use elem_array<ipc::circ::prod_cons>

This commit is contained in:
mutouyun 2019-01-06 22:30:55 +08:00
parent 8e104ded0f
commit 224ea72547
5 changed files with 311 additions and 542 deletions

View File

@ -1,27 +1,216 @@
#pragma once
#include <atomic>
#include <utility>
#include <algorithm>
#include <thread>
#include <cstring>
#include "def.h"
namespace ipc {
namespace circ {
template <std::size_t N>
struct alignas(std::max_align_t) elem_array_head {
using u1_t = uint_t<N>;
using u2_t = uint_t<N * 2>;
namespace detail {
std::atomic<u2_t> cc_ { 0 }; // connection counter, using for broadcast
std::atomic<u2_t> wt_ { 0 }; // write index
using u1_t = uint_t<8>;
using u2_t = uint_t<16>;
constexpr static u1_t index_of(u2_t c) noexcept {
return static_cast<u1_t>(c);
constexpr u1_t index_of(u2_t c) noexcept {
return static_cast<u1_t>(c);
}
struct elem_head {
std::atomic<std::size_t> rc_ { 0 }; // read counter
};
template <std::size_t DataSize>
struct elem_t {
elem_head head_;
byte_t data_[DataSize] {};
};
template <>
struct elem_t<0> {
elem_head head_;
};
template <std::size_t S>
elem_t<S>* elem_of(void* ptr) noexcept {
return reinterpret_cast<elem_t<S>*>(static_cast<byte_t*>(ptr) - sizeof(elem_head));
}
} // namespace detail
enum class relat { // multiplicity of the relationship
single,
multi
};
enum class trans { // transmission
unicast,
broadcast
};
////////////////////////////////////////////////////////////////
/// producer-consumer policies
////////////////////////////////////////////////////////////////
template <relat Rp, relat Rc, trans Ts>
struct prod_cons;
template <>
struct prod_cons<relat::single, relat::single, trans::unicast> {
std::atomic<detail::u2_t> rd_ { 0 }; // read index
std::atomic<detail::u2_t> wt_ { 0 }; // write index
template <std::size_t DataSize>
constexpr static std::size_t elem_param = DataSize - sizeof(detail::elem_head);
constexpr detail::u2_t cursor() const noexcept {
return 0;
}
template <typename E, typename F, std::size_t S>
bool push(E* /*elems*/, F&& f, detail::elem_t<S>* elem_start) {
auto cur_wt = detail::index_of(wt_.load(std::memory_order_acquire));
if (cur_wt == detail::index_of(rd_.load(std::memory_order_relaxed) - 1)) {
return false; // full
}
std::forward<F>(f)(elem_start + cur_wt);
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename E, typename F, std::size_t S>
bool pop(E* /*elems*/, detail::u2_t& /*cur*/, F&& f, detail::elem_t<S>* elem_start) noexcept {
auto cur_rd = detail::index_of(rd_.load(std::memory_order_acquire));
if (cur_rd == detail::index_of(wt_.load(std::memory_order_relaxed))) {
return false; // empty
}
std::forward<F>(f)(elem_start + cur_rd);
rd_.fetch_add(1, std::memory_order_release);
return true;
}
};
template <>
struct prod_cons<relat::single, relat::multi, trans::unicast>
: prod_cons<relat::single, relat::single, trans::unicast> {
template <typename E, typename F, std::size_t S>
bool pop(E* /*elems*/, detail::u2_t& /*cur*/, F&& f, detail::elem_t<S>* elem_start) noexcept {
byte_t buff[sizeof(detail::elem_t<S>)];
while (1) {
auto cur_rd = rd_.load(std::memory_order_acquire);
if (detail::index_of(cur_rd) ==
detail::index_of(wt_.load(std::memory_order_relaxed))) {
return false; // empty
}
std::memcpy(buff, elem_start + detail::index_of(cur_rd), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
return true;
}
std::this_thread::yield();
}
}
};
template <>
struct prod_cons<relat::multi, relat::multi, trans::unicast>
: prod_cons<relat::single, relat::multi, trans::unicast> {
std::atomic<detail::u2_t> ct_ { 0 }; // commit index
template <typename E, typename F, std::size_t S>
bool push(E* /*elems*/, F&& f, detail::elem_t<S>* elem_start) {
detail::u2_t cur_ct, nxt_ct;
while (1) {
cur_ct = ct_.load(std::memory_order_acquire);
if (detail::index_of(nxt_ct = cur_ct + 1) ==
detail::index_of(rd_.load(std::memory_order_relaxed))) {
return false; // full
}
if (ct_.compare_exchange_weak(cur_ct, nxt_ct, std::memory_order_relaxed)) {
break;
}
std::this_thread::yield();
}
std::forward<F>(f)(elem_start + detail::index_of(cur_ct));
while (1) {
auto exp_wt = cur_ct;
if (wt_.compare_exchange_weak(exp_wt, nxt_ct, std::memory_order_release)) {
break;
}
std::this_thread::yield();
}
return true;
}
};
template <>
struct prod_cons<relat::single, relat::multi, trans::broadcast> {
std::atomic<detail::u2_t> wt_ { 0 }; // write index
template <std::size_t DataSize>
constexpr static std::size_t elem_param = DataSize;
/*
<Remarks> std::atomic<T> may not have value_type.
