyCombine> template<typename RightLazyCombine>
auto merge(RightLazyCombine&& right) { auto merge(RightLazyCombine right) && {
auto merged = tupleMerge(std::move(combined), std::move(right.combined));
return ContinuableBase<LazyCombineDecoration<decltype(merged)>> {
LazyCombineDecoration<decltype(merged)>{std::move(merged)}
};
} }
private: private:
Ownership ownership;
Combined combined; Combined combined;
}; };
template<typename>
struct is_lazy_combined
: std::false_type { };
template<typename Data>
struct is_lazy_combined<LazyCombineDecoration<Data>>
: std::true_type { };
template<typename Continuation, typename Dispatcher = SelfDispatcher> template<typename Continuation, typename Dispatcher = SelfDispatcher>
auto make_continuable(Continuation&& continuation, auto make_continuable(Continuation&& continuation,
Dispatcher&& dispatcher = SelfDispatcher{}) noexcept { Dispatcher&& dispatcher = SelfDispatcher{}) noexcept {
@ -398,25 +503,22 @@ auto postImpl(Data data ,NewDispatcher&& newDispatcher) {
})); }));
} }
template<typename Decoration> template<typename Combined>
auto convertToLazyCombine(std::true_type /*is_lazy_combined*/, auto toLazyCombined(LazyCombineDecoration<Combined> decoration) {
Decoration&& decoration) { return std::move(decoration);
return std::forward<Decoration>(decoration);
} }
template<typename Decoration> template<typename Decoration>
auto convertToLazyCombine(std::false_type /*is_lazy_combined*/, auto toLazyCombined(Decoration&& decoration) {
Decoration&& decoration) { auto data = std::forward<Decoration>(decoration).template undecorate<void>();
return LazyCombineDecoration<std::tuple<>>{}; return LazyCombineDecoration<std::tuple<decltype(data)>>(std::move(data));
} }
template<typename LeftDecoration, typename RightDecoration> template<typename LeftDecoration, typename RightDecoration>
auto combineImpl(LeftDecoration&& leftDecoration, auto combineImpl(LeftDecoration&& leftDecoration,
RightDecoration&& rightDecoration) { RightDecoration&& rightDecoration) {
return convertToLazyCombine(is_lazy_combined<std::decay_t<LeftDecoration>>{}, return toLazyCombined(std::forward<LeftDecoration>(leftDecoration))
std::forward<LeftDecoration>(leftDecoration)) .merge(toLazyCombined(std::forward<RightDecoration>(rightDecoration)));
.add(convertToLazyCombine(is_lazy_combined<std::decay_t<RightDecoration>>{},
std::forward<RightDecoration>(rightDecoration)));
} }
template<typename Decoration> template<typename Decoration>
@ -430,7 +532,7 @@ public:
~ContinuableBase() { ~ContinuableBase() {
// Undecorate/materialize the decoration // Undecorate/materialize the decoration
invokeContinuation(std::move(decoration).template undecorate<void(*)()>()); // invokeContinuation(std::move(decoration).template undecorate<void>());
} }
ContinuableBase(ContinuableBase&&) = default; ContinuableBase(ContinuableBase&&) = default;
ContinuableBase(ContinuableBase const&) = default; ContinuableBase(ContinuableBase const&) = default;
@ -443,7 +545,7 @@ public:
template<typename Callback> template<typename Callback>
auto then(Callback&& callback) const& { auto then(Callback&& callback) const& {
return thenImpl(decoration.undecorate<Callback>(), return thenImpl(decoration.template undecorate<Callback>(),
std::forward<Callback>(callback)); std::forward<Callback>(callback));
} }
@ -479,11 +581,18 @@ public:
return combineImpl(decoration, right.decoration); return combineImpl(decoration, right.decoration);
} }
template<typename Callback>
auto undecorateFor(Callback&&) {
return decoration.template undecorate<Callback>();
}
private: private:
/// The Decoration represents the possible lazy materialized /// The Decoration represents the possible lazy materialized
/// data of the continuable. /// data of the continuable.
/// The decoration pattern is used to make it possible to allow lazy chaining /// The decoration pattern is used to make it possible to allow lazy chaining
/// of operators on Continuables like the and expression `&&`. /// of operators on Continuables like the and expression `&&`,
/// that requires lazy evaluation and the signature of the callback chained
/// with ContinuableBase::then.
Decoration decoration; Decoration decoration;
}; };
@ -510,16 +619,17 @@ struct FailIfWrongArgs {
int main(int, char**) { int main(int, char**) {
auto dispatcher = SelfDispatcher{}; auto dispatcher = SelfDispatcher{};
auto unwrap = [](auto&& callback) { (makeTestContinuation() && makeTestContinuation())
.undecorateFor([]()
{
callback("47"); });
};
/*auto unwrapper = [](auto&&... args) { /*auto unwrapper = [](auto&&... args) {
return std::common_type<std::tuple<decltype(args)...>>{}; return std::common_type<std::tuple<decltype(args)...>>{};
};*/ };*/
using T = decltype(unwrap(FailIfWrongArgs<0>{})); // using T = decltype(unwrap(FailIfWrongArgs<0>{}));
// using T = decltype(unwrap(std::declval<Inspector>())); // using T = decltype(unwrap(std::declval<Inspector>()));
// T t{}; // T t{};
@ -528,7 +638,7 @@ int main(int, char**) {
int res = 0; int res = 0;
makeTestContinuation() makeTestContinuation()
.then([](std::string /*str*/) { .then([](std::string) {
return std::make_tuple(47, 46, 45); return std::make_tuple(47, 46, 45);
}) })
// .post(dispatcher) // .post(dispatcher)