From 1701be0224101d62341e2208f951d8e6df9ff173 Mon Sep 17 00:00:00 2001 From: Daniel Lemire Date: Mon, 19 Oct 2020 12:38:13 -0400 Subject: [PATCH] First commit --- AUTHORS | 1 + CMakeLists.txt | 34 + CONTRIBUTORS | 0 LICENSE | 201 + README.md | 89 + include/fast_float/ascii_number.h | 311 ++ include/fast_float/decimal_to_binary.h | 165 + include/fast_float/fast_float.h | 45 + include/fast_float/fast_table.h | 689 +++ include/fast_float/float_common.h | 263 + include/fast_float/parse_number.h | 116 + include/fast_float/thompson_tao.h | 374 ++ script/analysis.py | 36 + script/table_generation.py | 30 + tests/CMakeLists.txt | 17 + tests/basictest.cpp | 232 + tests/dtoa.c | 6203 ++++++++++++++++++++++++ tests/example_test.cpp | 11 + tests/exhaustive32.cpp | 55 + tests/exhaustive32_64.cpp | 56 + tests/exhaustive32_midpoint.cpp | 80 + tests/long_exhaustive32.cpp | 55 + tests/long_exhaustive32_64.cpp | 55 + tests/long_random64.cpp | 93 + tests/long_test.cpp | 53 + tests/random64.cpp | 94 + tests/random_string.cpp | 188 + tests/string_test.cpp | 229 + tests/test.cpp | 122 + 29 files changed, 9897 insertions(+) create mode 100644 AUTHORS create mode 100644 CMakeLists.txt create mode 100644 CONTRIBUTORS create mode 100644 LICENSE create mode 100644 README.md create mode 100644 include/fast_float/ascii_number.h create mode 100644 include/fast_float/decimal_to_binary.h create mode 100644 include/fast_float/fast_float.h create mode 100644 include/fast_float/fast_table.h create mode 100644 include/fast_float/float_common.h create mode 100644 include/fast_float/parse_number.h create mode 100644 include/fast_float/thompson_tao.h create mode 100644 script/analysis.py create mode 100644 script/table_generation.py create mode 100644 tests/CMakeLists.txt create mode 100644 tests/basictest.cpp create mode 100644 tests/dtoa.c create mode 100644 tests/example_test.cpp create mode 100644 tests/exhaustive32.cpp create mode 100644 tests/exhaustive32_64.cpp create mode 100644 tests/exhaustive32_midpoint.cpp create mode 100644 tests/long_exhaustive32.cpp create mode 100644 tests/long_exhaustive32_64.cpp create mode 100644 tests/long_random64.cpp create mode 100644 tests/long_test.cpp create mode 100644 tests/random64.cpp create mode 100644 tests/random_string.cpp create mode 100644 tests/string_test.cpp create mode 100644 tests/test.cpp diff --git a/AUTHORS b/AUTHORS new file mode 100644 index 0000000..77cd15b --- /dev/null +++ b/AUTHORS @@ -0,0 +1 @@ +Daniel Lemire \ No newline at end of file diff --git a/CMakeLists.txt b/CMakeLists.txt new file mode 100644 index 0000000..e89f3f9 --- /dev/null +++ b/CMakeLists.txt @@ -0,0 +1,34 @@ +cmake_minimum_required(VERSION 3.15) + +project(fast_float VERSION 0.1.0 LANGUAGES CXX) +set(CMAKE_CXX_STANDARD 17) +set(CMAKE_CXX_STANDARD_REQUIRED ON) + + + +option(FASTFLOAT_SANITIZE "Sanitize addresses" OFF) + +if (NOT CMAKE_BUILD_TYPE) + if(FASTFLOAT_SANITIZE) + set(CMAKE_BUILD_TYPE Debug CACHE STRING "Choose the type of build." FORCE) + else() + message(STATUS "No build type selected, default to Release") + set(CMAKE_BUILD_TYPE Release CACHE STRING "Choose the type of build." FORCE) + endif() +endif() + + +add_library(fast_float INTERFACE) +target_include_directories(fast_float INTERFACE include/) +if(FASTFLOAT_SANITIZE) + target_compile_options(fast_float INTERFACE -fsanitize=address -fno-omit-frame-pointer -fsanitize=undefined -fno-sanitize-recover=all) + target_link_libraries(fast_float INTERFACE -fsanitize=address -fno-omit-frame-pointer -fsanitize=undefined -fno-sanitize-recover=all) + if (CMAKE_COMPILER_IS_GNUCC) + target_link_libraries(fast_float INTERFACE -fuse-ld=gold) + endif() +endif() + +if(FASTFLOAT_TEST) + enable_testing() + add_subdirectory(tests) +endif(FASTFLOAT_SANITIZE) \ No newline at end of file diff --git a/CONTRIBUTORS b/CONTRIBUTORS new file mode 100644 index 0000000..e69de29 diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..79e5913 --- /dev/null +++ b/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "{}" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2020 The fast_float authors + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/README.md b/README.md new file mode 100644 index 0000000..d36de84 --- /dev/null +++ b/README.md @@ -0,0 +1,89 @@ +## fast_float number parsing library + +The fast_float library provides fast header-only implementations for the C++ from_chars +functions for `float` and `double` types. These functions convert ASCII strings representing +decimal values (e.g., `1.3e10`) into binary types. We provide exact rounding (including +round to even). In our experience, these `fast_float` functions are faster than any other comparable number-parsing functions. They provide a performance similar to that of the [fast_double_parser](https://github.com/lemire/fast_double_parser) but using an novel algorithm reworked from the ground up, and while offering an API more in line with the expectations of C++ programmers. + +Specifically, `fast_float` provides the following two functions with a C++17-like syntax: + +```C++ +from_chars_result from_chars(const char* first, const char* last, float& value, ...); +from_chars_result from_chars(const char* first, const char* last, double& value, ...); +``` + +The return type (`from_chars_result`) is defined as the struct: +```C++ +struct from_chars_result { + const char* ptr; + std::errc ec; +}; +``` + +It parses the character sequence [first,last) for a number. It parses floating-point numbers expecting +a locale-indepent format equivalent to what is used by `std::strtod` in the default ("C") locale. +The resulting floating-point value is the closest floating-point values (using either float or double), +using the "round to even" convention for values that would otherwise fall right in-between two values. +That is, we provide exact parsing according to the IEEE standard. + +Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the +parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned +`ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. + +The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). + +Example: + +``` C++ +#include "fast_float/parse_number.h" +#include + +int main() { + const std::string input = "3.1416 xyz "; + double result; + auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result); + if(answer.ec != std::errc()) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; } + std::cout << "parsed the number " << result << std::endl; +} +``` + +Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of +the type `fast_float::chars_format`. It is a bitset value: we check whether +`fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set +to determine whether we allow the fixed point and scientific notation respectively. +The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`. + +## Using as a CMake dependency + +This library is header-only by design. The CMake file provides the `fast_float` target +which is merely a pointer to the `include` directory. + +If you drop the `fast_float` repository in your CMake project, you should be able to use +it in this manner: + +``` +add_subdirectory(fast_float) +target_link_libraries(myprogram PUBLIC fast_float) +``` + + + +## Requirements and Limitations + +In many cases, this library can be used as a drop-in replacement for the C++17 `from_chars` function, especially when performance is a concerned. Thus we expect C++17 support. Though it might be reasonable to want C++17 features as part of old compilers, support old systems is not an objective of this library. + +The `from_chars` is meant to be locale-independent. Thus it is not an objective of this library to support +locale-sensitive parsing. + +The performance is optimized for 19 or fewer significant digits. In practice, there should +never be more than 17 digits since it is enough to identify exactly all possible 64-bit numbers (double). +In fact, for many numbers, far fewer than 17 digits are needed. + +## Credit + +Though this work is inspired by many different people, this work benefited especially from exchanges with +Michael Eisel, who motivated the original research with his key insights, and with Nigel Tao who provided +invaluable feedback. + +The library includes code adapted from Google Wuffs (written by Nigel Tao) which was originally published +under the Apache 2.0 license. \ No newline at end of file diff --git a/include/fast_float/ascii_number.h b/include/fast_float/ascii_number.h new file mode 100644 index 0000000..f45be46 --- /dev/null +++ b/include/fast_float/ascii_number.h @@ -0,0 +1,311 @@ +#ifndef FASTFLOAT_ASCII_NUMBER_H +#define FASTFLOAT_ASCII_NUMBER_H + +#include +#include +#include +#include + +#include "float_common.h" + +namespace fast_float { + +fastfloat_really_inline bool is_integer(char c) noexcept { return (c >= '0' && c <= '9'); } + + +// credit: https://johnnylee-sde.github.io/Fast-numeric-string-to-int/ +fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { + uint64_t val; + memcpy(&val, chars, sizeof(uint64_t)); + val = (val & 0x0F0F0F0F0F0F0F0F) * 2561 >> 8; + val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16; + return uint32_t((val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32); +} + +fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { + uint64_t val; + memcpy(&val, chars, 8); + return (((val & 0xF0F0F0F0F0F0F0F0) | + (((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) == + 0x3333333333333333); +} + + +fastfloat_really_inline uint32_t parse_four_digits_unrolled(const char *chars) noexcept { + uint32_t val; + memcpy(&val, chars, sizeof(uint32_t)); + val = (val & 0x0F0F0F0F) * 2561 >> 8; + return (val & 0x00FF00FF) * 6553601 >> 16; +} + +fastfloat_really_inline bool is_made_of_four_digits_fast(const char *chars) noexcept { + uint32_t val; + memcpy(&val, chars, 4); + return (((val & 0xF0F0F0F0) | + (((val + 0x06060606) & 0xF0F0F0F0) >> 4)) == + 0x33333333); +} + +struct parsed_number_string { + int64_t exponent; + uint64_t mantissa; + const char *lastmatch; + bool negative; + bool valid; + bool too_many_digits; +}; + + +// Assuming that you use no more than 17 digits, this will +// parse an ASCII string. +fastfloat_really_inline +parsed_number_string parse_number_string(const char *p, const char *pend, chars_format fmt) noexcept { + parsed_number_string answer; + answer.valid = false; + answer.negative = (*p == '-'); + if ((*p == '-') || (*p == '+')) { + ++p; + if (p == pend) { + return answer; + } + if (!is_integer(*p) && (*p != '.')) { // a sign must be followed by an integer or the dot + return answer; + } + } + const char *const start_digits = p; + + uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) + + while ((p != pend) && is_integer(*p)) { + // a multiplication by 10 is cheaper than an arbitrary integer + // multiplication + i = 10 * i + + (*p - '0'); // might overflow, we will handle the overflow later + ++p; + } + int64_t exponent = 0; + if ((p != pend) && (*p == '.')) { + ++p; + const char *first_after_period = p; + if ((p + 8 <= pend) && is_made_of_eight_digits_fast(p)) { + i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok + p += 8; + if ((p + 8 <= pend) && is_made_of_eight_digits_fast(p)) { + i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok + p += 8; + } + } + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + ++p; + i = i * 10 + digit; // in rare cases, this will overflow, but that's ok + } + exponent = first_after_period - p; + } + // we must have encountered at least one integer! + if ((start_digits == p) || ((start_digits == p - 1) && (*start_digits == '.') )) { + return answer; + } + + int32_t digit_count = + int32_t(p - start_digits - 1); // used later to guard against overflows + + if ((p != pend) && (('e' == *p) || ('E' == *p))) { + if((fmt & chars_format::fixed) && !