2025-03-09 18:02:50 +08:00

282 lines
8.4 KiB
C++

/**
* \file libipc/span.h
* \author mutouyun (orz@orzz.org)
* \brief Describes an object that can refer to a contiguous sequence of objects.
*/
#pragma once
#include <type_traits>
#include <cstddef>
#include <iterator>
#include <array>
#include <vector>
#include <string>
#include <limits>
#include <algorithm>
#include <cstdint>
#include <initializer_list>
#include "libipc/imp/detect_plat.h"
#include "libipc/imp/generic.h"
#if defined(LIBIPC_CPP_20) && defined(__cpp_lib_span)
#include <span>
#define LIBIPC_CPP_LIB_SPAN_
#endif // __cpp_lib_span
namespace ipc {
namespace detail_span {
/// \brief Helper trait for span.
template <typename From, typename To>
using array_convertible = std::is_convertible<From(*)[], To(*)[]>;
template <typename From, typename To>
using is_array_convertible =
typename std::enable_if<array_convertible<From, To>::value>::type;
template <typename T, typename Ref>
using compatible_ref = array_convertible<typename std::remove_reference<Ref>::type, T>;
template <typename It>
using iter_reference_t = decltype(*std::declval<It&>());
template <typename T, typename It>
using is_compatible_iter =
typename std::enable_if<compatible_ref<T, iter_reference_t<It>>::value>::type;
template <typename From, typename To>
using is_inconvertible =
typename std::enable_if<!std::is_convertible<From, To>::value>::type;
template <typename S, typename I>
using is_sized_sentinel_for =
typename std::enable_if<std::is_convertible<decltype(std::declval<S>() - std::declval<I>()),
std::ptrdiff_t>::value>::type;
template <typename T>
using is_continuous_container =
decltype(dataof(std::declval<T>()), countof(std::declval<T>()));
/// \brief Obtain the address represented by p
/// without forming a reference to the object pointed to by p.
/// \see https://en.cppreference.com/w/cpp/memory/to_address
template<typename T>
constexpr T *to_address(T *ptr) noexcept {
static_assert(!std::is_function<T>::value, "ptr shouldn't a function pointer");
return ptr;
}
template<typename T>
constexpr auto to_address(T const &ptr)
noexcept(noexcept(ptr.operator->()))
-> decltype(ptr.operator->()) {
return to_address(ptr.operator->());
}
} // namespace detail_span
/**
* \brief A simple implementation of span.
* \see https://en.cppreference.com/w/cpp/container/span
*/
template <typename T>
class span {
public:
using element_type = T;
using value_type = typename std::remove_cv<element_type>::type;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = element_type *;
using const_pointer = typename std::remove_const<element_type>::type const *;
using reference = element_type &;
using const_reference = typename std::remove_const<element_type>::type const &;
using iterator = pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
private:
pointer ptr_ {nullptr};
size_type extent_ {0};
public:
constexpr span() noexcept = default;
constexpr span(span const &) noexcept = default;
#if (LIBIPC_CC_MSVC > LIBIPC_CC_MSVC_2015)
constexpr
#endif
span & operator=(span const &) noexcept = default;
template <typename It,
typename = detail_span::is_compatible_iter<T, It>>
constexpr span(It first, size_type count) noexcept
: ptr_ (detail_span::to_address(first))
, extent_(count) {}
template <typename It, typename End,
typename = detail_span::is_compatible_iter<T, It>,
typename = detail_span::is_sized_sentinel_for<End, It>,
typename = detail_span::is_inconvertible<End, size_type>>
constexpr span(It first, End last) noexcept(noexcept(last - first))
: ptr_ (detail_span::to_address(first))
, extent_(static_cast<size_type>(last - first)) {}
template <typename U,
typename = detail_span::is_continuous_container<U>,
typename = detail_span::is_array_convertible<std::remove_pointer_t<
decltype(dataof(std::declval<U>()))>, element_type>>
constexpr span(U &&u) noexcept(noexcept(dataof (std::forward<U>(u)),
countof(std::forward<U>(u))))
: ptr_ (dataof (std::forward<U>(u)))
, extent_(countof(std::forward<U>(u))) {}
