cpp-ipc/src/ipc.cpp

467 lines
15 KiB
C++

#include "ipc.h"
#include <type_traits>
#include <cstring>
#include <algorithm>
#include <utility>
#include <atomic>
#include <type_traits>
#include <string>
#include <vector>
#include "def.h"
#include "shm.h"
#include "tls_pointer.h"
#include "pool_alloc.h"
#include "queue.h"
#include "policy.h"
#include "rw_lock.h"
#include "log.h"
#include "memory/resource.h"
#include "platform/detail.h"
#include "platform/waiter_wrapper.h"
#include "circ/elem_array.h"
namespace {
using namespace ipc;
using msg_id_t = std::size_t;
template <std::size_t DataSize, std::size_t AlignSize>
struct msg_t;
template <std::size_t AlignSize>
struct msg_t<0, AlignSize> {
msg_id_t conn_;
msg_id_t id_;
int remain_;
bool storage_;
};
template <std::size_t DataSize, std::size_t AlignSize>
struct msg_t {
msg_t<0, AlignSize> head_ {};
std::aligned_storage_t<DataSize, AlignSize> data_ {};
msg_t() = default;
msg_t(msg_id_t c, msg_id_t i, int r, void const * d, std::size_t s)
: head_ { c, i, r, false } {
if ((d != nullptr) && (s > 0)) {
std::memcpy(&data_, d, s);
}
else {
head_.storage_ = true;
if (d != nullptr) {
std::memcpy(&data_, d, sizeof(msg_id_t));
}
}
}
};
template <typename T>
buff_t make_cache(T& data, std::size_t size) {
auto ptr = mem::alloc(size);
std::memcpy(ptr, &data, (ipc::detail::min)(sizeof(data), size));
return { ptr, size, mem::free };
}
struct cache_t {
std::size_t fill_;
buff_t buff_;
cache_t(std::size_t f, buff_t&& b)
: fill_(f), buff_(std::move(b))
{}
void append(void const * data, std::size_t size) {
if (fill_ >= buff_.size() || data == nullptr || size == 0) return;
auto new_fill = (ipc::detail::min)(fill_ + size, buff_.size());
std::memcpy(static_cast<byte_t*>(buff_.data()) + fill_, data, new_fill - fill_);
fill_ = new_fill;
}
};
struct conn_info_head {
using acc_t = std::atomic<msg_id_t>;
static auto acc() {
static shm::handle acc_h("__AC_CONN__", sizeof(acc_t));
return static_cast<acc_t*>(acc_h.get());
}
msg_id_t cc_id_; // connection-info id
waiter cc_waiter_, wt_waiter_, rd_waiter_;
struct simple_push {
template <std::size_t, std::size_t>
using elem_t = shm::handle;
circ::u2_t wt_; // write index
constexpr circ::u2_t cursor() const noexcept {
return 0;
}
template <typename W, typename F, typename E>
bool push(W* /*wrapper*/, F&& f, E* elems) {
std::forward<F>(f)(&(elems[circ::index_of(wt_)]));
++ wt_;
return true;
}
};
circ::elem_array<simple_push, sizeof(shm::handle), 0> msg_datas_;
conn_info_head(char const * name)
: cc_id_ ((acc() == nullptr) ? 0 : acc()->fetch_add(1, std::memory_order_relaxed))
, cc_waiter_((std::string { "__CC_CONN__" } + name).c_str())
, wt_waiter_((std::string { "__WT_CONN__" } + name).c_str())
, rd_waiter_((std::string { "__RD_CONN__" } + name).c_str()) {
}
static shm::handle apply_storage(msg_id_t msg_id, std::size_t size) {
return { ("__ST_CONN__" + std::to_string(msg_id)).c_str(), size, shm::create };
}
static shm::handle apply_storage(msg_id_t msg_id) {
return { ("__ST_CONN__" + std::to_string(msg_id)).c_str(), 0, shm::open };
}
void store(shm::handle && dat) {
msg_datas_.push([&dat](shm::handle * p) { p->swap(dat); });
}
void clear_store() {
msg_datas_.push([](shm::handle * p) { p->release(); });
}
};
template <typename W, typename F>
bool wait_for(W& waiter, F&& pred, std::size_t tm) {
if (tm == 0) return !pred();
for (unsigned k = 0; pred();) {
bool loop = true, ret = true;
ipc::sleep(k, [&k, &loop, &ret, &waiter, &pred, tm] {
ret = waiter.wait_if([&loop, &pred] {
return loop = pred();
}, tm);
k = 0;
return true;
});
if (!ret ) return false; // timeout or fail
if (!loop) break;
}
return true;
}
template <typename Policy,
std::size_t DataSize = data_length,
std::size_t AlignSize = (ipc::detail::min)(DataSize, alignof(std::max_align_t))>
struct queue_generator {
using queue_t = ipc::queue<msg_t<DataSize, AlignSize>, Policy>;
struct conn_info_t : conn_info_head {
queue_t que_;
conn_info_t(char const * name)
: conn_info_head(name)
, que_(("__QU_CONN__" +
std::to_string(DataSize ) + "__" +
std::to_string(AlignSize) + "__" + name).c_str()) {
}
};
};
template <typename Policy>
struct detail_impl {
using queue_t = typename queue_generator<Policy, data_length>::queue_t;
using conn_info_t = typename queue_generator<Policy, data_length>::conn_info_t;
constexpr static conn_info_t* info_of(ipc::handle_t h) {
return static_cast<conn_info_t*>(h);
}
constexpr static queue_t* queue_of(ipc::handle_t h) {
return (info_of(h) == nullptr) ? nullptr : &(info_of(h)->que_);
}
static auto& recv_cache() {
/*
<Remarks> thread_local may have some bugs.