(fmt & chars_format::scientific)) { return answer; } + int64_t exp_number = 0; // exponential part + ++p; + bool neg_exp = false; + if ((p != pend) && ('-' == *p)) { + neg_exp = true; + ++p; + } else if ((p != pend) && ('+' == *p)) { + ++p; + } + if ((p == pend) || !is_integer(*p)) { + return answer; + } + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + if (exp_number < 0x10000) { + exp_number = 10 * exp_number + digit; + } + ++p; + } + exponent += (neg_exp ? -exp_number : exp_number); + } else { + if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } + } + answer.lastmatch = p; + answer.valid = true; + + // If we frequently had to deal with long strings of digits, + // we could extend our code by using a 128-bit integer instead + // of a 64-bit integer. However, this is uncommon. + if (((digit_count >= 19))) { // this is uncommon + // It is possible that the integer had an overflow. + // We have to handle the case where we have 0.0000somenumber. + const char *start = start_digits; + while (*start == '0' || (*start == '.')) { + start++; + } + // we over-decrement by one when there is a decimal separator + digit_count -= int(start - start_digits); + if (digit_count >= 19) { + answer.mantissa = 0xFFFFFFFFFFFFFFFF; // important: we don't want the mantissa to be used in a fast path uninitialized. + answer.too_many_digits = true; + return answer; + } + } + answer.too_many_digits = false; + answer.exponent = exponent; + answer.mantissa = i; + return answer; +} + +// This should always succeed since it follows a call to parse_number_string. +// It assumes that there are more than 19 mantissa digits to parse. +parsed_number_string parse_truncated_decimal(const char *&p, const char *pend) noexcept { + parsed_number_string answer; + answer.valid = true; + answer.negative = (*p == '-'); + if ((*p == '-') || (*p == '+')) { + ++p; + } + size_t number_of_digits{0}; + + + uint64_t i = 0; + + while ((p != pend) && is_integer(*p)) { + // a multiplication by 10 is cheaper than an arbitrary integer + // multiplication + if(number_of_digits < 19) { + + uint8_t digit = uint8_t(*p - '0'); + i = 10 * i + digit; + number_of_digits ++; + } + ++p; + } + int64_t exponent = 0; + if ((p != pend) && (*p == '.')) { + ++p; + const char *first_after_period = p; + + while ((p != pend) && is_integer(*p)) { + if(number_of_digits < 19) { + uint8_t digit = uint8_t(*p - '0'); + i = i * 10 + digit; + number_of_digits ++; + } else if (exponent == 0) { + exponent = first_after_period - p; + } + ++p; + } + } + + if ((p != pend) && (('e' == *p) || ('E' == *p))) { + int64_t exp_number = 0; // exponential part + ++p; + bool neg_exp = false; + if ((p != pend) && ('-' == *p)) { + neg_exp = true; + ++p; + } else if ((p != pend) && ('+' == *p)) { + ++p; + } + if ((p == pend) || !is_integer(*p)) { + return answer; + } + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + if (exp_number < 0x10000) { + exp_number = 10 * exp_number + digit; + } + ++p; + } + exponent += (neg_exp ? -exp_number : exp_number); + } + answer.lastmatch = p; + answer.valid = true; + answer.too_many_digits = true; // assumed + answer.exponent = exponent; + answer.mantissa = i; + return answer; +} + + +// This should always succeed since it follows a call to parse_number_string. +decimal parse_decimal(const char *&p, const char *pend) noexcept { + decimal answer; + answer.num_digits = 0; + answer.decimal_point = 0; + answer.negative = false; + answer.truncated = false; + // skip leading whitespace + while (fast_float::is_space(*p)) { + p++; + } + answer.negative = (*p == '-'); + if ((*p == '-') || (*p == '+')) { + ++p; + } + + while ((p != pend) && (*p == '0')) { + ++p; + } + while ((p != pend) && is_integer(*p)) { + if (answer.num_digits + 1 < max_digits) { + answer.digits[answer.num_digits++] = uint8_t(*p - '0'); + } else { + answer.truncated = true; + } + ++p; + } + const char *first_after_period{}; + if ((p != pend) && (*p == '.')) { + ++p; + first_after_period = p; + // if we have not yet encountered a zero, we have to skip it as well + if(answer.num_digits == 0) { + // skip zeros + while ((p != pend) && (*p == '0')) { + ++p; + } + } + while ((p != pend) && is_integer(*p)) { + if (answer.num_digits + 1 < max_digits) { + answer.digits[answer.num_digits++] = uint8_t(*p - '0'); + } else { + answer.truncated = true; + } + ++p; + } + answer.decimal_point = int32_t(first_after_period - p); + } + + if ((p != pend) && (('e' == *p) || ('E' == *p))) { + ++p; + bool neg_exp = false; + if ((p != pend) && ('-' == *p)) { + neg_exp = true; + ++p; + } else if ((p != pend) && ('+' == *p)) { + ++p; + } + int32_t exp_number = 0; // exponential part + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + if (exp_number < 0x10000) { + exp_number = 10 * exp_number + digit; + } + ++p; + } + answer.decimal_point += (neg_exp ? -exp_number : exp_number); + } + answer.decimal_point += answer.num_digits; + return answer; +} +} // namespace fast_float + +#endif diff --git a/include/fast_float/decimal_to_binary.h b/include/fast_float/decimal_to_binary.h new file mode 100644 index 0000000..35727e3 --- /dev/null +++ b/include/fast_float/decimal_to_binary.h @@ -0,0 +1,165 @@ +#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H +#define FASTFLOAT_DECIMAL_TO_BINARY_H + +#include "float_common.h" +#include "fast_table.h" +#include +#include +#include +#include +#include +#include +#include +#include + +namespace fast_float { + + + + +// This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating +// the result, with the "high" part corresponding to the most significant bits and the +// low part corresponding to the least significant bits. +// +template +fastfloat_really_inline +value128 compute_product_approximation(int64_t q, uint64_t w) { + const int index = 2 * int(q - smallest_power_of_five); + // For small values of q, e.g., q in [0,27], the answer is always exact because + // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]); + // gives the exact answer. + value128 firstproduct = full_multiplication(w, power_of_five_128[index]); + static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]"); + constexpr uint64_t precision_mask = (bit_precision < 64) ? + (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) + : uint64_t(0xFFFFFFFFFFFFFFFF); + if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower) + // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed. + value128 secondproduct = full_multiplication(w, power_of_five_128[index + 1]); + firstproduct.low += secondproduct.high; + if(secondproduct.high > firstproduct.low) { + firstproduct.high++; + } + } + return firstproduct; +} + +namespace { +/** + * For q in (-400,350), we have that + * f = (((152170 + 65536) * q ) >> 16); + * is equal to + * floor(p) + q + * where + * p = log(5**q)/log(2) = q * log(5)/log(2) + * + */ + fastfloat_really_inline unsigned int power(int q) noexcept { + return (((152170 + 65536) * q) >> 16) + 63; + } +} // namespace + +// w * 10 ** q +// The returned value should be a valid ieee64 number that simply need to be packed. +// However, in some very rare cases, the computation will fail. In such cases, we +// return an adjusted_mantissa with a negative power of 2: the caller should recompute +// in such cases. +template +fastfloat_really_inline +adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept { + adjusted_mantissa answer; + if ((w == 0) || (q < smallest_power_of_five) ){ + answer.power2 = 0; + answer.mantissa = 0; + // result should be zero + return answer; + } + if (q > largest_power_of_five) { + // we want to get infinity: + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + // At this point in time q is in [smallest_power_of_five, largest_power_of_five]. + + // We want the most significant bit of i to be 1. Shift if needed. + int lz = leading_zeroes(w); + w <<= lz; + + // The required precision is binary::mantissa_explicit_bits() + 3 because + // 1. We need the implicit bit + // 2. We need an extra bit for rounding purposes + // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift) + value128 product = compute_product_approximation(q, w); + if(product.low == 0xFFFFFFFFFFFFFFFF) { // could guard it further + // In some very rare cases, this could happen, in which case we might need a more accurate + // computation that what we can provide cheaply. This is very, very unlikely. + answer.power2 = -1; + return answer; + } + // The "compute_product_approximation" function can be slightly slower than a branchless approach: + // value128 product = compute_product(q, w); + // but in practice, we can win big with the compute_product_approximation if its additional branch + // is easily predicted. Which is best is data specific. + uint64_t upperbit = product.high >> 63; + + answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); + lz += int(1 ^ upperbit); + answer.power2 = power(int(q)) - lz - binary::minimum_exponent() + 1; + + if (answer.power2 <= 0) { // we have a subnormal? + // Here have that answer.power2 <= 0 so -answer.power2 >= 0 + if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure. + answer.power2 = 0; + answer.mantissa = 0; + // result should be zero + return answer; + } + // next line is safe because -answer.power2 + 1 < 0 + answer.mantissa >>= -answer.power2 + 1; + // Thankfully, we can't have both "round-to-even" and subnormals because + // "round-to-even" only occurs for powers close to 0. + answer.mantissa += (answer.mantissa & 1); // round up + answer.mantissa >>= 1; + // There is a weird scenario where we don't have a subnormal but just. + // Suppose we start with 2.2250738585072013e-308, we end up + // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal + // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round + // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer + // subnormal, but we can only know this after rounding. + // So we only declare a subnormal if we are smaller than the threshold. + answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1; + return answer; + } + + // usually, we round *up*, but if we fall right in between and and we have an + // even basis, we need to round down + // We are only concerned with the cases where 5**q fits in single 64-bit word. + if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) && + ((answer.mantissa & 3) == 1) ) { // we may fall between two floats! + // To be in-between two floats we need that in doing + // answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); + // ... we dropped out only zeroes. But if this happened, then we can go back!!! + if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) { + answer.mantissa &= ~1; // flip it so that we do not round up + } + } + + answer.mantissa += (answer.mantissa & 1); // round up + answer.mantissa >>= 1; + if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { + answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); + answer.power2++; // undo previous addition + } + + answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); + if (answer.power2 >= binary::infinite_power()) { // infinity + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + } + return answer; +} + +} // namespace fast_float + +#endif diff --git a/include/fast_float/fast_float.h b/include/fast_float/fast_float.h new file mode 100644 index 0000000..6bf35b7 --- /dev/null +++ b/include/fast_float/fast_float.h @@ -0,0 +1,45 @@ +#ifndef FASTFLOAT_FAST_FLOAT_H +#define FASTFLOAT_FAST_FLOAT_H + +#include + +namespace fast_float { +enum chars_format { + scientific = 1<<0, + fixed = 1<<2, + hex = 1<<3, + general = fixed | scientific +}; + + +struct from_chars_result { + const char *ptr; + std::errc ec; +}; + +/** + * This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting + * a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale. + * The resulting floating-point value is the closest floating-point values (using either float or double), + * using the "round to even" convention for values that would otherwise fall right in-between two values. + * That is, we provide exact parsing according to the IEEE standard. + * + * Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the + * parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned + * `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. + * + * The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). + * + * Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of + * the type `fast_float::chars_format`. It is a bitset value: we check whether + * `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set + * to determine whether we allowe the fixed point and scientific notation respectively. + * The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`. + */ +template +from_chars_result from_chars(const char *first, const char *last, + T &value, chars_format fmt = chars_format::general) noexcept; + +} +#include "fast_float/parse_number.h" +#endif // FASTFLOAT_FAST_FLOAT_H \ No newline at end of file diff --git a/include/fast_float/fast_table.h b/include/fast_float/fast_table.h new file mode 100644 index 0000000..12516e1 --- /dev/null +++ b/include/fast_float/fast_table.h @@ -0,0 +1,689 @@ +#ifndef FASTFLOAT_FAST_TABLE_H +#define FASTFLOAT_FAST_TABLE_H +#include + +namespace fast_float { + +/** + * When mapping numbers from decimal to binary, + * we go from w * 10^q to m * 2^p but we have + * 10^q = 5^q * 2^q, so effectively + * we are trying to match + * w * 2^q * 5^q to m * 2^p. Thus the powers of two + * are not a concern since they can be represented + * exactly using the binary notation, only the powers of five + * affect the binary significand. + */ + +/** + * The smallest non-zero float (binary64) is 2^−1074. + * We take as input numbers of the form w x 10^q where w < 2^64. + * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. + * However, we have that + * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^−1074. + * Thus it is possible for a number of the form w * 10^-342 where + * w is a 64-bit value to be a non-zero floating-point number. + ********* + * Any number of form w * 10^309 where w>= 1 is going to be + * infinite in binary64 so we never need to worry about powers + * of 5 greater than 308. + */ +constexpr int smallest_power_of_five = -342; +constexpr int largest_power_of_five = 308; +// truncated powers of five from 5^-344 all the way to 5^308 +const uint64_t power_of_five_128[]= { + 0xeef453d6923bd65a,0x113faa2906a13b3f, + 0x9558b4661b6565f8,0x4ac7ca59a424c507, + 0xbaaee17fa23ebf76,0x5d79bcf00d2df649, + 0xe95a99df8ace6f53,0xf4d82c2c107973dc, + 0x91d8a02bb6c10594,0x79071b9b8a4be869, + 0xb64ec836a47146f9,0x9748e2826cdee284, + 0xe3e27a444d8d98b7,0xfd1b1b2308169b25, + 0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7, + 0xb208ef855c969f4f,0xbdbd2d335e51a935, + 0xde8b2b66b3bc4723,0xad2c788035e61382, + 0x8b16fb203055ac76,0x4c3bcb5021afcc31, + 0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d, + 0xd953e8624b85dd78,0xd71d6dad34a2af0d, + 0x87d4713d6f33aa6b,0x8672648c40e5ad68, + 0xa9c98d8ccb009506,0x680efdaf511f18c2, + 0xd43bf0effdc0ba48,0x212bd1b2566def2, + 0x84a57695fe98746d,0x14bb630f7604b57, + 0xa5ced43b7e3e9188,0x419ea3bd35385e2d, + 0xcf42894a5dce35ea,0x52064cac828675b9, + 0x818995ce7aa0e1b2,0x7343efebd1940993, + 0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8, + 0xca66fa129f9b60a6,0xd41a26e077774ef6, + 0xfd00b897478238d0,0x8920b098955522b4, + 0x9e20735e8cb16382,0x55b46e5f5d5535b0, + 0xc5a890362fddbc62,0xeb2189f734aa831d, + 0xf712b443bbd52b7b,0xa5e9ec7501d523e4, + 0x9a6bb0aa55653b2d,0x47b233c92125366e, + 0xc1069cd4eabe89f8,0x999ec0bb696e840a, + 0xf148440a256e2c76,0xc00670ea43ca250d, + 0x96cd2a865764dbca,0x380406926a5e5728, + 0xbc807527ed3e12bc,0xc605083704f5ecf2, + 0xeba09271e88d976b,0xf7864a44c633682e, + 0x93445b8731587ea3,0x7ab3ee6afbe0211d, + 0xb8157268fdae9e4c,0x5960ea05bad82964, + 0xe61acf033d1a45df,0x6fb92487298e33bd, + 0x8fd0c16206306bab,0xa5d3b6d479f8e056, + 0xb3c4f1ba87bc8696,0x8f48a4899877186c, + 0xe0b62e2929aba83c,0x331acdabfe94de87, + 0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14, + 0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9, + 0xdb71e91432b1a24a,0xc9e82cd9f69d6150, + 0x892731ac9faf056e,0xbe311c083a225cd2, + 0xab70fe17c79ac6ca,0x6dbd630a48aaf406, + 0xd64d3d9db981787d,0x92cbbccdad5b108, + 0x85f0468293f0eb4e,0x25bbf56008c58ea5, + 0xa76c582338ed2621,0xaf2af2b80af6f24e, + 0xd1476e2c07286faa,0x1af5af660db4aee1, + 0x82cca4db847945ca,0x50d98d9fc890ed4d, + 0xa37fce126597973c,0xe50ff107bab528a0, + 0xcc5fc196fefd7d0c,0x1e53ed49a96272c8, + 0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a, + 0x9faacf3df73609b1,0x77b191618c54e9ac, + 0xc795830d75038c1d,0xd59df5b9ef6a2417, + 0xf97ae3d0d2446f25,0x4b0573286b44ad1d, + 0x9becce62836ac577,0x4ee367f9430aec32, + 0xc2e801fb244576d5,0x229c41f793cda73f, + 0xf3a20279ed56d48a,0x6b43527578c1110f, + 0x9845418c345644d6,0x830a13896b78aaa9, + 0xbe5691ef416bd60c,0x23cc986bc656d553, + 0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8, + 0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9, + 0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53, + 0xe858ad248f5c22c9,0xd1b3400f8f9cff68, + 0x91376c36d99995be,0x23100809b9c21fa1, + 0xb58547448ffffb2d,0xabd40a0c2832a78a, + 0xe2e69915b3fff9f9,0x16c90c8f323f516c, + 0x8dd01fad907ffc3b,0xae3da7d97f6792e3, + 0xb1442798f49ffb4a,0x99cd11cfdf41779c, + 0xdd95317f31c7fa1d,0x40405643d711d583, + 0x8a7d3eef7f1cfc52,0x482835ea666b2572, + 0xad1c8eab5ee43b66,0xda3243650005eecf, + 0xd863b256369d4a40,0x90bed43e40076a82, + 0x873e4f75e2224e68,0x5a7744a6e804a291, + 0xa90de3535aaae202,0x711515d0a205cb36, + 0xd3515c2831559a83,0xd5a5b44ca873e03, + 0x8412d9991ed58091,0xe858790afe9486c2, + 0xa5178fff668ae0b6,0x626e974dbe39a872, + 0xce5d73ff402d98e3,0xfb0a3d212dc8128f, + 0x80fa687f881c7f8e,0x7ce66634bc9d0b99, + 0xa139029f6a239f72,0x1c1fffc1ebc44e80, + 0xc987434744ac874e,0xa327ffb266b56220, + 0xfbe9141915d7a922,0x4bf1ff9f0062baa8, + 0x9d71ac8fada6c9b5,0x6f773fc3603db4a9, + 0xc4ce17b399107c22,0xcb550fb4384d21d3, + 0xf6019da07f549b2b,0x7e2a53a146606a48, + 0x99c102844f94e0fb,0x2eda7444cbfc426d, + 0xc0314325637a1939,0xfa911155fefb5308, + 0xf03d93eebc589f88,0x793555ab7eba27ca, + 0x96267c7535b763b5,0x4bc1558b2f3458de, + 0xbbb01b9283253ca2,0x9eb1aaedfb016f16, + 0xea9c227723ee8bcb,0x465e15a979c1cadc, + 0x92a1958a7675175f,0xbfacd89ec191ec9, + 0xb749faed14125d36,0xcef980ec671f667b, + 0xe51c79a85916f484,0x82b7e12780e7401a, + 0x8f31cc0937ae58d2,0xd1b2ecb8b0908810, + 0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15, + 0xdfbdcece67006ac9,0x67a791e093e1d49a, + 0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0, + 0xaecc49914078536d,0x58fae9f773886e18, + 0xda7f5bf590966848,0xaf39a475506a899e, + 0x888f99797a5e012d,0x6d8406c952429603, + 0xaab37fd7d8f58178,0xc8e5087ba6d33b83, + 0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64, + 0x855c3be0a17fcd26,0x5cf2eea09a55067f, + 0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e, + 0xd0601d8efc57b08b,0xf13b94daf124da26, + 0x823c12795db6ce57,0x76c53d08d6b70858, + 0xa2cb1717b52481ed,0x54768c4b0c64ca6e, + 0xcb7ddcdda26da268,0xa9942f5dcf7dfd09, + 0xfe5d54150b090b02,0xd3f93b35435d7c4c, + 0x9efa548d26e5a6e1,0xc47bc5014a1a6daf, + 0xc6b8e9b0709f109a,0x359ab6419ca1091b, + 0xf867241c8cc6d4c0,0xc30163d203c94b62, + 0x9b407691d7fc44f8,0x79e0de63425dcf1d, + 0xc21094364dfb5636,0x985915fc12f542e4, + 0xf294b943e17a2bc4,0x3e6f5b7b17b2939d, + 0x979cf3ca6cec5b5a,0xa705992ceecf9c42, + 0xbd8430bd08277231,0x50c6ff782a838353, + 0xece53cec4a314ebd,0xa4f8bf5635246428, + 0x940f4613ae5ed136,0x871b7795e136be99, + 0xb913179899f68584,0x28e2557b59846e3f, + 0xe757dd7ec07426e5,0x331aeada2fe589cf, + 0x9096ea6f3848984f,0x3ff0d2c85def7621, + 0xb4bca50b065abe63,0xfed077a756b53a9, + 0xe1ebce4dc7f16dfb,0xd3e8495912c62894, + 0x8d3360f09cf6e4bd,0x64712dd7abbbd95c, + 0xb080392cc4349dec,0xbd8d794d96aacfb3, + 0xdca04777f541c567,0xecf0d7a0fc5583a0, + 0x89e42caaf9491b60,0xf41686c49db57244, + 0xac5d37d5b79b6239,0x311c2875c522ced5, + 0xd77485cb25823ac7,0x7d633293366b828b, + 0x86a8d39ef77164bc,0xae5dff9c02033197, + 0xa8530886b54dbdeb,0xd9f57f830283fdfc, + 0xd267caa862a12d66,0xd072df63c324fd7b, + 0x8380dea93da4bc60,0x4247cb9e59f71e6d, + 0xa46116538d0deb78,0x52d9be85f074e608, + 0xcd795be870516656,0x67902e276c921f8b, + 0x806bd9714632dff6,0xba1cd8a3db53b6, + 0xa086cfcd97bf97f3,0x80e8a40eccd228a4, + 0xc8a883c0fdaf7df0,0x6122cd128006b2cd, + 0xfad2a4b13d1b5d6c,0x796b805720085f81, + 0x9cc3a6eec6311a63,0xcbe3303674053bb0, + 0xc3f490aa77bd60fc,0xbedbfc4411068a9c, + 0xf4f1b4d515acb93b,0xee92fb5515482d44, + 0x991711052d8bf3c5,0x751bdd152d4d1c4a, + 0xbf5cd54678eef0b6,0xd262d45a78a0635d, + 0xef340a98172aace4,0x86fb897116c87c34, + 0x9580869f0e7aac0e,0xd45d35e6ae3d4da0, + 0xbae0a846d2195712,0x8974836059cca109, + 0xe998d258869facd7,0x2bd1a438703fc94b, + 0x91ff83775423cc06,0x7b6306a34627ddcf, + 0xb67f6455292cbf08,0x1a3bc84c17b1d542, + 0xe41f3d6a7377eeca,0x20caba5f1d9e4a93, + 0x8e938662882af53e,0x547eb47b7282ee9c, + 0xb23867fb2a35b28d,0xe99e619a4f23aa43, + 0xdec681f9f4c31f31,0x6405fa00e2ec94d4, + 0x8b3c113c38f9f37e,0xde83bc408dd3dd04, + 0xae0b158b4738705e,0x9624ab50b148d445, + 0xd98ddaee19068c76,0x3badd624dd9b0957, + 0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6, + 0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c, + 0xd47487cc8470652b,0x7647c3200069671f, + 0x84c8d4dfd2c63f3b,0x29ecd9f40041e073, + 0xa5fb0a17c777cf09,0xf468107100525890, + 0xcf79cc9db955c2cc,0x7182148d4066eeb4, + 0x81ac1fe293d599bf,0xc6f14cd848405530, + 0xa21727db38cb002f,0xb8ada00e5a506a7c, + 0xca9cf1d206fdc03b,0xa6d90811f0e4851c, + 0xfd442e4688bd304a,0x908f4a166d1da663, + 0x9e4a9cec15763e2e,0x9a598e4e043287fe, + 0xc5dd44271ad3cdba,0x40eff1e1853f29fd, + 0xf7549530e188c128,0xd12bee59e68ef47c, + 0x9a94dd3e8cf578b9,0x82bb74f8301958ce, + 0xc13a148e3032d6e7,0xe36a52363c1faf01, + 0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1, + 0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9, + 0xbcb2b812db11a5de,0x7415d448f6b6f0e7, + 0xebdf661791d60f56,0x111b495b3464ad21, + 0x936b9fcebb25c995,0xcab10dd900beec34, + 0xb84687c269ef3bfb,0x3d5d514f40eea742, + 0xe65829b3046b0afa,0xcb4a5a3112a5112, + 0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab, + 0xb3f4e093db73a093,0x59ed216765690f56, + 0xe0f218b8d25088b8,0x306869c13ec3532c, + 0x8c974f7383725573,0x1e414218c73a13fb, + 0xafbd2350644eeacf,0xe5d1929ef90898fa, + 0xdbac6c247d62a583,0xdf45f746b74abf39, + 0x894bc396ce5da772,0x6b8bba8c328eb783, + 0xab9eb47c81f5114f,0x66ea92f3f326564, + 0xd686619ba27255a2,0xc80a537b0efefebd, + 0x8613fd0145877585,0xbd06742ce95f5f36, + 0xa798fc4196e952e7,0x2c48113823b73704, + 0xd17f3b51fca3a7a0,0xf75a15862ca504c5, + 0x82ef85133de648c4,0x9a984d73dbe722fb, + 0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba, + 0xcc963fee10b7d1b3,0x318df905079926a8, + 0xffbbcfe994e5c61f,0xfdf17746497f7052, + 0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633, + 0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0, + 0xf9bd690a1b68637b,0x3dfdce7aa3c673b0, + 0x9c1661a651213e2d,0x6bea10ca65c084e, + 0xc31bfa0fe5698db8,0x486e494fcff30a62, + 0xf3e2f893dec3f126,0x5a89dba3c3efccfa, + 0x986ddb5c6b3a76b7,0xf89629465a75e01c, + 0xbe89523386091465,0xf6bbb397f1135823, + 0xee2ba6c0678b597f,0x746aa07ded582e2c, + 0x94db483840b717ef,0xa8c2a44eb4571cdc, + 0xba121a4650e4ddeb,0x92f34d62616ce413, + 0xe896a0d7e51e1566,0x77b020baf9c81d17, + 0x915e2486ef32cd60,0xace1474dc1d122e, + 0xb5b5ada8aaff80b8,0xd819992132456ba, + 0xe3231912d5bf60e6,0x10e1fff697ed6c69, + 0x8df5efabc5979c8f,0xca8d3ffa1ef463c1, + 0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2, + 0xddd0467c64bce4a0,0xac7cb3f6d05ddbde, + 0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b, + 0xad4ab7112eb3929d,0x86c16c98d2c953c6, + 0xd89d64d57a607744,0xe871c7bf077ba8b7, + 