See: https://stackoverflow.com/questions/53648614/what-happened-to-stdatomicxvalue-type
*/
using rc_t = decltype(detail::elem_head::rc_.load());
detail::u2_t cursor() const noexcept {
return wt_.load(std::memory_order_acquire);
}
template <typename E, typename F, std::size_t S>
bool push(E* elems, F&& f, detail::elem_t<S>* elem_start) {
auto conn_cnt = elems->conn_count(); // acquire
if (conn_cnt == 0) return false;
auto el = elem_start + detail::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
while (1) {
rc_t expected = 0;
if (el->head_.rc_.compare_exchange_weak(
expected, static_cast<rc_t>(conn_cnt), std::memory_order_relaxed)) {
break;
}
std::this_thread::yield();
conn_cnt = elems->conn_count(); // acquire
if (conn_cnt == 0) return false;
}
std::forward<F>(f)(el->data_);
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename E, typename F, std::size_t S>
bool pop(E* /*elems*/, detail::u2_t& cur, F&& f, detail::elem_t<S>* elem_start) noexcept {
if (cur == cursor()) return false; // acquire
auto el = elem_start + detail::index_of(cur++);
std::forward<F>(f)(el->data_);
while (1) {
rc_t cur_rc = el->head_.rc_.load(std::memory_order_acquire);
if (cur_rc == 0) {
return true;
}
if (el->head_.rc_.compare_exchange_weak(
cur_rc, cur_rc - 1, std::memory_order_release)) {
return true;
}
std::this_thread::yield();
}
}
};
////////////////////////////////////////////////////////////////
/// element-array implementation
////////////////////////////////////////////////////////////////
struct elem_head {
std::atomic<detail::u2_t> cc_ { 0 }; // connection counter
std::size_t connect() noexcept {
return cc_.fetch_add(1, std::memory_order_release);
}
@ -30,185 +219,52 @@ struct alignas(std::max_align_t) elem_array_head {
return cc_.fetch_sub(1, std::memory_order_release);
}
std::size_t conn_count() const noexcept {
return cc_.load(std::memory_order_acquire);
}
u2_t cursor() const noexcept {
return wt_.load(std::memory_order_acquire);
}
auto acquire(std::memory_order order = std::memory_order_acquire) noexcept {
return index_of(wt_.load(order));
}
void commit() noexcept {
wt_.fetch_add(1, std::memory_order_release);
std::size_t conn_count(std::memory_order order = std::memory_order_acquire) const noexcept {
return cc_.load(order);
}
};
template <std::size_t N>
constexpr std::size_t elem_array_head_size =
(sizeof(elem_array_head<N>) % alignof(std::max_align_t)) ?
