test(condition): add comprehensive unit tests for ipc::sync::condition

- Test condition variable construction (default and named)
- Test wait, notify, and broadcast operations
- Test timed wait with timeout and infinite wait
- Test integration with mutex for synchronization
- Test producer-consumer patterns with condition variables
- Test multiple waiters with broadcast
- Test spurious wakeup handling patterns
- Test named condition variable sharing between threads
- Test resource cleanup (clear, clear_storage)
- Test edge cases (after clear, immediate notify)
This commit is contained in:
木头云 2025-11-30 04:13:57 +00:00
parent 6e17ce184b
commit 4832c47345

550
test/test_condition.cpp Normal file
View File

@ -0,0 +1,550 @@
/**
* @file test_condition.cpp
* @brief Comprehensive unit tests for ipc::sync::condition class
*
* This test suite covers:
* - Condition variable construction (default and named)
* - Wait, notify, and broadcast operations
* - Timed wait with timeout
* - Integration with mutex
* - Producer-consumer patterns with condition variables
* - Resource cleanup
*/
#include <gtest/gtest.h>
#include <thread>
#include <chrono>
#include <atomic>
#include <vector>
#include "libipc/condition.h"
#include "libipc/mutex.h"
#include "libipc/def.h"
using namespace ipc;
using namespace ipc::sync;
namespace {
std::string generate_unique_cv_name(const char* prefix) {
static int counter = 0;
return std::string(prefix) + "_cv_" + std::to_string(++counter);
}
} // anonymous namespace
class ConditionTest : public ::testing::Test {
protected:
void TearDown() override {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
};
// Test default constructor
TEST_F(ConditionTest, DefaultConstructor) {
condition cv;
}
// Test named constructor
TEST_F(ConditionTest, NamedConstructor) {
std::string name = generate_unique_cv_name("named");
condition cv(name.c_str());
EXPECT_TRUE(cv.valid());
}
// Test native() methods
TEST_F(ConditionTest, NativeHandle) {
std::string name = generate_unique_cv_name("native");
condition cv(name.c_str());
ASSERT_TRUE(cv.valid());
const void* const_handle = static_cast<const condition&>(cv).native();
void* handle = cv.native();
EXPECT_NE(const_handle, nullptr);
EXPECT_NE(handle, nullptr);
}
// Test valid() method
TEST_F(ConditionTest, Valid) {
condition cv1;
std::string name = generate_unique_cv_name("valid");
condition cv2(name.c_str());
EXPECT_TRUE(cv2.valid());
}
// Test open() method
TEST_F(ConditionTest, Open) {
std::string name = generate_unique_cv_name("open");
condition cv;
bool result = cv.open(name.c_str());
EXPECT_TRUE(result);
EXPECT_TRUE(cv.valid());
}
// Test close() method
TEST_F(ConditionTest, Close) {
std::string name = generate_unique_cv_name("close");
condition cv(name.c_str());
ASSERT_TRUE(cv.valid());
cv.close();
EXPECT_FALSE(cv.valid());
}
// Test clear() method
TEST_F(ConditionTest, Clear) {
std::string name = generate_unique_cv_name("clear");
condition cv(name.c_str());
ASSERT_TRUE(cv.valid());
cv.clear();
EXPECT_FALSE(cv.valid());
}
// Test clear_storage() static method
TEST_F(ConditionTest, ClearStorage) {
std::string name = generate_unique_cv_name("clear_storage");
{
condition cv(name.c_str());
EXPECT_TRUE(cv.valid());
}
condition::clear_storage(name.c_str());
}
// Test basic wait and notify
TEST_F(ConditionTest, WaitNotify) {
std::string cv_name = generate_unique_cv_name("wait_notify");
std::string mtx_name = generate_unique_cv_name("wait_notify_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
std::atomic<bool> notified{false};
std::thread waiter([&]() {
mtx.lock();
cv.wait(mtx);
notified.store(true);
mtx.unlock();
});
std::this_thread::sleep_for(std::chrono::milliseconds(50));
mtx.lock();
cv.notify(mtx);
mtx.unlock();
waiter.join();
