mirror of
https://github.com/fastfloat/fast_float.git
synced 2026-02-13 13:49:55 +08:00
Extract the round to even loigic so it can be reused for hex floats.
This commit is contained in:
parent
6a390f63e9
commit
139726f946
@ -58,6 +58,17 @@ namespace detail {
|
||||
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
|
||||
return (((152170 + 65536) * q) >> 16) + 63;
|
||||
}
|
||||
|
||||
/**
|
||||
* /!\ If the value is right in the middle of two float,
|
||||
* we must round to even!
|
||||
* We detect such occurence when m ends with 01 and then
|
||||
* we have a continuous streak of 0s.
|
||||
*/
|
||||
constexpr fastfloat_really_inline bool shouldRoundUp(uint64_t product, int shift) noexcept {
|
||||
uint64_t mantissa = product >> shift;
|
||||
return ((mantissa << shift) != product) | ((mantissa & 3) == 3);
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
// create an adjusted mantissa, biased by the invalid power2
|
||||
@ -127,8 +138,8 @@ adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
|
||||
// but in practice, we can win big with the compute_product_approximation if its additional branch
|
||||
// is easily predicted. Which is best is data specific.
|
||||
int upperbit = int(product.high >> 63);
|
||||
|
||||
answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
|
||||
int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3;
|
||||
answer.mantissa = product.high >> shift;
|
||||
|
||||
answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent());
|
||||
if (answer.power2 <= 0) { // we have a subnormal?
|
||||
@ -156,20 +167,12 @@ adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
|
||||
return answer;
|
||||
}
|
||||
|
||||
// usually, we round *up*, but if we fall right in between and and we have an
|
||||
// even basis, we need to round down
|
||||
// We are only concerned with the cases where 5**q fits in single 64-bit word.
|
||||
if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) &&
|
||||
((answer.mantissa & 3) == 1) ) { // we may fall between two floats!
|
||||
// To be in-between two floats we need that in doing
|
||||
// answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
|
||||
// ... we dropped out only zeroes. But if this happened, then we can go back!!!
|
||||
if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) {
|
||||
answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
|
||||
}
|
||||
// Usually, we round *up*, but if we fall right in between and and we have an
|
||||
// even basis, we need to round to even.
|
||||
if (product.low != 0 || detail::shouldRoundUp(product.high, shift)) {
|
||||
answer.mantissa += 1;
|
||||
}
|
||||
|
||||
answer.mantissa += (answer.mantissa & 1); // round up
|
||||
answer.mantissa >>= 1;
|
||||
if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
|
||||
answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user