template <typename U, std::size_t E,
typename = detail_span::is_array_convertible<U, element_type>>
constexpr span(U (&arr)[E]) noexcept
: span(static_cast<pointer>(arr), E) {}
template <typename U, std::size_t E,
typename = detail_span::is_array_convertible<U, element_type>>
constexpr span(std::array<U, E> &arr) noexcept
: span(static_cast<pointer>(arr.data()), E) {}
template <typename U, std::size_t E,
typename = detail_span::is_array_convertible<typename std::add_const<U>::type, element_type>>
constexpr span(std::array<U, E> const &arr) noexcept
: span(static_cast<pointer>(arr.data()), E) {}
template <typename U,
typename = detail_span::is_array_convertible<U, T>>
constexpr span(span<U> const &s) noexcept
: ptr_ (s.data())
, extent_(s.size()) {}
#ifdef LIBIPC_CPP_LIB_SPAN_
template <typename U, std::size_t E,
typename = detail_span::is_array_convertible<U, T>>
constexpr span(std::span<U, E> const &s) noexcept
: ptr_ (s.data())
, extent_(s.size()) {}
#endif // LIBIPC_CPP_LIB_SPAN_
constexpr size_type size() const noexcept {
return extent_;
}
constexpr size_type size_bytes() const noexcept {
return size() * sizeof(element_type);
}
constexpr bool empty() const noexcept {
return size() == 0;
}
constexpr pointer data() const noexcept {
return this->ptr_;
}
constexpr reference front() const noexcept {
return *data();
}
constexpr reference back() const noexcept {
return *(data() + (size() - 1));
}
constexpr reference operator[](size_type idx) const noexcept {
return *(data() + idx);
}
constexpr iterator begin() const noexcept {
return iterator(data());
}
constexpr iterator end() const noexcept {
return iterator(data() + this->size());
}
constexpr reverse_iterator rbegin() const noexcept {
return reverse_iterator(this->end());
}
constexpr reverse_iterator rend() const noexcept {
return reverse_iterator(this->begin());
}
constexpr span first(size_type count) const noexcept {
return span(begin(), count);
}
constexpr span last(size_type count) const noexcept {
return span(end() - count, count);
}
constexpr span subspan(size_type offset, size_type count = (std::numeric_limits<size_type>::max)()) const noexcept {
return (offset >= size()) ? span() : span(begin() + offset, (std::min)(size() - offset, count));
}
};
/// \brief Support for span equals comparison.
template <typename T, typename U,
typename = decltype(std::declval<T>() == std::declval<U>())>
bool operator==(span<T> a, span<U> b) noexcept {
if (a.size() != b.size()) {
return false;
}
for (std::size_t i = 0; i < a.size(); ++i) {
if (a[i] != b[i]) return false;
}
return true;
}
/// \brief Constructs an object of type T and wraps it in a span.
/// Before C++17, template argument deduction for class templates was not supported.
/// \see https://en.cppreference.com/w/cpp/language/template_argument_deduction
template <typename T>
auto make_span(T *arr, std::size_t count) noexcept -> span<T> {
return {arr, count};
}
template <typename T, std::size_t E>
auto make_span(T (&arr)[E]) noexcept -> span<T> {
return {arr};
}
template <typename T, std::size_t E>
auto make_span(std::array<T, E> &arr) noexcept -> span<T> {
return {arr};
}
template <typename T, std::size_t E>
auto make_span(std::array<T, E> const &arr) noexcept -> span<typename std::add_const<T>::type> {
return {arr};
}
template <typename T>
auto make_span(std::vector<T> &arr) noexcept -> span<T> {
return {arr.data(), arr.size()};
}
template <typename T>
auto make_span(std::vector<T> const &arr) noexcept -> span<typename std::add_const<T>::type> {
return {arr.data(), arr.size()};
}
template <typename T>
auto make_span(std::initializer_list<T> list) noexcept -> span<typename std::add_const<T>::type> {
return {list.begin(), list.end()};
}
inline auto make_span(std::string &str) noexcept -> span<char> {
return {const_cast<char *>(str.data()), str.size()};
}
inline auto make_span(std::string const &str) noexcept -> span<char const> {
return {str.data(), str.size()};
}
} // namespace ipc