0x87625f056c7c4a8b,0x11471cd764ad4972, + 0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf, + 0xd389b47879823479,0x4aff1d108d4ec2c3, + 0x843610cb4bf160cb,0xcedf722a585139ba, + 0xa54394fe1eedb8fe,0xc2974eb4ee658828, + 0xce947a3da6a9273e,0x733d226229feea32, + 0x811ccc668829b887,0x806357d5a3f525f, + 0xa163ff802a3426a8,0xca07c2dcb0cf26f7, + 0xc9bcff6034c13052,0xfc89b393dd02f0b5, + 0xfc2c3f3841f17c67,0xbbac2078d443ace2, + 0x9d9ba7832936edc0,0xd54b944b84aa4c0d, + 0xc5029163f384a931,0xa9e795e65d4df11, + 0xf64335bcf065d37d,0x4d4617b5ff4a16d5, + 0x99ea0196163fa42e,0x504bced1bf8e4e45, + 0xc06481fb9bcf8d39,0xe45ec2862f71e1d6, + 0xf07da27a82c37088,0x5d767327bb4e5a4c, + 0x964e858c91ba2655,0x3a6a07f8d510f86f, + 0xbbe226efb628afea,0x890489f70a55368b, + 0xeadab0aba3b2dbe5,0x2b45ac74ccea842e, + 0x92c8ae6b464fc96f,0x3b0b8bc90012929d, + 0xb77ada0617e3bbcb,0x9ce6ebb40173744, + 0xe55990879ddcaabd,0xcc420a6a101d0515, + 0x8f57fa54c2a9eab6,0x9fa946824a12232d, + 0xb32df8e9f3546564,0x47939822dc96abf9, + 0xdff9772470297ebd,0x59787e2b93bc56f7, + 0x8bfbea76c619ef36,0x57eb4edb3c55b65a, + 0xaefae51477a06b03,0xede622920b6b23f1, + 0xdab99e59958885c4,0xe95fab368e45eced, + 0x88b402f7fd75539b,0x11dbcb0218ebb414, + 0xaae103b5fcd2a881,0xd652bdc29f26a119, + 0xd59944a37c0752a2,0x4be76d3346f0495f, + 0x857fcae62d8493a5,0x6f70a4400c562ddb, + 0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952, + 0xd097ad07a71f26b2,0x7e2000a41346a7a7, + 0x825ecc24c873782f,0x8ed400668c0c28c8, + 0xa2f67f2dfa90563b,0x728900802f0f32fa, + 0xcbb41ef979346bca,0x4f2b40a03ad2ffb9, + 0xfea126b7d78186bc,0xe2f610c84987bfa8, + 0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9, + 0xc6ede63fa05d3143,0x91503d1c79720dbb, + 0xf8a95fcf88747d94,0x75a44c6397ce912a, + 0x9b69dbe1b548ce7c,0xc986afbe3ee11aba, + 0xc24452da229b021b,0xfbe85badce996168, + 0xf2d56790ab41c2a2,0xfae27299423fb9c3, + 0x97c560ba6b0919a5,0xdccd879fc967d41a, + 0xbdb6b8e905cb600f,0x5400e987bbc1c920, + 0xed246723473e3813,0x290123e9aab23b68, + 0x9436c0760c86e30b,0xf9a0b6720aaf6521, + 0xb94470938fa89bce,0xf808e40e8d5b3e69, + 0xe7958cb87392c2c2,0xb60b1d1230b20e04, + 0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2, + 0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3, + 0xe2280b6c20dd5232,0x25c6da63c38de1b0, + 0x8d590723948a535f,0x579c487e5a38ad0e, + 0xb0af48ec79ace837,0x2d835a9df0c6d851, + 0xdcdb1b2798182244,0xf8e431456cf88e65, + 0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff, + 0xac8b2d36eed2dac5,0xe272467e3d222f3f, + 0xd7adf884aa879177,0x5b0ed81dcc6abb0f, + 0x86ccbb52ea94baea,0x98e947129fc2b4e9, + 0xa87fea27a539e9a5,0x3f2398d747b36224, + 0xd29fe4b18e88640e,0x8eec7f0d19a03aad, + 0x83a3eeeef9153e89,0x1953cf68300424ac, + 0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7, + 0xcdb02555653131b6,0x3792f412cb06794d, + 0x808e17555f3ebf11,0xe2bbd88bbee40bd0, + 0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4, + 0xc8de047564d20a8b,0xf245825a5a445275, + 0xfb158592be068d2e,0xeed6e2f0f0d56712, + 0x9ced737bb6c4183d,0x55464dd69685606b, + 0xc428d05aa4751e4c,0xaa97e14c3c26b886, + 0xf53304714d9265df,0xd53dd99f4b3066a8, + 0x993fe2c6d07b7fab,0xe546a8038efe4029, + 0xbf8fdb78849a5f96,0xde98520472bdd033, + 0xef73d256a5c0f77c,0x963e66858f6d4440, + 0x95a8637627989aad,0xdde7001379a44aa8, + 0xbb127c53b17ec159,0x5560c018580d5d52, + 0xe9d71b689dde71af,0xaab8f01e6e10b4a6, + 0x9226712162ab070d,0xcab3961304ca70e8, + 0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22, + 0xe45c10c42a2b3b05,0x8cb89a7db77c506a, + 0x8eb98a7a9a5b04e3,0x77f3608e92adb242, + 0xb267ed1940f1c61c,0x55f038b237591ed3, + 0xdf01e85f912e37a3,0x6b6c46dec52f6688, + 0x8b61313bbabce2c6,0x2323ac4b3b3da015, + 0xae397d8aa96c1b77,0xabec975e0a0d081a, + 0xd9c7dced53c72255,0x96e7bd358c904a21, + 0x881cea14545c7575,0x7e50d64177da2e54, + 0xaa242499697392d2,0xdde50bd1d5d0b9e9, + 0xd4ad2dbfc3d07787,0x955e4ec64b44e864, + 0x84ec3c97da624ab4,0xbd5af13bef0b113e, + 0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e, + 0xcfb11ead453994ba,0x67de18eda5814af2, + 0x81ceb32c4b43fcf4,0x80eacf948770ced7, + 0xa2425ff75e14fc31,0xa1258379a94d028d, + 0xcad2f7f5359a3b3e,0x96ee45813a04330, + 0xfd87b5f28300ca0d,0x8bca9d6e188853fc, + 0x9e74d1b791e07e48,0x775ea264cf55347e, + 0xc612062576589dda,0x95364afe032a81a0, + 0xf79687aed3eec551,0x3a83ddbd83f52210, + 0x9abe14cd44753b52,0xc4926a9672793580, + 0xc16d9a0095928a27,0x75b7053c0f178400, + 0xf1c90080baf72cb1,0x5324c68b12dd6800, + 0x971da05074da7bee,0xd3f6fc16ebca8000, + 0xbce5086492111aea,0x88f4bb1ca6bd0000, + 0xec1e4a7db69561a5,0x2b31e9e3d0700000, + 0x9392ee8e921d5d07,0x3aff322e62600000, + 0xb877aa3236a4b449,0x9befeb9fad487c3, + 0xe69594bec44de15b,0x4c2ebe687989a9b4, + 0x901d7cf73ab0acd9,0xf9d37014bf60a11, + 0xb424dc35095cd80f,0x538484c19ef38c95, + 0xe12e13424bb40e13,0x2865a5f206b06fba, + 0x8cbccc096f5088cb,0xf93f87b7442e45d4, + 0xafebff0bcb24aafe,0xf78f69a51539d749, + 0xdbe6fecebdedd5be,0xb573440e5a884d1c, + 0x89705f4136b4a597,0x31680a88f8953031, + 0xabcc77118461cefc,0xfdc20d2b36ba7c3e, + 0xd6bf94d5e57a42bc,0x3d32907604691b4d, + 0x8637bd05af6c69b5,0xa63f9a49c2c1b110, + 0xa7c5ac471b478423,0xfcf80dc33721d54, + 0xd1b71758e219652b,0xd3c36113404ea4a9, + 0x83126e978d4fdf3b,0x645a1cac083126ea, + 0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4, + 0xcccccccccccccccc,0xcccccccccccccccd, + 0x8000000000000000,0x0, + 0xa000000000000000,0x0, + 0xc800000000000000,0x0, + 0xfa00000000000000,0x0, + 0x9c40000000000000,0x0, + 0xc350000000000000,0x0, + 0xf424000000000000,0x0, + 0x9896800000000000,0x0, + 0xbebc200000000000,0x0, + 0xee6b280000000000,0x0, + 0x9502f90000000000,0x0, + 0xba43b74000000000,0x0, + 0xe8d4a51000000000,0x0, + 0x9184e72a00000000,0x0, + 0xb5e620f480000000,0x0, + 0xe35fa931a0000000,0x0, + 0x8e1bc9bf04000000,0x0, + 0xb1a2bc2ec5000000,0x0, + 0xde0b6b3a76400000,0x0, + 0x8ac7230489e80000,0x0, + 0xad78ebc5ac620000,0x0, + 0xd8d726b7177a8000,0x0, + 0x878678326eac9000,0x0, + 0xa968163f0a57b400,0x0, + 0xd3c21bcecceda100,0x0, + 0x84595161401484a0,0x0, + 0xa56fa5b99019a5c8,0x0, + 0xcecb8f27f4200f3a,0x0, + 0x813f3978f8940984,0x4000000000000000, + 0xa18f07d736b90be5,0x5000000000000000, + 0xc9f2c9cd04674ede,0xa400000000000000, + 0xfc6f7c4045812296,0x4d00000000000000, + 0x9dc5ada82b70b59d,0xf020000000000000, + 0xc5371912364ce305,0x6c28000000000000, + 0xf684df56c3e01bc6,0xc732000000000000, + 0x9a130b963a6c115c,0x3c7f400000000000, + 0xc097ce7bc90715b3,0x4b9f100000000000, + 0xf0bdc21abb48db20,0x1e86d40000000000, + 0x96769950b50d88f4,0x1314448000000000, + 0xbc143fa4e250eb31,0x17d955a000000000, + 0xeb194f8e1ae525fd,0x5dcfab0800000000, + 0x92efd1b8d0cf37be,0x5aa1cae500000000, + 0xb7abc627050305ad,0xf14a3d9e40000000, + 0xe596b7b0c643c719,0x6d9ccd05d0000000, + 0x8f7e32ce7bea5c6f,0xe4820023a2000000, + 0xb35dbf821ae4f38b,0xdda2802c8a800000, + 0xe0352f62a19e306e,0xd50b2037ad200000, + 0x8c213d9da502de45,0x4526f422cc340000, + 0xaf298d050e4395d6,0x9670b12b7f410000, + 0xdaf3f04651d47b4c,0x3c0cdd765f114000, + 0x88d8762bf324cd0f,0xa5880a69fb6ac800, + 0xab0e93b6efee0053,0x8eea0d047a457a00, + 0xd5d238a4abe98068,0x72a4904598d6d880, + 0x85a36366eb71f041,0x47a6da2b7f864750, + 0xa70c3c40a64e6c51,0x999090b65f67d924, + 0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d, + 0x82818f1281ed449f,0xbff8f10e7a8921a4, + 0xa321f2d7226895c7,0xaff72d52192b6a0d, + 0xcbea6f8ceb02bb39,0x9bf4f8a69f764490, + 0xfee50b7025c36a08,0x2f236d04753d5b4, + 0x9f4f2726179a2245,0x1d762422c946590, + 0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5, + 0xf8ebad2b84e0d58b,0xd2e0898765a7deb2, + 0x9b934c3b330c8577,0x63cc55f49f88eb2f, + 0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb, + 0xf316271c7fc3908a,0x8bef464e3945ef7a, + 0x97edd871cfda3a56,0x97758bf0e3cbb5ac, + 0xbde94e8e43d0c8ec,0x3d52eeed1cbea317, + 0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd, + 0x945e455f24fb1cf8,0x8fe8caa93e74ef6a, + 0xb975d6b6ee39e436,0xb3e2fd538e122b44, + 0xe7d34c64a9c85d44,0x60dbbca87196b616, + 0x90e40fbeea1d3a4a,0xbc8955e946fe31cd, + 0xb51d13aea4a488dd,0x6babab6398bdbe41, + 0xe264589a4dcdab14,0xc696963c7eed2dd1, + 0x8d7eb76070a08aec,0xfc1e1de5cf543ca2, + 0xb0de65388cc8ada8,0x3b25a55f43294bcb, + 0xdd15fe86affad912,0x49ef0eb713f39ebe, + 0x8a2dbf142dfcc7ab,0x6e3569326c784337, + 0xacb92ed9397bf996,0x49c2c37f07965404, + 0xd7e77a8f87daf7fb,0xdc33745ec97be906, + 0x86f0ac99b4e8dafd,0x69a028bb3ded71a3, + 0xa8acd7c0222311bc,0xc40832ea0d68ce0c, + 0xd2d80db02aabd62b,0xf50a3fa490c30190, + 0x83c7088e1aab65db,0x792667c6da79e0fa, + 0xa4b8cab1a1563f52,0x577001b891185938, + 0xcde6fd5e09abcf26,0xed4c0226b55e6f86, + 0x80b05e5ac60b6178,0x544f8158315b05b4, + 0xa0dc75f1778e39d6,0x696361ae3db1c721, + 0xc913936dd571c84c,0x3bc3a19cd1e38e9, + 0xfb5878494ace3a5f,0x4ab48a04065c723, + 0x9d174b2dcec0e47b,0x62eb0d64283f9c76, + 0xc45d1df942711d9a,0x3ba5d0bd324f8394, + 0xf5746577930d6500,0xca8f44ec7ee36479, + 0x9968bf6abbe85f20,0x7e998b13cf4e1ecb, + 0xbfc2ef456ae276e8,0x9e3fedd8c321a67e, + 0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e, + 0x95d04aee3b80ece5,0xbba1f1d158724a12, + 0xbb445da9ca61281f,0x2a8a6e45ae8edc97, + 0xea1575143cf97226,0xf52d09d71a3293bd, + 0x924d692ca61be758,0x593c2626705f9c56, + 0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c, + 0xe498f455c38b997a,0xb6dfb9c0f956447, + 0x8edf98b59a373fec,0x4724bd4189bd5eac, + 0xb2977ee300c50fe7,0x58edec91ec2cb657, + 0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed, + 0x8b865b215899f46c,0xbd79e0d20082ee74, + 0xae67f1e9aec07187,0xecd8590680a3aa11, + 0xda01ee641a708de9,0xe80e6f4820cc9495, + 0x884134fe908658b2,0x3109058d147fdcdd, + 0xaa51823e34a7eede,0xbd4b46f0599fd415, + 0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a, + 0x850fadc09923329e,0x3e2cf6bc604ddb0, + 0xa6539930bf6bff45,0x84db8346b786151c, + 0xcfe87f7cef46ff16,0xe612641865679a63, + 0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e, + 0xa26da3999aef7749,0xe3be5e330f38f09d, + 0xcb090c8001ab551c,0x5cadf5bfd3072cc5, + 0xfdcb4fa002162a63,0x73d9732fc7c8f7f6, + 0x9e9f11c4014dda7e,0x2867e7fddcdd9afa, + 0xc646d63501a1511d,0xb281e1fd541501b8, + 0xf7d88bc24209a565,0x1f225a7ca91a4226, + 0x9ae757596946075f,0x3375788de9b06958, + 0xc1a12d2fc3978937,0x52d6b1641c83ae, + 0xf209787bb47d6b84,0xc0678c5dbd23a49a, + 0x9745eb4d50ce6332,0xf840b7ba963646e0, + 0xbd176620a501fbff,0xb650e5a93bc3d898, + 0xec5d3fa8ce427aff,0xa3e51f138ab4cebe, + 0x93ba47c980e98cdf,0xc66f336c36b10137, + 0xb8a8d9bbe123f017,0xb80b0047445d4184, + 0xe6d3102ad96cec1d,0xa60dc059157491e5, + 0x9043ea1ac7e41392,0x87c89837ad68db2f, + 0xb454e4a179dd1877,0x29babe4598c311fb, + 0xe16a1dc9d8545e94,0xf4296dd6fef3d67a, + 0x8ce2529e2734bb1d,0x1899e4a65f58660c, + 0xb01ae745b101e9e4,0x5ec05dcff72e7f8f, + 0xdc21a1171d42645d,0x76707543f4fa1f73, + 0x899504ae72497eba,0x6a06494a791c53a8, + 0xabfa45da0edbde69,0x487db9d17636892, + 0xd6f8d7509292d603,0x45a9d2845d3c42b6, + 0x865b86925b9bc5c2,0xb8a2392ba45a9b2, + 0xa7f26836f282b732,0x8e6cac7768d7141e, + 0xd1ef0244af2364ff,0x3207d795430cd926, + 0x8335616aed761f1f,0x7f44e6bd49e807b8, + 0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6, + 0xcd036837130890a1,0x36dba887c37a8c0f, + 0x802221226be55a64,0xc2494954da2c9789, + 0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c, + 0xc83553c5c8965d3d,0x6f92829494e5acc7, + 0xfa42a8b73abbf48c,0xcb772339ba1f17f9, + 0x9c69a97284b578d7,0xff2a760414536efb, + 0xc38413cf25e2d70d,0xfef5138519684aba, + 0xf46518c2ef5b8cd1,0x7eb258665fc25d69, + 0x98bf2f79d5993802,0xef2f773ffbd97a61, + 0xbeeefb584aff8603,0xaafb550ffacfd8fa, + 0xeeaaba2e5dbf6784,0x95ba2a53f983cf38, + 0x952ab45cfa97a0b2,0xdd945a747bf26183, + 0xba756174393d88df,0x94f971119aeef9e4, + 0xe912b9d1478ceb17,0x7a37cd5601aab85d, + 0x91abb422ccb812ee,0xac62e055c10ab33a, + 0xb616a12b7fe617aa,0x577b986b314d6009, + 0xe39c49765fdf9d94,0xed5a7e85fda0b80b, + 0x8e41ade9fbebc27d,0x14588f13be847307, + 0xb1d219647ae6b31c,0x596eb2d8ae258fc8, + 0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb, + 