See: https://sourceforge.net/p/mingw-w64/bugs/727/
https://sourceforge.net/p/mingw-w64/bugs/527/
https://github.com/Alexpux/MINGW-packages/issues/2519
https://github.com/ChaiScript/ChaiScript/issues/402
https://developercommunity.visualstudio.com/content/problem/124121/thread-local-variables-fail-to-be-initialized-when.html
https://software.intel.com/en-us/forums/intel-c-compiler/topic/684827
*/
static tls::pointer<mem::unordered_map<msg_id_t, cache_t>> rc;
return *rc.create();
}
/* API implementations */
static ipc::handle_t connect(char const * name, bool start) {
auto h = mem::alloc<conn_info_t>(name);
auto que = queue_of(h);
if (que == nullptr) {
return nullptr;
}
if (start) {
if (que->connect()) { // wouldn't connect twice
info_of(h)->cc_waiter_.broadcast();
}
}
return h;
}
static void disconnect(ipc::handle_t h) {
auto que = queue_of(h);
if (que == nullptr) {
return;
}
if (que->disconnect()) {
info_of(h)->cc_waiter_.broadcast();
}
mem::free(info_of(h));
}
static std::size_t recv_count(ipc::handle_t h) {
auto que = queue_of(h);
if (que == nullptr) {
return invalid_value;
}
return que->conn_count();
}
static bool wait_for_recv(ipc::handle_t h, std::size_t r_count, std::size_t tm) {
auto que = queue_of(h);
if (que == nullptr) {
return false;
}
return wait_for(info_of(h)->cc_waiter_, [que, r_count] {
return que->conn_count() < r_count;
}, tm);
}
template <typename F>
static bool send(F&& gen_push, ipc::handle_t h, void const * data, std::size_t size) {
if (data == nullptr || size == 0) {
ipc::error("fail: send(%p, %zd)\n", data, size);
return false;
}
auto que = queue_of(h);
if (que == nullptr) {
ipc::error("fail: send, queue_of(h) == nullptr\n");
return false;
}
// calc a new message id
auto acc = info_of(h)->acc();
if (acc == nullptr) {
ipc::error("fail: send, info_of(h)->acc() == nullptr\n");
return false;
}
auto msg_id = acc->fetch_add(1, std::memory_order_relaxed);
auto try_push = std::forward<F>(gen_push)(info_of(h), que, msg_id);
if (size > small_msg_limit) {
auto dat = info_of(h)->apply_storage(msg_id, size);
void * buf = dat.get();
if (buf != nullptr) {
std::memcpy(buf, data, size);
info_of(h)->store(std::move(dat));
return try_push(static_cast<int>(size) - static_cast<int>(data_length), nullptr, 0);
}
// try using message fragment
ipc::log("fail: shm::handle for big message. msg_id: %zd, size: %zd\n", msg_id, size);
}
// push message fragment
int offset = 0;
for (int i = 0; i < static_cast<int>(size / data_length); ++i, offset += data_length) {
if (!try_push(static_cast<int>(size) - offset - static_cast<int>(data_length),
static_cast<byte_t const *>(data) + offset, data_length)) {
return false;
}
info_of(h)->clear_store();
}
// if remain > 0, this is the last message fragment
int remain = static_cast<int>(size) - offset;
if (remain > 0) {
if (!try_push(remain - static_cast<int>(data_length),
static_cast<byte_t const *>(data) + offset, static_cast<std::size_t>(remain))) {
return false;
}
info_of(h)->clear_store();
}
return true;
}
static bool send(ipc::handle_t h, void const * data, std::size_t size) {
return send([](auto info, auto que, auto msg_id) {
return [info, que, msg_id](int remain, void const * data, std::size_t size) {
if (!wait_for(info->wt_waiter_, [&] {
return !que->push(info->cc_id_, msg_id, remain, data, size);
}, que->dis_flag() ? 0 : static_cast<std::size_t>(default_timeut))) {
ipc::log("force_push: msg_id = %zd, remain = %d, size = %zd\n", msg_id, remain, size);
if (!que->force_push(info->cc_id_, msg_id, remain, data, size)) {
return false;
}
}
info->rd_waiter_.broadcast();
return true;
};
}, h, data, size);
}
static bool try_send(ipc::handle_t h, void const * data, std::size_t size) {
return send([](auto info, auto que, auto msg_id) {
return [info, que, msg_id](int remain, void const * data, std::size_t size) {
if (!wait_for(info->wt_waiter_, [&] {
return !que->push(info->cc_id_, msg_id, remain, data, size);
}, 0)) {
return false;
}
info->rd_waiter_.broadcast();