((sizeof(elem_array_head<N>) / alignof(std::max_align_t)) + 1) * alignof(std::max_align_t) :
sizeof(elem_array_head<N>);
struct elem_head {
std::atomic<uint_t<32>> rc_ { 0 }; // read counter
};
template <std::size_t DataSize, std::size_t BaseIntSize = 8>
class elem_array : protected elem_array_head<BaseIntSize> {
template <std::size_t DataSize, typename Policy>
class elem_array : private Policy {
public:
using base_t = elem_array_head<BaseIntSize>;
using head_t = elem_head;
using typename base_t::u1_t;
using typename base_t::u2_t;
using policy_t = Policy;
using base_t = Policy;
using head_t = elem_head;
using elem_t = detail::elem_t<policy_t::template elem_param<DataSize>>;
enum : std::size_t {
head_size = elem_array_head_size<BaseIntSize>,
head_size = sizeof(policy_t) + sizeof(head_t),
data_size = DataSize,
elem_max = (std::numeric_limits<u1_t>::max)() + 1, // default is 255 + 1
elem_size = sizeof(head_t) + DataSize,
elem_max = (std::numeric_limits<uint_t<8>>::max)() + 1, // default is 255 + 1
elem_size = sizeof(elem_t),
block_size = elem_size * elem_max
};
protected:
struct elem_t {
head_t head_;
byte_t data_[data_size] {};
};
private:
head_t head_;
elem_t block_[elem_max];
elem_t* elem_start() noexcept {
return block_;
}
static elem_t* elem(void* ptr) noexcept { return reinterpret_cast<elem_t*>(static_cast<byte_t*>(ptr) - sizeof(head_t)); }
elem_t* elem(u1_t i ) noexcept { return elem_start() + i; }
template <typename Acq, typename... P>
void* acquire(std::memory_order order, Acq&& acq, P&&... params) noexcept {
uint_t<32> conn_cnt = this->cc_.load(order);
if (conn_cnt == 0) return nullptr;
elem_t* el = elem(std::forward<Acq>(acq)(std::memory_order_relaxed,
std::forward<P>(params)...));
// check all consumers have finished reading
while(1) {
uint_t<32> expected = 0;
if (el->head_.rc_.compare_exchange_weak(
expected, conn_cnt, std::memory_order_relaxed)) {
break;
}
std::this_thread::yield();
conn_cnt = this->cc_.load(std::memory_order_acquire);
}
return el->data_;
}
public:
elem_array() = default;
elem_array(const elem_array&) = delete;
elem_array& operator=(const elem_array&) = delete;
elem_array(elem_array&&) = delete;
elem_array& operator=(elem_array&&) = delete;
using base_t::connect;
using base_t::disconnect;
using base_t::conn_count;
std::size_t connect () noexcept { return head_.connect (); }
std::size_t disconnect() noexcept { return head_.disconnect(); }
std::size_t conn_count() const noexcept { return head_.conn_count(); }
using base_t::cursor;
void* acquire(std::memory_order order = std::memory_order_acquire) noexcept {
return this->acquire(order, [this](auto o) {
return base_t::acquire(o);
});
}
void commit(void* /*ptr*/) noexcept {
base_t::commit();
template <typename F>
bool push(F&& f) noexcept {
return base_t::push(this, std::forward<F>(f), block_);
}
template <typename F>
bool fetch(F&& f) noexcept {
auto p = this->acquire();
if (p == nullptr) return false;
std::forward<F>(f)(p);
this->commit(p);
return true;
}
void* take(u2_t cursor) noexcept {
return elem(base_t::index_of(cursor))->data_;
}
void put(void* ptr) noexcept {
auto el = elem(ptr);
uint_t<32> cur_rc;
do {
cur_rc = el->head_.rc_.load(std::memory_order_relaxed);
if (cur_rc == 0) return;
} while (!el->head_.rc_.compare_exchange_weak(
cur_rc, cur_rc - 1, std::memory_order_release));
bool pop(detail::u2_t& cur, F&& f) noexcept {
return base_t::pop(this, cur, std::forward<F>(f), block_);
}
};
/*
template <std::size_t DataSize, std::size_t BaseIntSize = 8>
class multi_write_array : protected elem_array<DataSize, BaseIntSize> {
public:
using base_t = elem_array<DataSize, BaseIntSize>;
using head_t = typename base_t::head_t;
using typename base_t::u1_t;
using typename base_t::u2_t;
using base_t::head_size;
using base_t::data_size;
using base_t::elem_max;
using base_t::elem_size;
using base_t::block_size;
protected:
std::atomic<u2_t> rd_ { 0 }; // ready index
public:
using base_t::connect;
using base_t::disconnect;
using base_t::conn_count;
u2_t cursor() const noexcept {
return rd_.load(std::memory_order_acquire);
}
template <typename F>
bool fetch(F&& f) noexcept {
u2_t cur_rd;
auto p = base_t::acquire(std::memory_order_acquire, [this, &cur_rd](auto o) {
while (1) {
u2_t cur_wt = wt_.load(o), nxt_wt = cur_wt + 1;
if (base_t::index_of(nxt_wt) ==
base_t::index_of(cur_rd = rd_.load(std::memory_order_relaxed))) {
// is full
}