0x8aec23d680043bee,0x25de7bb9480d5854, + 0xada72ccc20054ae9,0xaf561aa79a10ae6a, + 0xd910f7ff28069da4,0x1b2ba1518094da04, + 0x87aa9aff79042286,0x90fb44d2f05d0842, + 0xa99541bf57452b28,0x353a1607ac744a53, + 0xd3fa922f2d1675f2,0x42889b8997915ce8, + 0x847c9b5d7c2e09b7,0x69956135febada11, + 0xa59bc234db398c25,0x43fab9837e699095, + 0xcf02b2c21207ef2e,0x94f967e45e03f4bb, + 0x8161afb94b44f57d,0x1d1be0eebac278f5, + 0xa1ba1ba79e1632dc,0x6462d92a69731732, + 0xca28a291859bbf93,0x7d7b8f7503cfdcfe, + 0xfcb2cb35e702af78,0x5cda735244c3d43e, + 0x9defbf01b061adab,0x3a0888136afa64a7, + 0xc56baec21c7a1916,0x88aaa1845b8fdd0, + 0xf6c69a72a3989f5b,0x8aad549e57273d45, + 0x9a3c2087a63f6399,0x36ac54e2f678864b, + 0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd, + 0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5, + 0x969eb7c47859e743,0x9f644ae5a4b1b325, + 0xbc4665b596706114,0x873d5d9f0dde1fee, + 0xeb57ff22fc0c7959,0xa90cb506d155a7ea, + 0x9316ff75dd87cbd8,0x9a7f12442d588f2, + 0xb7dcbf5354e9bece,0xc11ed6d538aeb2f, + 0xe5d3ef282a242e81,0x8f1668c8a86da5fa, + 0x8fa475791a569d10,0xf96e017d694487bc, + 0xb38d92d760ec4455,0x37c981dcc395a9ac, + 0xe070f78d3927556a,0x85bbe253f47b1417, + 0x8c469ab843b89562,0x93956d7478ccec8e, + 0xaf58416654a6babb,0x387ac8d1970027b2, + 0xdb2e51bfe9d0696a,0x6997b05fcc0319e, + 0x88fcf317f22241e2,0x441fece3bdf81f03, + 0xab3c2fddeeaad25a,0xd527e81cad7626c3, + 0xd60b3bd56a5586f1,0x8a71e223d8d3b074, + 0x85c7056562757456,0xf6872d5667844e49, + 0xa738c6bebb12d16c,0xb428f8ac016561db, + 0xd106f86e69d785c7,0xe13336d701beba52, + 0x82a45b450226b39c,0xecc0024661173473, + 0xa34d721642b06084,0x27f002d7f95d0190, + 0xcc20ce9bd35c78a5,0x31ec038df7b441f4, + 0xff290242c83396ce,0x7e67047175a15271, + 0x9f79a169bd203e41,0xf0062c6e984d386, + 0xc75809c42c684dd1,0x52c07b78a3e60868, + 0xf92e0c3537826145,0xa7709a56ccdf8a82, + 0x9bbcc7a142b17ccb,0x88a66076400bb691, + 0xc2abf989935ddbfe,0x6acff893d00ea435, + 0xf356f7ebf83552fe,0x583f6b8c4124d43, + 0x98165af37b2153de,0xc3727a337a8b704a, + 0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c, + 0xeda2ee1c7064130c,0x1162def06f79df73, + 0x9485d4d1c63e8be7,0x8addcb5645ac2ba8, + 0xb9a74a0637ce2ee1,0x6d953e2bd7173692, + 0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437, + 0x910ab1d4db9914a0,0x1d9c9892400a22a2, + 0xb54d5e4a127f59c8,0x2503beb6d00cab4b, + 0xe2a0b5dc971f303a,0x2e44ae64840fd61d, + 0x8da471a9de737e24,0x5ceaecfed289e5d2, + 0xb10d8e1456105dad,0x7425a83e872c5f47, + 0xdd50f1996b947518,0xd12f124e28f77719, + 0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f, + 0xace73cbfdc0bfb7b,0x636cc64d1001550b, + 0xd8210befd30efa5a,0x3c47f7e05401aa4e, + 0x8714a775e3e95c78,0x65acfaec34810a71, + 0xa8d9d1535ce3b396,0x7f1839a741a14d0d, + 0xd31045a8341ca07c,0x1ede48111209a050, + 0x83ea2b892091e44d,0x934aed0aab460432, + 0xa4e4b66b68b65d60,0xf81da84d5617853f, + 0xce1de40642e3f4b9,0x36251260ab9d668e, + 0x80d2ae83e9ce78f3,0xc1d72b7c6b426019, + 0xa1075a24e4421730,0xb24cf65b8612f81f, + 0xc94930ae1d529cfc,0xdee033f26797b627, + 0xfb9b7cd9a4a7443c,0x169840ef017da3b1, + 0x9d412e0806e88aa5,0x8e1f289560ee864e, + 0xc491798a08a2ad4e,0xf1a6f2bab92a27e2, + 0xf5b5d7ec8acb58a2,0xae10af696774b1db, + 0x9991a6f3d6bf1765,0xacca6da1e0a8ef29, + 0xbff610b0cc6edd3f,0x17fd090a58d32af3, + 0xeff394dcff8a948e,0xddfc4b4cef07f5b0, + 0x95f83d0a1fb69cd9,0x4abdaf101564f98e, + 0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1, + 0xea53df5fd18d5513,0x84c86189216dc5ed, + 0x92746b9be2f8552c,0x32fd3cf5b4e49bb4, + 0xb7118682dbb66a77,0x3fbc8c33221dc2a1, + 0xe4d5e82392a40515,0xfabaf3feaa5334a, + 0x8f05b1163ba6832d,0x29cb4d87f2a7400e, + 0xb2c71d5bca9023f8,0x743e20e9ef511012, + 0xdf78e4b2bd342cf6,0x914da9246b255416, + 0x8bab8eefb6409c1a,0x1ad089b6c2f7548e, + 0xae9672aba3d0c320,0xa184ac2473b529b1, + 0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e, + 0x8865899617fb1871,0x7e2fa67c7a658892, + 0xaa7eebfb9df9de8d,0xddbb901b98feeab7, + 0xd51ea6fa85785631,0x552a74227f3ea565, + 0x8533285c936b35de,0xd53a88958f87275f, + 0xa67ff273b8460356,0x8a892abaf368f137, + 0xd01fef10a657842c,0x2d2b7569b0432d85, + 0x8213f56a67f6b29b,0x9c3b29620e29fc73, + 0xa298f2c501f45f42,0x8349f3ba91b47b8f, + 0xcb3f2f7642717713,0x241c70a936219a73, + 0xfe0efb53d30dd4d7,0xed238cd383aa0110, + 0x9ec95d1463e8a506,0xf4363804324a40aa, + 0xc67bb4597ce2ce48,0xb143c6053edcd0d5, + 0xf81aa16fdc1b81da,0xdd94b7868e94050a, + 0x9b10a4e5e9913128,0xca7cf2b4191c8326, + 0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0, + 0xf24a01a73cf2dccf,0xbc633b39673c8cec, + 0x976e41088617ca01,0xd5be0503e085d813, + 0xbd49d14aa79dbc82,0x4b2d8644d8a74e18, + 0xec9c459d51852ba2,0xddf8e7d60ed1219e, + 0x93e1ab8252f33b45,0xcabb90e5c942b503, + 0xb8da1662e7b00a17,0x3d6a751f3b936243, + 0xe7109bfba19c0c9d,0xcc512670a783ad4, + 0x906a617d450187e2,0x27fb2b80668b24c5, + 0xb484f9dc9641e9da,0xb1f9f660802dedf6, + 0xe1a63853bbd26451,0x5e7873f8a0396973, + 0x8d07e33455637eb2,0xdb0b487b6423e1e8, + 0xb049dc016abc5e5f,0x91ce1a9a3d2cda62, + 0xdc5c5301c56b75f7,0x7641a140cc7810fb, + 0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d, + 0xac2820d9623bf429,0x546345fa9fbdcd44, + 0xd732290fbacaf133,0xa97c177947ad4095, + 0x867f59a9d4bed6c0,0x49ed8eabcccc485d, + 0xa81f301449ee8c70,0x5c68f256bfff5a74, + 0xd226fc195c6a2f8c,0x73832eec6fff3111, + 0x83585d8fd9c25db7,0xc831fd53c5ff7eab, + 0xa42e74f3d032f525,0xba3e7ca8b77f5e55, + 0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb, + 0x80444b5e7aa7cf85,0x7980d163cf5b81b3, + 0xa0555e361951c366,0xd7e105bcc332621f, + 0xc86ab5c39fa63440,0x8dd9472bf3fefaa7, + 0xfa856334878fc150,0xb14f98f6f0feb951, + 0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3, + 0xc3b8358109e84f07,0xa862f80ec4700c8, + 0xf4a642e14c6262c8,0xcd27bb612758c0fa, + 0x98e7e9cccfbd7dbd,0x8038d51cb897789c, + 0xbf21e44003acdd2c,0xe0470a63e6bd56c3, + 0xeeea5d5004981478,0x1858ccfce06cac74, + 0x95527a5202df0ccb,0xf37801e0c43ebc8, + 0xbaa718e68396cffd,0xd30560258f54e6ba, + 0xe950df20247c83fd,0x47c6b82ef32a2069, + 0x91d28b7416cdd27e,0x4cdc331d57fa5441, + 0xb6472e511c81471d,0xe0133fe4adf8e952, + 0xe3d8f9e563a198e5,0x58180fddd97723a6, + 0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,}; + +} + +#endif \ No newline at end of file diff --git a/include/fast_float/float_common.h b/include/fast_float/float_common.h new file mode 100644 index 0000000..4b22a9b --- /dev/null +++ b/include/fast_float/float_common.h @@ -0,0 +1,263 @@ +#ifndef FASTFLOAT_FLOAT_COMMON_H +#define FASTFLOAT_FLOAT_COMMON_H + +#include +#include +#ifndef _WIN32 +// strcasecmp, strncasecmp +#include +#endif + +#if defined(_MSC_VER) && !defined(__clang__) +#define FASTFLOAT_VISUAL_STUDIO 1 +#endif + +#ifdef FASTFLOAT_VISUAL_STUDIO +#define fastfloat_really_inline __forceinline +#else +#define fastfloat_really_inline inline __attribute__((always_inline)) +#endif + +#ifdef _MSC_VER +#define fastfloat_strcasecmp _stricmp +#define fastfloat_strncasecmp _strnicmp +#else +#define fastfloat_strcasecmp strcasecmp +#define fastfloat_strncasecmp strncasecmp +#endif +namespace fast_float { +#ifndef FLT_EVAL_METHOD +#error "FLT_EVAL_METHOD should be defined, please include cfloat." +#endif + + + + + + +bool is_space(uint8_t c) { + static const bool table[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; + return table[c]; +} + +namespace { +constexpr uint32_t max_digits = 768; + +constexpr int32_t decimal_point_range = 2047; +} // namespace + + +struct value128 { + uint64_t low; + uint64_t high; + value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} + value128() : low(0), high(0) {} +}; + + +/* result might be undefined when input_num is zero */ +fastfloat_really_inline +int leading_zeroes(uint64_t input_num) { +#ifdef FASTFLOAT_VISUAL_STUDIO + unsigned long leading_zero = 0; + // Search the mask data from most significant bit (MSB) + // to least significant bit (LSB) for a set bit (1). + if (_BitScanReverse64(&leading_zero, input_num)) + return (int)(63 - leading_zero); + else + return 64; +#else + return __builtin_clzll(input_num); +#endif +} + + +#ifdef FASTFLOAT_VISUAL_STUDIO +#include + +#if !defined(_M_X64) && !defined(_M_ARM64)// _umul128 for x86, arm +// this is a slow emulation routine for 32-bit Windows +// +fastfloat_really_inline uint64_t __emulu(uint32_t x, uint32_t y) { + return x * (uint64_t)y; +} +fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) { + uint64_t ad = __emulu((uint32_t)(ab >> 32), (uint32_t)cd); + uint64_t bd = __emulu((uint32_t)ab, (uint32_t)cd); + uint64_t adbc = ad + __emulu((uint32_t)ab, (uint32_t)(cd >> 32)); + uint64_t adbc_carry = !!(adbc < ad); + uint64_t lo = bd + (adbc << 32); + *hi = __emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + + (adbc_carry << 32) + !!(lo < bd); + return lo; +} +#endif + +fastfloat_really_inline value128 full_multiplication(uint64_t value1, uint64_t value2) { + value128 answer; +#ifdef _M_ARM64 + // ARM64 has native support for 64-bit multiplications, no need to emultate + answer.high = __umulh(value1, value2); + answer.low = value1 * value2; +#else + answer.low = _umul128(value1, value2, &answer.high); // _umul128 not available on ARM64 +#endif // _M_ARM64 + return answer; +} + +#else + +// compute value1 * value2 +fastfloat_really_inline +value128 full_multiplication(uint64_t value1, uint64_t value2) { + value128 answer; + __uint128_t r = ((__uint128_t)value1) * value2; + answer.low = uint64_t(r); + answer.high = uint64_t(r >> 64); + return answer; +} + +#endif + +struct adjusted_mantissa { + uint64_t mantissa; + int power2; + adjusted_mantissa() : mantissa(0), power2(0) {} +}; + +struct decimal { + uint32_t num_digits; + int32_t decimal_point; + bool negative; + bool truncated; + uint8_t digits[max_digits]; +}; + +template +struct binary_format { + static constexpr int mantissa_explicit_bits(); + static constexpr int minimum_exponent(); + static constexpr int infinite_power(); + static constexpr int sign_index(); + static constexpr int min_exponent_fast_path(); + static constexpr int max_exponent_fast_path(); + static constexpr int max_exponent_round_to_even(); + static constexpr int min_exponent_round_to_even(); + static constexpr uint64_t max_mantissa_fast_path(); + static constexpr T exact_power_of_ten(int64_t power); + constexpr static double powers_of_ten_double[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, + 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; + constexpr static float powers_of_ten_float[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}; +}; + +template <> +constexpr int binary_format::mantissa_explicit_bits() { + return 52; +} +template <> +constexpr int binary_format::mantissa_explicit_bits() { + return 23; +} + +template <> +constexpr int binary_format::max_exponent_round_to_even() { + return 23; +} + +template <> +constexpr int binary_format::max_exponent_round_to_even() { + return 10; +} + + +template <> +constexpr int binary_format::min_exponent_round_to_even() { + return -4; +} + +template <> +constexpr int binary_format::min_exponent_round_to_even() { + return -17; +} + +template <> +constexpr int binary_format::minimum_exponent() { + return -1023; +} +template <> +constexpr int binary_format::minimum_exponent() { + return -127; +} + +template <> +constexpr int binary_format::infinite_power() { + return 0x7FF; +} +template <> +constexpr int binary_format::infinite_power() { + return 0xFF; +} + +template <> +constexpr int binary_format::sign_index() { + return 63; +} +template <> +constexpr int binary_format::sign_index() { + return 31; +} + +template <> +constexpr int binary_format::min_exponent_fast_path() { +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return 0; +#else + return -22; +#endif +} +template <> +constexpr int binary_format::min_exponent_fast_path() { +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return 0; +#else + return -10; +#endif +} + + +template <> +constexpr int