EXPECT_TRUE(notified.load());
}
// Test broadcast to multiple waiters
TEST_F(ConditionTest, Broadcast) {
std::string cv_name = generate_unique_cv_name("broadcast");
std::string mtx_name = generate_unique_cv_name("broadcast_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
std::atomic<int> notified_count{0};
const int num_waiters = 5;
std::vector<std::thread> waiters;
for (int i = 0; i < num_waiters; ++i) {
waiters.emplace_back([&]() {
mtx.lock();
cv.wait(mtx);
++notified_count;
mtx.unlock();
});
}
std::this_thread::sleep_for(std::chrono::milliseconds(100));
mtx.lock();
cv.broadcast(mtx);
mtx.unlock();
for (auto& t : waiters) {
t.join();
}
EXPECT_EQ(notified_count.load(), num_waiters);
}
// Test timed wait with timeout
TEST_F(ConditionTest, TimedWait) {
std::string cv_name = generate_unique_cv_name("timed_wait");
std::string mtx_name = generate_unique_cv_name("timed_wait_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
auto start = std::chrono::steady_clock::now();
mtx.lock();
bool result = cv.wait(mtx, 100); // 100ms timeout
mtx.unlock();
auto end = std::chrono::steady_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
EXPECT_FALSE(result); // Should timeout
EXPECT_GE(elapsed, 80); // Allow some tolerance
}
// Test wait with immediate notify
TEST_F(ConditionTest, ImmediateNotify) {
std::string cv_name = generate_unique_cv_name("immediate");
std::string mtx_name = generate_unique_cv_name("immediate_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
std::atomic<bool> wait_started{false};
std::atomic<bool> notified{false};
std::thread waiter([&]() {
mtx.lock();
wait_started.store(true);
cv.wait(mtx, 1000); // 1 second timeout
notified.store(true);
mtx.unlock();
});
// Wait for waiter to start
while (!wait_started.load()) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
std::this_thread::sleep_for(std::chrono::milliseconds(10));
mtx.lock();
cv.notify(mtx);
mtx.unlock();
waiter.join();
EXPECT_TRUE(notified.load());
}
// Test producer-consumer with condition variable
TEST_F(ConditionTest, ProducerConsumer) {
std::string cv_name = generate_unique_cv_name("prod_cons");
std::string mtx_name = generate_unique_cv_name("prod_cons_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
std::atomic<int> buffer{0};
std::atomic<bool> ready{false};
std::atomic<int> consumed_value{0};
std::thread producer([&]() {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
mtx.lock();
buffer.store(42);
ready.store(true);
cv.notify(mtx);
mtx.unlock();
});
std::thread consumer([&]() {
mtx.lock();
while (!ready.load()) {
cv.wait(mtx, 2000);
}
consumed_value.store(buffer.load());
mtx.unlock();
});
producer.join();
consumer.join();
EXPECT_EQ(consumed_value.load(), 42);
}
// Test multiple notify operations
TEST_F(ConditionTest, MultipleNotify) {
std::string cv_name = generate_unique_cv_name("multi_notify");
std::string mtx_name = generate_unique_cv_name("multi_notify_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
std::atomic<int> notify_count{0};
const int num_notifications = 3;
std::thread waiter([&]() {
for (int i = 0; i < num_notifications; ++i) {
mtx.lock();
cv.wait(mtx, 1000);
++notify_count;
mtx.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
});
for (int i = 0; i < num_notifications; ++i) {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
mtx.lock();
cv.notify(mtx);
mtx.unlock();
}
waiter.join();
EXPECT_EQ(notify_count.load(), num_notifications);
}
// Test notify vs broadcast
TEST_F(ConditionTest, NotifyVsBroadcast) {
std::string cv_name = generate_unique_cv_name("notify_vs_broadcast");
std::string mtx_name = generate_unique_cv_name("notify_vs_broadcast_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
// Test notify (should wake one)
std::atomic<int> notify_woken{0};
