continuable/NextGen.cpp
2016-09-15 01:15:23 +02:00

429 lines
12 KiB
C++

/**
* Copyright 2015-2016 Denis Blank <denis.blank@outlook.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
#include <tuple>
#include <type_traits>
#include <string>
namespace detail {
template<typename... T>
struct Identity { };
template<typename T, typename... Rest>
struct IdentityInheritenceWrapper
: Identity<T>, IdentityInheritenceWrapper<Rest...> { };
enum class NamedParameterId {
NAMED_PARAMATER_CALLBACK,
NAMED_PARAMATER_REJECTOR
};
template <NamedParameterId Value, typename T>
struct NamedParameter
: std::integral_constant<NamedParameterId, Value>,
std::common_type<T> { };
template <NamedParameterId Value, typename Default, typename... Args>
using GetNamedParameterOrDefault = void;
template<typename, typename>
class ContinuableBase;
template<typename T>
struct ReturnTypeToContinuableConverter;
template<typename... Args>
struct
template<typename... Args, typename CallbackType>
class ContinuableBase<Identity<Args...>, CallbackType> {
CallbackType callback_;
public:
explicit ContinuableBase(CallbackType&& callback)
: callback_(std::move(callback)) { }
void via() { }
template<typename C>
auto then(C&& continuation) {
// The type the callback will evaluate to
using EvaluatedTo = decltype(std::declval<C>()(std::declval<Args>()...));
return EvaluatedTo{ };
}
};
} // namespace detail
using namespace detail;
// template<typename... Args>
// using Continuable = detail::ContinuableBase<detail::Identity<Args...>>;
template <typename... Args>
struct Callback {
void operator() (Args... ) { }
};
template <typename... Args>
auto make_continuable(Args&&...) {
return Continuable<> { };
}
auto http_request(std::string url) {
return make_continuable([url](auto& callback) {
callback("<br>hi<br>");
});
}
template<typename Continuation, typename Handler>
auto appendHandlerToContinuation(Continuation&& cont, Handler&& handler) {
return [cont = std::forward<Continuation>(cont),
handler = std::forward<Handler>(handler)](auto&& continuation) {
using T = decltype(continuation);
return [continuation = std::forward<T>(continuation)](auto&&... arg) {
continuation(std::forward<decltype(arg)>(arg)...);
};
current([continuation = std::forward<T>(continuation)](auto&&... arg) {
continuation(std::forward<decltype(arg)>(arg)...);
});
};
} */
#include <mutex>
#include <tuple>
#include <type_traits>
#include <utility>
#include <string>
#include <memory>
struct SelfDispatcher {
template<typename T>
void operator() (T&& callable) const {
std::forward<T>(callable)();
}
};
template<typename Config>
class ContinuableBase;
static auto createEmptyContinuation() {
return [](auto&& callback) { callback(); };
}
static auto createEmptyCallback() {
return [](auto&&...) { };
}
template<typename S, unsigned... I, typename T, typename F>
auto applyTuple(std::integer_sequence<S, I...>, T&& tuple, F&& function) {
return std::forward<F>(function)(std::get<I>(std::forward<T>(tuple))...);
}
class Ownership {
public:
Ownership() { }
Ownership(Ownership const&) = default;
explicit Ownership(Ownership&& right) noexcept
: isOwningThis(std::exchange(right.isOwningThis, false)) { };
Ownership& operator = (Ownership const&) = default;
Ownership& operator = (Ownership&& right) noexcept {
isOwningThis = std::exchange(right.isOwningThis, false);
return *this;
}
bool hasOwnership() const noexcept {
return isOwningThis;
}
void invalidate() {
isOwningThis = false;
}
private:
bool isOwningThis{ true };
};
/// Decorates single values
template<typename Value>
struct CallbackResultDecorator {
template<typename Callback>
static auto decorate(Callback&& callback) {
return [callback = std::forward<Callback>(callback)](auto&&... args) {
Value value = callback(std::forward<decltype(args)>(args)...);
return [value = std::move(value)](auto&& callback) mutable {
callback(std::move(value));
};
};
}
};
/// No decoration is needed for continuables
template<typename Decorator>
struct CallbackResultDecorator<ContinuableBase<Decorator>>{
template<typename Callback>
static auto decorate(Callback&& callback) {
return std::forward<Callback>(callback);
}
};
/// Decorates void as return type
template<>
struct CallbackResultDecorator<void> {
template<typename Callback>
static auto decorate(Callback&& callback) {
return [callback = std::forward<Callback>(callback)](auto&&... args) {
callback(std::forward<decltype(args)>(args)...);
return createEmptyContinuation();
};
}
};
// Decorates tuples as return type
template<typename... Results>
struct CallbackResultDecorator<std::tuple<Results...>> {
template<typename Callback>
static auto decorate(Callback&& callback) {
return [callback = std::forward<Callback>(callback)](auto&&... args) {
// Receive the tuple from the callback
auto result = callback(std::forward<decltype(args)>(args)...);
return [result = std::move(result)] (auto&& next) mutable {
// Generate a sequence for tag dispatching
auto constexpr const sequence
= std::make_integer_sequence<unsigned, sizeof...(Results)>{};
// Invoke the callback with the tuple returned
// from the previous callback.
applyTuple(sequence, std::move(result),
std::forward<decltype(next)>(next));
};
};
}
};
/// Create the proxy callback that is responsible for invoking
/// the real callback and passing the next continuation into
/// to the result of the callback.
template<typename Callback, typename Next>
auto createProxyCallback(Callback&& callback,
Next&& next) {
return [callback = std::forward<Callback>(callback),
next = std::forward<Next>(next)] (auto&&... args) mutable {
// Callbacks shall always return a continuation,
// if not, we need to decorate it.