binary_format::max_exponent_fast_path() { + return 22; +} +template <> +constexpr int binary_format::max_exponent_fast_path() { + return 10; +} + + +template <> +constexpr uint64_t binary_format::max_mantissa_fast_path() { + return uint64_t(2) << mantissa_explicit_bits(); +} +template <> +constexpr uint64_t binary_format::max_mantissa_fast_path() { + return uint64_t(2) << mantissa_explicit_bits(); +} + +template <> +constexpr double binary_format::exact_power_of_ten(int64_t power) { + return powers_of_ten_double[power]; +} +template <> +constexpr float binary_format::exact_power_of_ten(int64_t power) { + + return powers_of_ten_float[power]; +} + + + +} // namespace fast_float + +#endif diff --git a/include/fast_float/parse_number.h b/include/fast_float/parse_number.h new file mode 100644 index 0000000..cecf14e --- /dev/null +++ b/include/fast_float/parse_number.h @@ -0,0 +1,116 @@ +#ifndef FASTFLOAT_PARSE_NUMBER_H +#define FASTFLOAT_PARSE_NUMBER_H +#include "ascii_number.h" +#include "decimal_to_binary.h" +#include "thompson_tao.h" + +#include +#include +#include +#include +#include + +namespace fast_float { + + +namespace { +/** + * Special case +inf, -inf, nan, infinity, -infinity. + * The case comparisons could be made much faster given that we know that the + * strings a null-free and fixed. + **/ +template +from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept { + from_chars_result answer; + answer.ec = std::errc(); // be optimistic + if (last - first >= 3) { + if (fastfloat_strncasecmp(first, "nan", 3) == 0) { + answer.ptr = first + 3; + value = std::numeric_limits::quiet_NaN(); + return answer; + } + if (fastfloat_strncasecmp(first, "inf", 3) == 0) { + + if ((last - first >= 8) && (fastfloat_strncasecmp(first, "infinity", 8) == 0)) { + answer.ptr = first + 8; + } else { + answer.ptr = first + 3; + } + value = std::numeric_limits::infinity(); + return answer; + } + if (last - first >= 4) { + if ((fastfloat_strncasecmp(first, "+nan", 4) == 0) || (fastfloat_strncasecmp(first, "-nan", 4) == 0)) { + answer.ptr = first + 4; + value = std::numeric_limits::quiet_NaN(); + if (first[0] == '-') { + value = -value; + } + return answer; + } + + if ((fastfloat_strncasecmp(first, "+inf", 4) == 0) || (fastfloat_strncasecmp(first, "-inf", 4) == 0)) { + if ((last - first >= 8) && (fastfloat_strncasecmp(first + 1, "infinity", 8) == 0)) { + answer.ptr = first + 9; + } else { + answer.ptr = first + 4; + } + value = std::numeric_limits::infinity(); + if (first[0] == '-') { + value = -value; + } + return answer; + } + } + } + answer.ec = std::errc::invalid_argument; + return answer; +} +} // namespace + + + +template +from_chars_result from_chars(const char *first, const char *last, + T &value, chars_format fmt /*= chars_format::general*/) noexcept { + static_assert (std::is_same::value || std::is_same::value, "only float and double are supported"); + + + from_chars_result answer; + while ((first != last) && fast_float::is_space(*first)) { + first++; + } + if (first == last) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } + parsed_number_string pns = parse_number_string(first, last, fmt); + if (!pns.valid) { + return parse_infnan(first, last, value); + } + answer.ec = std::errc(); // be optimistic + answer.ptr = pns.lastmatch; + + if (binary_format::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format::max_exponent_fast_path() && pns.mantissa <=binary_format::max_mantissa_fast_path()) { + value = T(pns.mantissa); + if (pns.exponent < 0) { value = value / binary_format::exact_power_of_ten(-pns.exponent); } + else { value = value * binary_format::exact_power_of_ten(pns.exponent); } + if (pns.negative) { value = -value; } + return answer; + } + adjusted_mantissa am = pns.too_many_digits ? parse_long_mantissa>(first,last) : compute_float>(pns.exponent, pns.mantissa); + if(am.power2 < 0) { + am = parse_long_mantissa>(first,last); + } + uint64_t word = am.mantissa; + word |= uint64_t(am.power2) << binary_format::mantissa_explicit_bits(); + word = pns.negative + ? word | (uint64_t(1) << binary_format::sign_index()) : word; + memcpy(&value, &word, sizeof(T)); + return answer; +} + +} // namespace fast_float + +#endif diff --git a/include/fast_float/thompson_tao.h b/include/fast_float/thompson_tao.h new file mode 100644 index 0000000..696833d --- /dev/null +++ b/include/fast_float/thompson_tao.h @@ -0,0 +1,374 @@ +#ifndef FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H +#define FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H + +/** + * This code is meant to handle the case where we have more than 19 digits. + * + * Based on work by Nigel Tao (at https://github.com/google/wuffs/) + * who credits Ken Thompson for the design (via a reference to the Go source + * code). See + * https://github.com/google/wuffs/blob/aa46859ea40c72516deffa1b146121952d6dfd3b/internal/cgen/base/floatconv-submodule-data.c + * https://github.com/google/wuffs/blob/46cd8105f47ca07ae2ba8e6a7818ef9c0df6c152/internal/cgen/base/floatconv-submodule-code.c + * It is probably not very fast but it is a fallback that should almost never + * be used in reallife. + **/ +#include "ascii_number.h" +#include "decimal_to_binary.h" +#include + +namespace fast_float { + +namespace { + +// remove all final zeroes +inline void trim(decimal &h) { + while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) { + h.num_digits--; + } +} + +/** If you ever want to see what is going on, the following function might prove handy: + * **/ +void print(const decimal d, int32_t exp2 = 0) { + printf("0."); + for(size_t i = 0; i < d.num_digits; i++) { + printf("%d", int(d.digits[i])); + } + printf(" * 10 **%d ", d.decimal_point); + printf(" * 2 **%d ", exp2); + +} + + + + + +uint32_t number_of_digits_decimal_left_shift(decimal &h, uint32_t shift) { + shift &= 63; + const static uint16_t number_of_digits_decimal_left_shift_table[65] = { + 0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, + 0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, + 0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, + 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0, + 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA, + 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, + 0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, + 0x051C, 0x051C, + }; + uint32_t x_a = number_of_digits_decimal_left_shift_table[shift]; + uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1]; + uint32_t num_new_digits = x_a >> 11; + uint32_t pow5_a = 0x7FF & x_a; + uint32_t pow5_b = 0x7FF & x_b; + const static uint8_t + number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = { + 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, + 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, + 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, + 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, + 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, + 9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, + 3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, + 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, + 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, + 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, + 4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, + 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, + 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, + 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, + 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2, + 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, + 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, + 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, + 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2, + 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0, + 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, + 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, + 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, + 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, 2, + 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5, + 0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, + 3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, + 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, + 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, + 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, + 9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, + 5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, + 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, + 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, + 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, + 9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, + 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, + 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, + 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, + 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4, + 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, + 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, + 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, + 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5, + 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1, + 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, + 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9, + 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0, + 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6, 2, + 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1, + 8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, + 1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, + 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, + 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, + 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5, + }; + const uint8_t *pow5 = + &number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a]; + uint32_t i = 0; + uint32_t n = pow5_b - pow5_a; + for (; i < n; i++) { + if (i >= h.num_digits) { + return num_new_digits - 1; + } else if (h.digits[i] == pow5[i]) { + continue; + } else if (h.digits[i] < pow5[i]) { + return num_new_digits - 1; + } else { + return num_new_digits; + } + } + return num_new_digits; +} + +} // end of anonymous namespace + +uint64_t round(decimal &h) { + if ((h.num_digits == 0) || (h.decimal_point < 0)) { + return 0; + } else if (h.decimal_point > 18) { + return UINT64_MAX; + } + // at this point, we know that h.decimal_point >= 0 + uint32_t dp = uint32_t(h.decimal_point); + uint64_t n = 0; + for (uint32_t i = 0; i < dp; i++) { + n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0); + } + bool round_up = false; + if (dp < h.num_digits) { + round_up = h.digits[dp] >= 5; // normally, we round up + // but we may need to round to even! + if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) { + round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1])); + } + } + if (round_up) { + n++; + } + return n; +} + +// computes h * 2^-shift +void decimal_left_shift(decimal &h, uint32_t shift) { + if (h.num_digits == 0) { + return; + } + uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift); + int32_t read_index = int32_t(h.num_digits - 1); + uint32_t write_index = h.num_digits - 1 + num_new_digits; + uint64_t n = 0; + + while (read_index >= 0) { + n += uint64_t(h.digits[read_index]) << shift; + uint64_t quotient = n / 10; + uint64_t remainder = n - (10 * quotient); + if (write_index < max_digits) { + h.digits[write_index] = uint8_t(remainder); + } else if (remainder > 0) { + h.truncated = true; + } + n = quotient; + write_index--; + read_index--; + } + while (n > 0) { + uint64_t quotient = n / 10; + uint64_t remainder = n - (10 * quotient); + if (write_index < max_digits) { + h.digits[write_index] = uint8_t(remainder); + } else if (remainder > 0) { + h.truncated = true; + } + n = quotient; + write_index--; + } + h.num_digits += num_new_digits; + if (h.num_digits > max_digits) { + h.num_digits = max_digits; + } + h.decimal_point += int32_t(num_new_digits); + trim(h); +} + +// computes h * 2^shift +void decimal_right_shift(decimal &h, uint32_t shift) { + uint32_t read_index = 0; + uint32_t write_index = 0; + + uint64_t n = 0; + + while ((n >> shift) == 0) { + if (read_index < h.num_digits) { + n = (10 * n) + h.digits[read_index++]; + } else if (n == 0) { + return; + } else { + while ((n >> shift) == 0) { + n = 10 * n; + read_index++; + } + break; + } + } + h.decimal_point -= int32_t(read_index - 1); + if (h.decimal_point < -decimal_point_range) { // it is zero + h.num_digits = 0; + h.decimal_point = 0; + h.negative = false; + h.truncated = false; + return; + } + uint64_t mask = (uint64_t(1) << shift) - 1; + while (read_index < h.num_digits) { + uint8_t new_digit = uint8_t(n >> shift); + n = (10 * (n & mask)) + h.digits[read_index++]; + h.digits[write_index++] = new_digit; + } + while (n > 0) { + uint8_t new_digit = uint8_t(n >> shift); + n = 10 * (n & mask); + if (write_index < max_digits) { + h.digits[write_index++] = new_digit; + } else if (new_digit > 0) { + h.truncated = true; + } + } + h.num_digits = write_index; + trim(h); +} + + +template +adjusted_mantissa compute_float(decimal &d) { + adjusted_mantissa answer; + if (d.num_digits == 0) { + // should be zero + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } + // At this point, going further, we can assume that d.num_digits > 0. + // + // We want to guard against excessive decimal point values because + // they can result in long running times. Indeed, we do + // shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22 + // which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not + // fine (runs for a long time). + // + if(d.decimal_point < -324) { + // We have something smaller than 1e-324 which is always zero + // in binary64 and binary32. + // It should be zero. + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } else if(d.decimal_point >= 310) { + // We have something at least as large as 0.1e310 which is + // always infinite. + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + static const uint32_t max_shift = 60; + static const uint32_t num_powers = 19; + static const uint8_t powers[19] = { + 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, // + 33, 36, 39, 43, 46, 49, 53, 56, 59, // + }; + int32_t exp2 = 0; + while (d.decimal_point > 0) { + uint32_t n = uint32_t(d.decimal_point); + uint32_t shift = (n < num_powers) ? powers[n] : max_shift; + decimal_right_shift(d, shift); + if (d.decimal_point < -decimal_point_range) { + // should be zero + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } + exp2 += int32_t(shift); + } + // We shift left toward [1/2 ... 1]. + while (d.decimal_point <= 0) { + uint32_t shift; + if (d.decimal_point == 0) { + if (d.digits[0] >= 5) { + break; + } + shift = (d.digits[0] < 2) ? 2 : 1; + } else { + uint32_t n = uint32_t(-d.decimal_point); + shift = (n < num_powers) ? powers[n] : max_shift; + } + decimal_left_shift(d, shift); + if (d.decimal_point > decimal_point_range) { + // we want to get infinity: + answer.power2 = 0xFF; + answer.mantissa = 0; + return answer; + } + exp2 -= int32_t(shift); + } + // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2]. + exp2--; + constexpr int32_t minimum_exponent = binary::minimum_exponent(); + while ((minimum_exponent + 1) > exp2) { + uint32_t n = uint32_t((minimum_exponent + 1) - exp2); + if (n > max_shift) { + n = max_shift; + } + decimal_right_shift(d, n); + exp2 += int32_t(n); + } + if ((exp2 - minimum_exponent) >= binary::infinite_power()) { + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + + const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1; + decimal_left_shift(d, mantissa_size_in_bits); + + uint64_t mantissa = round(d); + // It is possible that we have an overflow, in which case we need + // to shift back. + if(mantissa >= (uint64_t(1) << mantissa_size_in_bits)) { + decimal_right_shift(d, 1); + exp2 += 1; + mantissa = round(d); + if ((exp2 - minimum_exponent) >= binary::infinite_power()) { + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + } + answer.power2 = exp2 - binary::minimum_exponent(); + if(mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) { answer.power2--; } + answer.mantissa = mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1); + return answer; +} + +template +adjusted_mantissa parse_long_mantissa(const char *first, const char* last) { + decimal d = parse_decimal(first, last); + return compute_float(d); +} + +} // namespace fast_float +#endif diff --git a/script/analysis.py b/script/analysis.py new file mode 100644 index 0000000..8dcbcd5 --- /dev/null +++ b/script/analysis.py @@ -0,0 +1,36 @@ +from math import floor + +def log2(x): + """returns ceil(log2(x)))""" + y = 0 + while((1<= 2**127 + K = 2**127 + if(not(c * K * d<=( K + 1) * t)): + print(q) + top = floor(t/(c * d - t)) + sys.exit(-1) + +for q in range(18, 344+1): + d = 5**q + b = 64 + 2*log2(d) + t = 2**b + c = t//d + 1 + assert c > 2**(64 +log2(d)) + K = 2**64 + if(not(c * K * d<=( K + 1) * t)): + print(q) + top = floor(t/(c * d - t)) + sys.exit(-1) + +print("all good") \ No newline at end of file diff --git a/script/table_generation.py b/script/table_generation.py new file mode 100644 index 0000000..eba5c5c --- /dev/null +++ b/script/table_generation.py @@ -0,0 +1,30 @@ + +def format(number): + # move the most significant bit in position + while(number < (1<<127)): + number *= 2 + # then *truncate* + while(number >= (1<<128)): + number //= 2 + upper = number // (1<<64) + lower = number % (1<<64) + print(""+hex(upper)+","+hex(lower)+",") + +for q in range(-342,0): + power5 = 5 ** -q + z = 0 + while( (1<= -17 ): + b = z + 127 + c = 2 ** b // power5 + 1 + assert c < (1<<128) + format(c) + else: + b = 2 * z + 64 + c = 2 ** b // power5 + 1 + format(c) + +for q in range(0,308+1): + power5 = 5 ** q + format(power5) diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt new file mode 100644 index 0000000..3eb4935 --- /dev/null +++ b/tests/CMakeLists.txt @@ -0,0 +1,17 @@ + +function(fast_float_add_cpp_test TEST_NAME) + add_executable(${TEST_NAME} ${TEST_NAME}.cpp) + add_test(${TEST_NAME} ${TEST_NAME}) + target_link_libraries(${TEST_NAME} PUBLIC fast_float) +endfunction(fast_float_add_cpp_test) +fast_float_add_cpp_test(exhaustive32_midpoint) +fast_float_add_cpp_test(random_string) +fast_float_add_cpp_test(string_test) +fast_float_add_cpp_test(exhaustive32) +fast_float_add_cpp_test(exhaustive32_64) +fast_float_add_cpp_test(long_exhaustive32) +fast_float_add_cpp_test(long_exhaustive32_64) +fast_float_add_cpp_test(long_random64) +fast_float_add_cpp_test(random64) +fast_float_add_cpp_test(basictest) +fast_float_add_cpp_test(example_test) diff --git a/tests/basictest.cpp b/tests/basictest.cpp new file mode 100644 index 0000000..7542399 --- /dev/null +++ b/tests/basictest.cpp @@ -0,0 +1,232 @@ +#include "fast_float/fast_float.h" +#include + +inline void Assert(bool Assertion) { + if (!Assertion) + throw std::runtime_error("bug"); +} + +template std::string to_string(T d) { + std::string s(64, '\0'); + auto written = std::snprintf(&s[0], s.size(), "%.*e", + std::numeric_limits::max_digits10 - 1, d); + s.resize(written); + return s; +} + +template std::string to_long_string(T d) { + std::string s(4096, '\0'); + auto written = std::snprintf(&s[0], s.size(), "%.*e", + std::numeric_limits::max_digits10 * 10, d); + s.resize(written); + return s; +} + +bool basic_test_32bit(std::string vals) { + std::cout << " parsing " << vals << std::endl; + float result_value; + auto result = fast_float::from_chars(vals.data(), vals.data() + vals.size(), + result_value); + if (result.ec != std::errc()) { + std::cerr << " I could not parse " << vals << std::endl; + return false; + } + + std::cout << std::hexfloat << result_value << std::endl; + std::cout << std::dec; + return true; +} + +bool basic_test_32bit(std::string vals, float val) { + std::cout << " parsing " << vals << std::endl; + float result_value; + auto result = fast_float::from_chars(vals.data(), vals.data() + vals.size(), + result_value); + if (result.ec != std::errc()) { + std::cerr << " I could not parse " << vals << std::endl; + return false; + } + if (std::isnan(val)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << result_value << std::endl; + return false; + } + } else if (result_value != val) { + std::cerr << "I got " << std::hexfloat << result_value << " but I was expecting " << val + << std::endl; + std::cerr << std::dec; + uint32_t word; + memcpy(&word, &result_value, sizeof(word)); + std::cout << "got mantissa = " << (word & ((1<<23)-1)) << std::endl; + memcpy(&word, &val, sizeof(word)); + std::cout << "wanted mantissa = " << (word & ((1<<23)-1)) << std::endl; + std::cerr << "string: " << vals << std::endl; + return false; + } + std::cout << std::hexfloat << result_value << " == " << val << std::endl; + std::cout << std::dec; + return true; +} + +bool basic_test_32bit(float val) { + std::string long_vals = to_long_string(val); + std::string vals = to_string(val); + return basic_test_32bit(long_vals, val) && basic_test_32bit(vals, val); +} + +bool basic_test_64bit(std::string vals, double val) { + std::cout << " parsing " << vals << std::endl; + double result_value; + auto result = fast_float::from_chars(vals.data(), vals.data() + vals.size(), + result_value); + if (result.ec != std::errc()) { + std::cerr << " I could not parse " << vals << std::endl; + return false; + } + if (std::isnan(val)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << result_value << std::endl; + return false; + } + } else if (result_value != val) { + std::cerr << "I got " << std::hexfloat << result_value << " but I was expecting " << val + << std::endl; + std::cerr << std::dec; + std::cerr << "string: " << vals << std::endl; + return false; + } + std::cout << std::hexfloat << result_value << " == " << val << std::endl; + std::cout << std::dec; + + return true; +} +bool basic_test_64bit(double val) { + std::string long_vals = to_long_string(val); + std::string vals = to_string(val); + return basic_test_64bit(long_vals, val) && basic_test_64bit(vals, val); +} + +int main() { + + + std::cout << "======= 64 bits " << std::endl; + Assert(basic_test_64bit("2.2250738585072013e-308",2.2250738585072013e-308)); + Assert(basic_test_64bit("-92666518056446206563E3", -92666518056446206563E3)); + Assert(basic_test_64bit("-92666518056446206563E3", -92666518056446206563E3)); + Assert(basic_test_64bit("-42823146028335318693e-128",-42823146028335318693e-128)); + Assert(basic_test_64bit("90054602635948575728E72",90054602635948575728E72)); + Assert(basic_test_64bit("1.00000000000000188558920870223463870174566020691753515394643550663070558368373221972569761144603605635692374830246134201063722058e-309", 1.00000000000000188558920870223463870174566020691753515394643550663070558368373221972569761144603605635692374830246134201063722058e-309)); + Assert(basic_test_64bit("0e9999999999999999999999999999", 0)); + Assert(basic_test_32bit("1234456789012345678901234567890e9999999999999999999999999999", std::numeric_limits::infinity())); + Assert(basic_test_64bit("-2139879401095466344511101915470454744.9813888656856943E+272", -std::numeric_limits::infinity())); + Assert(basic_test_64bit("-2402844368454405395.2", -2402844368454405395.2)); + Assert(basic_test_64bit("2402844368454405395.2", 2402844368454405395.2)); + Assert(basic_test_64bit("7.0420557077594588669468784357561207962098443483187940792729600000e+59", 7.0420557077594588669468784357561207962098443483187940792729600000e+59)); + Assert(basic_test_64bit("7.0420557077594588669468784357561207962098443483187940792729600000e+59", 