else if (wt_.compare_exchange_weak(cur_wt, nxt_wt, std::memory_order_relaxed)) {
return base_t::index_of(nxt_wt);
}
std::this_thread::yield();
std::atomic_thread_fence(std::memory_order_acquire);
}
});
if (p == nullptr) return false;
std::forward<F>(f)(p);
while (1) {
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
break;
}
std::this_thread::yield();
}
return true;
}
};
*/
} // namespace circ
} // namespace ipc

View File

@ -1,265 +0,0 @@
#pragma once
#include <atomic>
#include <thread>
#include <cstring>
#include "def.h"
namespace ipc {
namespace circ {
namespace detail {
using u1_t = uint_t<8>;
using u2_t = uint_t<16>;
constexpr u1_t index_of(u2_t c) noexcept {
return static_cast<u1_t>(c);
}
struct elem_head {
std::atomic<std::size_t> rc_ { 0 }; // read counter
};
template <std::size_t DataSize>
struct elem_t {
elem_head head_;
byte_t data_[DataSize] {};
};
template <>
struct elem_t<0> {
elem_head head_;
};
template <std::size_t S>
elem_t<S>* elem_of(void* ptr) noexcept {
return reinterpret_cast<elem_t<S>*>(static_cast<byte_t*>(ptr) - sizeof(elem_head));
}
} // namespace detail
enum class relat { // multiplicity of the relationship
single,
multi
};
enum class trans { // transmission
unicast,
broadcast
};
////////////////////////////////////////////////////////////////
/// producer-consumer policies
////////////////////////////////////////////////////////////////
template <relat Rp, relat Rc, trans Ts>
struct prod_cons;
template <>
struct prod_cons<relat::single, relat::single, trans::unicast> {
std::atomic<detail::u2_t> rd_ { 0 }; // read index
std::atomic<detail::u2_t> wt_ { 0 }; // write index
template <std::size_t DataSize>
constexpr static std::size_t elem_param = DataSize - sizeof(detail::elem_head);
constexpr detail::u2_t cursor() const noexcept {
return 0;
}
template <typename E, typename F, std::size_t S>
bool push(E* /*elems*/, F&& f, detail::elem_t<S>* elem_start) {
auto cur_wt = detail::index_of(wt_.load(std::memory_order_acquire));
if (cur_wt == detail::index_of(rd_.load(std::memory_order_relaxed) - 1)) {
return false; // full
}
std::forward<F>(f)(elem_start + cur_wt);
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename E, typename F, std::size_t S>
bool pop(E* /*elems*/, detail::u2_t& /*cur*/, F&& f, detail::elem_t<S>* elem_start) noexcept {
auto cur_rd = detail::index_of(rd_.load(std::memory_order_acquire));
if (cur_rd == detail::index_of(wt_.load(std::memory_order_relaxed))) {
return false; // empty
}
std::forward<F>(f)(elem_start + cur_rd);
rd_.fetch_add(1, std::memory_order_release);
return true;
}
};
template <>
struct prod_cons<relat::single, relat::multi, trans::unicast>
: prod_cons<relat::single, relat::single, trans::unicast> {
template <typename E, typename F, std::size_t S>
bool pop(E* /*elems*/, detail::u2_t& /*cur*/, F&& f, detail::elem_t<S>* elem_start) noexcept {
byte_t buff[sizeof(detail::elem_t<S>)];
while (1) {
auto cur_rd = rd_.load(std::memory_order_acquire);
if (detail::index_of(cur_rd) ==
detail::index_of(wt_.load(std::memory_order_relaxed))) {
return false; // empty
}
std::memcpy(buff, elem_start + detail::index_of(cur_rd), sizeof(buff));
if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
std::forward<F>(f)(buff);
return true;
}
std::this_thread::yield();
}
}
};
template <>
struct prod_cons<relat::multi, relat::multi, trans::unicast>
: prod_cons<relat::single, relat::multi, trans::unicast> {
std::atomic<detail::u2_t> ct_ { 0 }; // commit index
template <typename E, typename F, std::size_t S>
bool push(E* /*elems*/, F&& f, detail::elem_t<S>* elem_start) {
detail::u2_t cur_ct, nxt_ct;
while (1) {
cur_ct = ct_.load(std::memory_order_acquire);
if (detail::index_of(nxt_ct = cur_ct + 1) ==
detail::index_of(rd_.load(std::memory_order_relaxed))) {
return false; // full
}
if (ct_.compare_exchange_weak(cur_ct, nxt_ct, std::memory_order_relaxed)) {
break;
}
std::this_thread::yield();
}
std::forward<F>(f)(elem_start + detail::index_of(cur_ct));
while (1) {
auto exp_wt = cur_ct;
if (wt_.compare_exchange_weak(exp_wt, nxt_ct, std::memory_order_release)) {
break;
}
std::this_thread::yield();
}
return true;
}
};
template <>
struct prod_cons<relat::single, relat::multi, trans::broadcast> {
std::atomic<detail::u2_t> wt_ { 0 }; // write index
template <std::size_t DataSize>
constexpr static std::size_t elem_param = DataSize;
/*
<Remarks> std::atomic<T> may not have value_type.