using Result = decltype(callback(std::forward<decltype(args)>(args)...));
using Decorator = CallbackResultDecorator<Result>;
Decorator::decorate(std::move(callback))
(std::forward<decltype(args)>(args)...)(std::move(next));
};
}
template<typename Continuation, typename Callback>
auto appendCallback(Continuation&& continuation,
Callback&& callback) {
return [continuation = std::forward<Continuation>(continuation),
callback = std::forward<Callback>(callback)](auto&& next) mutable {
// Invoke the next invocation handler
std::move(continuation)(createProxyCallback(
std::move(callback), std::forward<decltype(next)>(next)));
};
}
template<typename Data>
void invokeContinuation(Data data) {
// Check whether the ownership is acquired and start the continuation call
if (data.ownership.hasOwnership()) {
// Pass an empty callback to the continuation to invoke it
std::move(data.continuation)(createEmptyCallback());
}
}
template<typename ContinuationType, typename DispatcherType>
struct ContinuableConfig {
using Continuation = ContinuationType;
using Dispatcher = DispatcherType;
template<typename NewType>
using ChangeContinuationTo = ContinuableConfig<
NewType, Dispatcher
>;
template<typename NewType>
using ChangeDispatcherTo = ContinuableConfig<
Continuation, NewType
>;
};
///
template<typename ConfigType>
struct ContinuableData {
using Config = ConfigType;
ContinuableData(Ownership ownership_,
typename Config::Continuation continuation_,
typename Config::Dispatcher dispatcher_) noexcept
: ownership(std::move(ownership_)),
continuation(std::move(continuation_)),
dispatcher(std::move(dispatcher_)) { }
ContinuableData(typename Config::Continuation continuation_,
typename Config::Dispatcher dispatcher_) noexcept
: continuation(std::move(continuation_)),
dispatcher(std::move(dispatcher_)) { }
Ownership ownership;
typename Config::Continuation continuation;
typename Config::Dispatcher dispatcher;
};
/// The DefaultDecoration is a container for already materialized
/// ContinuableData which can be accessed instantly.
template<typename Data>
class DefaultDecoration {
public:
explicit DefaultDecoration(Data data_)
: data(std::move(data_)) { }
using Config = typename Data::Config;
/// Return a r-value reference to the data
Data&& undecorate()&& {
return std::move(data);
}
/// Return a copy of the data
Data undecorate() const& {
return data;
}
private:
Data data;
};
template<typename Continuation, typename Dispatcher = SelfDispatcher>
auto make_continuable(Continuation&& continuation,
Dispatcher&& dispatcher = SelfDispatcher{}) noexcept {
using Decoration = DefaultDecoration<ContinuableData<ContinuableConfig<
std::decay_t<Continuation>,
std::decay_t<Dispatcher>
>>>;
return ContinuableBase<Decoration>(Decoration({
std::forward<Continuation>(continuation),
std::forward<Dispatcher>(dispatcher)
}));
}
template<typename Data, typename Callback>
auto thenImpl(Data data, Callback&& callback) {
auto next = appendCallback(std::move(data.continuation),
std::forward<Callback>(callback));
using Decoration = DefaultDecoration<ContinuableData<
typename Data::Config::template ChangeContinuationTo<decltype(next)>
>>;
return ContinuableBase<Decoration>(Decoration({
std::move(data.ownership),
std::move(next),
std::move(data.dispatcher)
}));
}
template<typename Data, typename NewDispatcher>
auto postImpl(Data&& data ,NewDispatcher&& newDispatcher) {
/*->ContinuableBase<typename Config::template
ChangeDispatcherTo<std::decay_t<NewDispatcher>>> {
return{ std::move(continuation), std::move(ownership),
std::forward<NewDispatcher>(newDispatcher) }; */
return 0;
}
template<typename Decoration>
class ContinuableBase {
template<typename>
friend class ContinuableBase;
public:
explicit ContinuableBase(Decoration decoration_)
: decoration(std::move(decoration_)) { }
~ContinuableBase() {
// Undecorate/materialize the decoration
invokeContinuation(std::move(decoration).undecorate());
}
ContinuableBase(ContinuableBase&&) = default;
ContinuableBase(ContinuableBase const&) = default;
template<typename Callback>
auto then(Callback&& callback)&& {
return thenImpl(std::move(decoration).undecorate(),
std::forward<Callback>(callback));
}
template<typename Callback>
auto then(Callback&& callback) const& {
return thenImpl(decoration.undecorate(),
std::forward<Callback>(callback));
}
template<typename NewDispatcher>
auto post(NewDispatcher&& newDispatcher)&& {
return postImpl(std::move(decoration).undecorate(),
std::forward<NewDispatcher>(newDispatcher));
}
template<typename NewDispatcher>
auto post(NewDispatcher&& newDispatcher) const& {
return postImpl(decoration.undecorate(),
std::forward<NewDispatcher>(newDispatcher));
}
private:
/// The Decoration represents the possible lazy materialized
/// data of the continuable.
/// The decoration pattern is used to make it possible to allow lazy chaining
/// of operators on Continuables like the and expression `&&`.
Decoration decoration;
};
static auto makeTestContinuation() {
return make_continuable([](auto&& callback) {
callback("47");
});
}
int main(int, char**) {
auto dispatcher = SelfDispatcher{};
int res = 0;
makeTestContinuation()
// .post(dispatcher)
.then([](std::string /*str*/) {
return std::make_tuple(47, 46, 45);
})
.then([](int val1, int val2, int val3) {
return val1 + val2 + val3;
})
.then([&](int val) {
res += val;
});
return res;
}