return true;
};
}, h, data, size);
}
static buff_t recv(ipc::handle_t h, std::size_t tm) {
auto que = queue_of(h);
if (que == nullptr) {
ipc::error("fail: recv, queue_of(h) == nullptr\n");
return {};
}
if (que->connect()) { // wouldn't connect twice
info_of(h)->cc_waiter_.broadcast();
}
auto& rc = recv_cache();
while (1) {
// pop a new message
typename queue_t::value_t msg;
if (!wait_for(info_of(h)->rd_waiter_, [que, &msg] { return !que->pop(msg); }, tm)) {
return {};
}
info_of(h)->wt_waiter_.broadcast();
if ((info_of(h)->acc() != nullptr) && (msg.head_.conn_ == info_of(h)->cc_id_)) {
continue; // ignore message to self
}
// msg.head_.remain_ may minus & abs(msg.head_.remain_) < data_length
auto remain = static_cast<std::size_t>(static_cast<int>(data_length) + msg.head_.remain_);
// find cache with msg.head_.id_
auto cac_it = rc.find(msg.head_.id_);
if (cac_it == rc.end()) {
if (remain <= data_length) {
return make_cache(msg.data_, remain);
}
if (msg.head_.storage_) {
auto dat = info_of(h)->apply_storage(msg.head_.id_);
void * buf = dat.get();
if (buf != nullptr && remain <= dat.size()) {
auto id = dat.detach();
return buff_t { buf, remain, [id](void *, std::size_t) {
shm::handle dat;
dat.attach(id);
}, buff_t::use::functor };
}
else ipc::log("fail: shm::handle for big message. msg_id: %zd, size: %zd, shm.size: %zd\n",
msg.head_.id_, remain, dat.size());
}
// gc
if (rc.size() > 1024) {
std::vector<msg_id_t> need_del;
for (auto const & pair : rc) {
auto cmp = std::minmax(msg.head_.id_, pair.first);
if (cmp.second - cmp.first > 8192) {
need_del.push_back(pair.first);
}
}
for (auto id : need_del) rc.erase(id);
}
// cache the first message fragment
rc.emplace(msg.head_.id_, cache_t { data_length, make_cache(msg.data_, remain) });
}
// has cached before this message
else {
auto& cac = cac_it->second;
// this is the last message fragment
if (msg.head_.remain_ <= 0) {
cac.append(&(msg.data_), remain);
// finish this message, erase it from cache
auto buff = std::move(cac.buff_);
rc.erase(cac_it);
return buff;
}
// there are remain datas after this message
cac.append(&(msg.data_), data_length);
}
}
}
static buff_t try_recv(ipc::handle_t h) {
return recv(h, 0);
}
}; // detail_impl<Policy>
template <typename Flag>
using policy_t = policy::choose<circ::elem_array, Flag>;
} // internal-linkage
namespace ipc {
template <typename Flag>
ipc::handle_t chan_impl<Flag>::connect(char const * name, unsigned mode) {
return detail_impl<policy_t<Flag>>::connect(name, mode & receiver);
}
template <typename Flag>
void chan_impl<Flag>::disconnect(ipc::handle_t h) {
detail_impl<policy_t<Flag>>::disconnect(h);
}
template <typename Flag>
std::size_t chan_impl<Flag>::recv_count(ipc::handle_t h) {
return detail_impl<policy_t<Flag>>::recv_count(h);
}
template <typename Flag>
bool chan_impl<Flag>::wait_for_recv(ipc::handle_t h, std::size_t r_count, std::size_t tm) {
return detail_impl<policy_t<Flag>>::wait_for_recv(h, r_count, tm);
}
template <typename Flag>
bool chan_impl<Flag>::send(ipc::handle_t h, void const * data, std::size_t size) {
return detail_impl<policy_t<Flag>>::send(h, data, size);
}
template <typename Flag>
buff_t chan_impl<Flag>::recv(ipc::handle_t h, std::size_t tm) {
return detail_impl<policy_t<Flag>>::recv(h, tm);
}
template <typename Flag>
bool chan_impl<Flag>::try_send(ipc::handle_t h, void const * data, std::size_t size) {
return detail_impl<policy_t<Flag>>::try_send(h, data, size);
}
template <typename Flag>
buff_t chan_impl<Flag>::try_recv(ipc::handle_t h) {
return detail_impl<policy_t<Flag>>::try_recv(h);
}
template struct chan_impl<ipc::wr<relat::single, relat::single, trans::unicast >>;
template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::unicast >>;
template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::unicast >>;
template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::broadcast>>;
template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::broadcast>>;
} // namespace ipc