See: https://stackoverflow.com/questions/53648614/what-happened-to-stdatomicxvalue-type
*/
using rc_t = decltype(detail::elem_head::rc_.load());
detail::u2_t cursor() const noexcept {
return wt_.load(std::memory_order_acquire);
}
template <typename E, typename F, std::size_t S>
bool push(E* elems, F&& f, detail::elem_t<S>* elem_start) {
auto conn_cnt = elems->conn_count(); // acquire
if (conn_cnt == 0) return false;
auto el = elem_start + detail::index_of(wt_.load(std::memory_order_relaxed));
// check all consumers have finished reading this element
rc_t expected = 0;
if (!el->head_.rc_.compare_exchange_weak(
expected, static_cast<rc_t>(conn_cnt), std::memory_order_relaxed)) {
return false;
}
std::forward<F>(f)(el->data_);
wt_.fetch_add(1, std::memory_order_release);
return true;
}
template <typename E, typename F, std::size_t S>
bool pop(E* /*elems*/, detail::u2_t& cur, F&& f, detail::elem_t<S>* elem_start) noexcept {
if (cur == cursor()) return false; // acquire
auto el = elem_start + detail::index_of(cur++);
std::forward<F>(f)(el->data_);
do {
rc_t cur_rc = el->head_.rc_.load(std::memory_order_acquire);
if (cur_rc == 0) {
return true;
}
if (el->head_.rc_.compare_exchange_weak(
cur_rc, cur_rc - 1, std::memory_order_release)) {
return true;
}
std::this_thread::yield();
} while (1);
}
};
////////////////////////////////////////////////////////////////
/// element-array implementation
////////////////////////////////////////////////////////////////
struct elems_head {
std::atomic<detail::u2_t> cc_ { 0 }; // connection counter
std::size_t connect() noexcept {
return cc_.fetch_add(1, std::memory_order_release);
}
std::size_t disconnect() noexcept {
return cc_.fetch_sub(1, std::memory_order_release);
}
std::size_t conn_count(std::memory_order order = std::memory_order_acquire) const noexcept {
return cc_.load(order);
}
};
template <std::size_t DataSize, typename Policy>
class elems_array : private Policy {
public:
using policy_t = Policy;
using base_t = Policy;
using head_t = elems_head;
using elem_t = detail::elem_t<policy_t::template elem_param<DataSize>>;
enum : std::size_t {
head_size = sizeof(head_t),
data_size = DataSize,
elem_max = (std::numeric_limits<uint_t<8>>::max)() + 1, // default is 255 + 1
elem_size = sizeof(elem_t),
block_size = elem_size * elem_max
};
private:
head_t head_;
elem_t block_[elem_max];
public:
elems_array() = default;
elems_array(const elems_array&) = delete;
elems_array& operator=(const elems_array&) = delete;
std::size_t connect () noexcept { return head_.connect (); }
std::size_t disconnect() noexcept { return head_.disconnect(); }
std::size_t conn_count() const noexcept { return head_.conn_count(); }
using base_t::cursor;
template <typename F>
bool push(F&& f) noexcept {
return base_t::push(this, std::forward<F>(f), block_);
}
template <typename F>
bool pop(detail::u2_t& cur, F&& f) noexcept {
return base_t::pop(this, cur, std::forward<F>(f), block_);
}
};
} // namespace circ
} // namespace ipc

View File

@ -15,14 +15,15 @@
namespace ipc {
namespace circ {
template <typename T, template <std::size_t...> class ElemArray = elem_array>