std::vector<std::thread> notify_waiters;
for (int i = 0; i < 3; ++i) {
notify_waiters.emplace_back([&]() {
mtx.lock();
cv.wait(mtx, 100);
++notify_woken;
mtx.unlock();
});
}
std::this_thread::sleep_for(std::chrono::milliseconds(50));
mtx.lock();
cv.notify(mtx); // Wake one
mtx.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(150));
for (auto& t : notify_waiters) {
t.join();
}
// At least one should be woken by notify
EXPECT_GE(notify_woken.load(), 1);
}
// Test condition variable with spurious wakeups pattern
TEST_F(ConditionTest, SpuriousWakeupPattern) {
std::string cv_name = generate_unique_cv_name("spurious");
std::string mtx_name = generate_unique_cv_name("spurious_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
std::atomic<bool> predicate{false};
std::atomic<bool> done{false};
std::thread waiter([&]() {
mtx.lock();
while (!predicate.load()) {
if (!cv.wait(mtx, 100)) {
// Timeout - check predicate again
if (predicate.load()) break;
}
}
done.store(true);
mtx.unlock();
});
std::this_thread::sleep_for(std::chrono::milliseconds(50));
mtx.lock();
predicate.store(true);
cv.notify(mtx);
mtx.unlock();
waiter.join();
EXPECT_TRUE(done.load());
}
// Test reopen after close
TEST_F(ConditionTest, ReopenAfterClose) {
std::string name = generate_unique_cv_name("reopen");
condition cv;
ASSERT_TRUE(cv.open(name.c_str()));
EXPECT_TRUE(cv.valid());
cv.close();
EXPECT_FALSE(cv.valid());
ASSERT_TRUE(cv.open(name.c_str()));
EXPECT_TRUE(cv.valid());
}
// Test named condition variable sharing between threads
TEST_F(ConditionTest, NamedSharing) {
std::string cv_name = generate_unique_cv_name("sharing");
std::string mtx_name = generate_unique_cv_name("sharing_mtx");
std::atomic<int> value{0};
std::thread t1([&]() {
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
mtx.lock();
cv.wait(mtx, 1000);
value.store(100);
mtx.unlock();
});
std::thread t2([&]() {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
mtx.lock();
cv.notify(mtx);
mtx.unlock();
});
t1.join();
t2.join();
EXPECT_EQ(value.load(), 100);
}
// Test infinite wait
TEST_F(ConditionTest, InfiniteWait) {
std::string cv_name = generate_unique_cv_name("infinite");
std::string mtx_name = generate_unique_cv_name("infinite_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
std::atomic<bool> woken{false};
std::thread waiter([&]() {
mtx.lock();
cv.wait(mtx, invalid_value); // Infinite wait
woken.store(true);
mtx.unlock();
});
std::this_thread::sleep_for(std::chrono::milliseconds(100));
mtx.lock();
cv.notify(mtx);
mtx.unlock();
waiter.join();
EXPECT_TRUE(woken.load());
}
// Test broadcast with sequential waiters
TEST_F(ConditionTest, BroadcastSequential) {
std::string cv_name = generate_unique_cv_name("broadcast_seq");
std::string mtx_name = generate_unique_cv_name("broadcast_seq_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
ASSERT_TRUE(mtx.valid());
std::atomic<int> processed{0};
const int num_threads = 4;
std::vector<std::thread> threads;
for (int i = 0; i < num_threads; ++i) {
threads.emplace_back([&]() {
mtx.lock();
cv.wait(mtx, 2000);
++processed;
mtx.unlock();
});
}
std::this_thread::sleep_for(std::chrono::milliseconds(100));
mtx.lock();
cv.broadcast(mtx);
mtx.unlock();
for (auto& t : threads) {
t.join();
}
EXPECT_EQ(processed.load(), num_threads);
}
// Test operations after clear
TEST_F(ConditionTest, AfterClear) {
std::string cv_name = generate_unique_cv_name("after_clear");
std::string mtx_name = generate_unique_cv_name("after_clear_mtx");
condition cv(cv_name.c_str());
mutex mtx(mtx_name.c_str());
ASSERT_TRUE(cv.valid());
cv.clear();
EXPECT_FALSE(cv.valid());
// Operations after clear should fail gracefully
mtx.lock();
EXPECT_FALSE(cv.wait(mtx, 10));
EXPECT_FALSE(cv.notify(mtx));
EXPECT_FALSE(cv.broadcast(mtx));
mtx.unlock();
}