template <typename T, typename Policy = prod_cons<relat::single, relat::multi, trans::broadcast>>
class queue {
public:
using array_t = ElemArray<sizeof(T)>;
using array_t = elem_array<sizeof(T), Policy>;
using policy_t = typename array_t::policy_t;
private:
array_t* elems_ = nullptr;
typename array_t::u2_t cursor_ = 0;
decltype(std::declval<array_t>().cursor()) cursor_ = 0;
std::atomic_bool connected_ { false };
public:
@ -89,7 +90,7 @@ public:
template <typename... P>
auto push(P&&... params) noexcept {
if (elems_ == nullptr) return false;
return elems_->fetch([&](void* p) {
return elems_->push([&](void* p) {
::new (p) T(std::forward<P>(params)...);
});
}
@ -121,9 +122,12 @@ public:
if (que->elems_ == nullptr) {
return {};
}
auto item_ptr = static_cast<T*>(que->elems_->take(que->cursor_++));
T item = std::move(*item_ptr);
que->elems_->put(item_ptr);
T item;
if (!que->elems_->pop(que->cursor_, [&item](void* p) {
::new (&item) T(std::move(*static_cast<T*>(p)));
})) {
return {};
}
return item;
}

View File

@ -41,27 +41,29 @@ enum : std::size_t {
base_size = sizeof(void*)
};
template <std::size_t Radix>
constexpr std::size_t roundup(std::size_t n) {
return ((n - 1) & (~(Radix - 1))) + Radix;
constexpr std::size_t classify(std::size_t size) {
constexpr static std::size_t mapping[] = {
/* 1 */
0 , 1 , 2 , 3 ,
/* 2 */
5 , 5 , 7 , 7 ,
9 , 9 , 11, 11,
13, 13, 15, 15,
/* 4 */
19, 19, 19, 19,
23, 23, 23, 23,
27, 27, 27, 27,
31, 31, 31, 31
};
size = (size - 1) / base_size;
return (size < std::size(mapping)) ? mapping[size] : 32;
}
using fixed_sequence_t = std::index_sequence<
base_size , base_size * 2 ,
base_size * 3 , base_size * 4 ,
base_size * 5 , base_size * 6 ,
base_size * 7 , base_size * 8 ,
base_size * 9 , base_size * 10,
base_size * 11, base_size * 12,
base_size * 13, base_size * 14,
base_size * 15, base_size * 16
>;
template <typename F>
decltype(auto) choose(std::size_t size, F&& f) {
return detail::static_switch(roundup<base_size>(size), fixed_sequence_t {
return detail::static_switch(classify(size), std::make_index_sequence<32> {
}, [&f](auto index) {
return f(fixed<decltype(index)::value>());
return f(fixed<(decltype(index)::value + 1) * base_size>());
}, [&f] {
return f(static_alloc{});
});
@ -70,8 +72,8 @@ decltype(auto) choose(std::size_t size, F&& f) {
class pool_alloc {
public:
static void clear() {
static_for(fixed_sequence_t {}, [](auto index) {
fixed<decltype(index)::value>().clear();
static_for(std::make_index_sequence<32> {}, [](auto index) {
fixed<(decltype(index)::value + 1) * base_size>().clear();
});
}

View File

@ -6,7 +6,6 @@
#include <vector>
#include <unordered_map>
#include "circ_elems_array.h"
#include "circ_elem_array.h"
#include "circ_queue.h"
#include "memory/resource.hpp"
@ -19,7 +18,10 @@ struct msg_t {
int dat_;
};
using cq_t = ipc::circ::elem_array<sizeof(msg_t)>;
using cq_t = ipc::circ::elem_array<sizeof(msg_t),
ipc::circ::prod_cons<ipc::circ::relat::single,
ipc::circ::relat::multi,
ipc::circ::trans::broadcast>>;
cq_t* cq__;
bool operator==(msg_t const & m1, msg_t const & m2) {
@ -28,8 +30,8 @@ bool operator==(msg_t const & m1, msg_t const & m2) {
} // internal-linkage
template <>
struct test_verify<cq_t> {
template <std::size_t D, typename P>
struct test_verify<ipc::circ::elem_array<D, P>> {
std::vector<std::unordered_map<int, std::vector<int>>> list_;
test_verify(int M)
@ -99,14 +101,14 @@ struct quit_mode<ipc::circ::prod_cons<Rp, Rc, ipc::circ::trans::unicast>> {
template <ipc::circ::relat Rp, ipc::circ::relat Rc>
struct quit_mode<ipc::circ::prod_cons<Rp, Rc, ipc::circ::trans::broadcast>> {
struct type {
type(bool) {}
constexpr type(bool) {}
constexpr operator bool() const { return false; }
};
};
template <std::size_t D, typename P>
struct test_cq<ipc::circ::elems_array<D, P>> {
using ca_t = ipc::circ::elems_array<D, P>;
struct test_cq<ipc::circ::elem_array<D, P>> {
using ca_t = ipc::circ::elem_array<D, P>;
using cn_t = decltype(std::declval<ca_t>().cursor());
typename quit_mode<P>::type quit_ = false;
@ -132,7 +134,7 @@ struct test_cq<ipc::circ::elems_array<D, P>> {
template <typename F>
void recv(cn_t cur, F&& proc) {
while(1) {
while (1) {
msg_t msg;
while (ca_->pop(cur, [&msg](void* p) {
msg = *static_cast<msg_t*>(p);
@ -161,59 +163,6 @@ struct test_cq<ipc::circ::elems_array<D, P>> {
}
};
template <std::size_t D>
struct test_cq<ipc::circ::elem_array<D>> {
using ca_t = ipc::circ::elem_array<D>;
using cn_t = typename ca_t::u2_t;
ca_t* ca_;
test_cq(ca_t* ca) : ca_(ca) {
::new (ca) ca_t;
}
cn_t connect() {
auto cur = ca_->cursor();
ca_->connect();
return cur;
}
void disconnect(cn_t) {
ca_->disconnect();
}
void wait_start(int M) {
while (ca_->conn_count() != static_cast<std::size_t>(M)) {
std::this_thread::yield();
}
}
template <typename F>
void recv(cn_t cur, F&& proc) {
while(1) {
while (cur != ca_->cursor()) {
msg_t* pmsg = static_cast<msg_t*>(ca_->take(cur)),
msg = *pmsg;
ca_->put(pmsg);
if (msg.pid_ < 0) return;
++cur;
proc(msg);
}
std::this_thread::yield();
}
}
ca_t* connect_send() {
return ca_;
}
void send(ca_t* ca, msg_t const & msg) {
msg_t* pmsg = static_cast<msg_t*>(ca->acquire());
(*pmsg) = msg;
ca->commit(pmsg);
}
};
template <typename T>
struct test_cq<ipc::circ::queue<T>> {
using cn_t = ipc::circ::queue<T>;
@ -283,7 +232,7 @@ private slots:
#include "test_circ.moc"
constexpr int LoopCount = 10000000;
constexpr int LoopCount = 1000000;
//constexpr int LoopCount = 1000/*0000*/;
void Unit::initTestCase() {
@ -302,15 +251,8 @@ void Unit::test_inst() {
std::cout << "cq_t::block_size = " << cq_t::block_size << std::endl;
QCOMPARE(static_cast<std::size_t>(cq_t::data_size), sizeof(msg_t));
QCOMPARE(sizeof(cq_t), static_cast<std::size_t>(cq_t::block_size + cq_t::head_size));
std::cout << "sizeof(ipc::circ::elem_array<4096>) = " << sizeof(*cq__) << std::endl;
auto a = cq__->take(1);
auto b = cq__->take(2);
QCOMPARE(static_cast<std::size_t>(static_cast<ipc::byte_t*>(b) -
static_cast<ipc::byte_t*>(a)),
static_cast<std::size_t>(cq_t::elem_size));
std::cout << "sizeof(ipc::circ::elem_array<sizeof(msg_t)>) = " << sizeof(*cq__) << std::endl;
}
template <int N, int M, bool V = true, int Loops = LoopCount>
@ -319,9 +261,7 @@ void test_prod_cons() {
}
void Unit::test_prod_cons_1v1() {
test_prod_cons<1, 1>();
ipc::circ::elems_array<
ipc::circ::elem_array<
sizeof(msg_t),
ipc::circ::prod_cons<ipc::circ::relat::single,
ipc::circ::relat::single,
@ -329,12 +269,30 @@ void Unit::test_prod_cons_1v1() {
> el_arr_ss;
benchmark_prod_cons<1, 1, LoopCount, cq_t>(&el_arr_ss);
benchmark_prod_cons<1, 1, LoopCount, void>(&el_arr_ss);
ipc::circ::elem_array<
sizeof(msg_t),
ipc::circ::prod_cons<ipc::circ::relat::single,
ipc::circ::relat::multi,
ipc::circ::trans::unicast>
> el_arr_smn;
benchmark_prod_cons<1, 1, LoopCount, decltype(el_arr_smn)::policy_t>(&el_arr_smn);
benchmark_prod_cons<1, 1, LoopCount, void>(&el_arr_smn);
ipc::circ::elem_array<
sizeof(msg_t),
ipc::circ::prod_cons<ipc::circ::relat::multi,
ipc::circ::relat::multi,
ipc::circ::trans::unicast>
> el_arr_mmn;
benchmark_prod_cons<1, 1, LoopCount, decltype(el_arr_mmn)::policy_t>(&el_arr_mmn);
benchmark_prod_cons<1, 1, LoopCount, void>(&el_arr_mmn);
test_prod_cons<1, 1>();
}
void Unit::test_prod_cons_1v3() {
test_prod_cons<1, 3>();
ipc::circ::elems_array<
ipc::circ::elem_array<
sizeof(msg_t),
ipc::circ::prod_cons<ipc::circ::relat::single,
ipc::circ::relat::multi,
@ -343,7 +301,7 @@ void Unit::test_prod_cons_1v3() {
benchmark_prod_cons<1, 3, LoopCount, decltype(el_arr_smn)::policy_t>(&el_arr_smn);
benchmark_prod_cons<1, 3, LoopCount, void>(&el_arr_smn);
ipc::circ::elems_array<
ipc::circ::elem_array<
sizeof(msg_t),
ipc::circ::prod_cons<ipc::circ::relat::multi,
ipc::circ::relat::multi,
@ -351,20 +309,34 @@ void Unit::test_prod_cons_1v3() {
> el_arr_mmn;
benchmark_prod_cons<1, 3, LoopCount, decltype(el_arr_mmn)::policy_t>(&el_arr_mmn);
benchmark_prod_cons<1, 3, LoopCount, void>(&el_arr_mmn);
benchmark_prod_cons<3, 3, LoopCount, decltype(el_arr_mmn)::policy_t>(&el_arr_mmn);
benchmark_prod_cons<3, 3, LoopCount, void>(&el_arr_mmn);
ipc::circ::elems_array<
sizeof(msg_t),
ipc::circ::prod_cons<ipc::circ::relat::single,
ipc::circ::relat::multi,
ipc::circ::trans::broadcast>
> el_arr_smm;
benchmark_prod_cons<1, 3, LoopCount, cq_t>(&el_arr_smm);
benchmark_prod_cons<1, 3, LoopCount, void>(&el_arr_smm);
test_prod_cons<1, 3>();
}
void Unit::test_prod_cons_performance() {
ipc::circ::elem_array<
sizeof(msg_t),
ipc::circ::prod_cons<ipc::circ::relat::single,
ipc::circ::relat::multi,
ipc::circ::trans::unicast>
> el_arr_smn;
ipc::mem::detail::static_for(std::make_index_sequence<10>{}, [&el_arr_smn](auto index) {
benchmark_prod_cons<1, decltype(index)::value + 1, LoopCount, void>(&el_arr_smn);
});
ipc::circ::elem_array<
sizeof(msg_t),
ipc::circ::prod_cons<ipc::circ::relat::multi,
ipc::circ::relat::multi,
ipc::circ::trans::unicast>
> el_arr_mmn;
ipc::mem::detail::static_for(std::make_index_sequence<10>{}, [&el_arr_mmn](auto index) {
benchmark_prod_cons<1, decltype(index)::value + 1, LoopCount, void>(&el_arr_mmn);
});
ipc::mem::detail::static_for(std::make_index_sequence<10>{}, [&el_arr_mmn](auto index) {
benchmark_prod_cons<decltype(index)::value + 1, decltype(index)::value + 1, LoopCount, void>(&el_arr_mmn);
});
ipc::mem::detail::static_for(std::make_index_sequence<10>{}, [](auto index) {
test_prod_cons<1, decltype(index)::value + 1, false>();
});