7.0420557077594588669468784357561207962098443483187940792729600000e+59)); + Assert(basic_test_64bit("-1.7339253062092163730578609458683877051596800000000000000000000000e+42", -1.7339253062092163730578609458683877051596800000000000000000000000e+42)); + Assert(basic_test_64bit("-2.0972622234386619214559824785284023792871122537545728000000000000e+52", -2.0972622234386619214559824785284023792871122537545728000000000000e+52)); + Assert(basic_test_64bit("-1.0001803374372191849407179462120053338028379051879898808320000000e+57", -1.0001803374372191849407179462120053338028379051879898808320000000e+57)); + Assert(basic_test_64bit("-1.8607245283054342363818436991534856973992070520151142825984000000e+58", -1.8607245283054342363818436991534856973992070520151142825984000000e+58)); + Assert(basic_test_64bit("-1.9189205311132686907264385602245237137907390376574976000000000000e+52", -1.9189205311132686907264385602245237137907390376574976000000000000e+52)); + Assert(basic_test_64bit("-2.8184483231688951563253238886553506793085187889855201280000000000e+54", -2.8184483231688951563253238886553506793085187889855201280000000000e+54)); + Assert(basic_test_64bit("-1.7664960224650106892054063261344555646357024359107788800000000000e+53", -1.7664960224650106892054063261344555646357024359107788800000000000e+53)); + Assert(basic_test_64bit("-2.1470977154320536489471030463761883783915110400000000000000000000e+45", -2.1470977154320536489471030463761883783915110400000000000000000000e+45)); + Assert(basic_test_64bit("-4.4900312744003159009338275160799498340862630046359789166919680000e+61", -4.4900312744003159009338275160799498340862630046359789166919680000e+61)); + Assert(basic_test_64bit("+1", 1)); + Assert(basic_test_64bit("1.8e308", std::numeric_limits::infinity())); + Assert(basic_test_64bit("1.797693134862315700000000000000001e308", 1.7976931348623157e308)); + Assert(basic_test_64bit("1.832312213213213232132132143451234453123412321321312e308", std::numeric_limits::infinity())); + Assert(basic_test_64bit("2e30000000000000000", std::numeric_limits::infinity())); + Assert(basic_test_64bit("2e3000", std::numeric_limits::infinity())); + Assert(basic_test_64bit("1.9e308", std::numeric_limits::infinity())); + Assert(basic_test_64bit(3e-324)); + Assert(basic_test_64bit(1.00000006e+09f)); + Assert(basic_test_64bit(4.9406564584124653e-324)); + Assert(basic_test_64bit(4.9406564584124654e-324)); + Assert(basic_test_64bit(2.2250738585072009e-308)); + Assert(basic_test_64bit(2.2250738585072014e-308)); + Assert(basic_test_64bit(1.7976931348623157e308)); + Assert(basic_test_64bit(1.7976931348623158e308)); + Assert(basic_test_64bit("4503599627370496.5", 4503599627370496.5)); + Assert(basic_test_64bit("4503599627475352.5", 4503599627475352.5)); + Assert(basic_test_64bit("4503599627475353.5", 4503599627475353.5)); + Assert(basic_test_64bit("2251799813685248.25", 2251799813685248.25)); + Assert(basic_test_64bit("1125899906842624.125", 1125899906842624.125)); + Assert(basic_test_64bit("1125899906842901.875", 1125899906842901.875)); + Assert(basic_test_64bit("2251799813685803.75", 2251799813685803.75)); + Assert(basic_test_64bit("4503599627370497.5", 4503599627370497.5)); + Assert(basic_test_64bit("45035996.273704995", 45035996.273704995)); + Assert(basic_test_64bit("45035996.273704985", 45035996.273704985)); + Assert(basic_test_64bit("0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044501477170144022721148195934182639518696390927032912960468522194496444440421538910330590478162701758282983178260792422137401728773891892910553144148156412434867599762821265346585071045737627442980259622449029037796981144446145705102663115100318287949527959668236039986479250965780342141637013812613333119898765515451440315261253813266652951306000184917766328660755595837392240989947807556594098101021612198814605258742579179000071675999344145086087205681577915435923018910334964869420614052182892431445797605163650903606514140377217442262561590244668525767372446430075513332450079650686719491377688478005309963967709758965844137894433796621993967316936280457084866613206797017728916080020698679408551343728867675409720757232455434770912461317493580281734466552734375", 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044501477170144022721148195934182639518696390927032912960468522194496444440421538910330590478162701758282983178260792422137401728773891892910553144148156412434867599762821265346585071045737627442980259622449029037796981144446145705102663115100318287949527959668236039986479250965780342141637013812613333119898765515451440315261253813266652951306000184917766328660755595837392240989947807556594098101021612198814605258742579179000071675999344145086087205681577915435923018910334964869420614052182892431445797605163650903606514140377217442262561590244668525767372446430075513332450079650686719491377688478005309963967709758965844137894433796621993967316936280457084866613206797017728916080020698679408551343728867675409720757232455434770912461317493580281734466552734375)); + Assert(basic_test_64bit("0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000022250738585072008890245868760858598876504231122409594654935248025624400092282356951787758888037591552642309780950434312085877387158357291821993020294379224223559819827501242041788969571311791082261043971979604000454897391938079198936081525613113376149842043271751033627391549782731594143828136275113838604094249464942286316695429105080201815926642134996606517803095075913058719846423906068637102005108723282784678843631944515866135041223479014792369585208321597621066375401613736583044193603714778355306682834535634005074073040135602968046375918583163124224521599262546494300836851861719422417646455137135420132217031370496583210154654068035397417906022589503023501937519773030945763173210852507299305089761582519159720757232455434770912461317493580281734466552734375", 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000022250738585072008890245868760858598876504231122409594654935248025624400092282356951787758888037591552642309780950434312085877387158357291821993020294379224223559819827501242041788969571311791082261043971979604000454897391938079198936081525613113376149842043271751033627391549782731594143828136275113838604094249464942286316695429105080201815926642134996606517803095075913058719846423906068637102005108723282784678843631944515866135041223479014792369585208321597621066375401613736583044193603714778355306682834535634005074073040135602968046375918583163124224521599262546494300836851861719422417646455137135420132217031370496583210154654068035397417906022589503023501937519773030945763173210852507299305089761582519159720757232455434770912461317493580281734466552734375)); + std::cout << std::endl; + + std::cout << "======= 32 bits " << std::endl; + Assert(basic_test_32bit("1.1754943508e-38",1.1754943508e-38f)); + Assert(basic_test_32bit("30219.0830078125",30219.0830078125f)); + Assert(basic_test_32bit("16252921.5",16252921.5f)); + Assert(basic_test_32bit("5322519.25",5322519.25f)); + Assert(basic_test_32bit("3900245.875",3900245.875f)); + Assert(basic_test_32bit("1510988.3125",1510988.3125f)); + Assert(basic_test_32bit("782262.28125",782262.28125f)); + Assert(basic_test_32bit("328381.484375",328381.484375f)); + Assert(basic_test_32bit("156782.0703125",156782.0703125f)); + Assert(basic_test_32bit("85003.24609375",85003.24609375f)); + Assert(basic_test_32bit("43827.048828125",43827.048828125f)); + Assert(basic_test_32bit("17419.6494140625",17419.6494140625f)); + Assert(basic_test_32bit("15498.36376953125",15498.36376953125f)); + Assert(basic_test_32bit("6318.580322265625",6318.580322265625f)); + Assert(basic_test_32bit("2525.2840576171875",2525.2840576171875f)); + Assert(basic_test_32bit("1370.9265747070312",1370.9265747070312f)); + Assert(basic_test_32bit("936.3702087402344",936.3702087402344f)); + Assert(basic_test_32bit("411.88682556152344",411.88682556152344f)); + Assert(basic_test_32bit("206.50310516357422",206.50310516357422f)); + Assert(basic_test_32bit("124.16878890991211",124.16878890991211f)); + Assert(basic_test_32bit("50.811574935913086",50.811574935913086f)); + Assert(basic_test_32bit("17.486443519592285",17.486443519592285f)); + Assert(basic_test_32bit("13.91745138168335",13.91745138168335f)); + Assert(basic_test_32bit("7.5464513301849365",7.5464513301849365f)); + Assert(basic_test_32bit("2.687217116355896",2.687217116355896f)); + Assert(basic_test_32bit("1.1877630352973938",1.1877630352973938f)); + Assert(basic_test_32bit("0.7622503340244293",0.7622503340244293f)); + Assert(basic_test_32bit("0.30531780421733856",0.30531780421733856f)); + Assert(basic_test_32bit("0.21791061013936996",0.21791061013936996f)); + Assert(basic_test_32bit("0.09289376810193062",0.09289376810193062f)); + Assert(basic_test_32bit("0.03706067614257336",0.03706067614257336f)); + Assert(basic_test_32bit("0.028068351559340954",0.028068351559340954f)); + Assert(basic_test_32bit("0.012114629615098238",0.012114629615098238f)); + Assert(basic_test_32bit("0.004221370676532388",0.004221370676532388f)); + Assert(basic_test_32bit("0.002153817447833717",0.002153817447833717f)); + Assert(basic_test_32bit("0.0015924838953651488",0.0015924838953651488f)); + Assert(basic_test_32bit("0.0008602388261351734",0.0008602388261351734f)); + Assert(basic_test_32bit("0.00036393293703440577",0.00036393293703440577f)); + Assert(basic_test_32bit("0.00013746770127909258",0.00013746770127909258)); + Assert(basic_test_32bit("16407.9462890625", 16407.9462890625f)); + Assert(basic_test_32bit("1.1754947011469036e-38", 1.1754947011469036e-38f)); + Assert(basic_test_32bit("7.0064923216240854e-46", 7.0064923216240854e-46f)); + Assert(basic_test_32bit("8388614.5", 8388614.5f)); + Assert(basic_test_32bit("0e9999999999999999999999999999", 0)); + Assert(basic_test_32bit("1234456789012345678901234567890e9999999999999999999999999999", std::numeric_limits::infinity())); + Assert(basic_test_32bit("4.7019774032891500318749461488889827112746622270883500860350068251e-38",4.7019774032891500318749461488889827112746622270883500860350068251e-38f)); + Assert(basic_test_32bit("3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679", 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679)); + Assert(basic_test_32bit("2.3509887016445750159374730744444913556373311135441750430175034126e-38", 2.3509887016445750159374730744444913556373311135441750430175034126e-38f)); + Assert(basic_test_32bit("+1", 1)); + Assert(basic_test_32bit("2e3000", std::numeric_limits::infinity())); + Assert(basic_test_32bit("3.5028234666e38", std::numeric_limits::infinity())); + Assert(basic_test_32bit("7.0060e-46", 0)); + Assert(basic_test_32bit(1.00000006e+09f)); + Assert(basic_test_32bit(1.4012984643e-45f)); + Assert(basic_test_32bit(1.1754942107e-38f)); + Assert(basic_test_32bit(1.1754943508e-45f)); + Assert(basic_test_32bit(3.4028234664e38f)); + Assert(basic_test_32bit(3.4028234665e38f)); + Assert(basic_test_32bit(3.4028234666e38f)); + Assert(basic_test_32bit("0.000000000000000000000000000000000000011754943508222875079687365372222456778186655567720875215087517062784172594547271728515625", 0.000000000000000000000000000000000000011754943508222875079687365372222456778186655567720875215087517062784172594547271728515625)); + Assert(basic_test_32bit("0.00000000000000000000000000000000000000000000140129846432481707092372958328991613128026194187651577175706828388979108268586060148663818836212158203125", 0.00000000000000000000000000000000000000000000140129846432481707092372958328991613128026194187651577175706828388979108268586060148663818836212158203125)); + Assert(basic_test_32bit("0.00000000000000000000000000000000000002350988561514728583455765982071533026645717985517980855365926236850006129930346077117064851336181163787841796875", 0.00000000000000000000000000000000000002350988561514728583455765982071533026645717985517980855365926236850006129930346077117064851336181163787841796875)); + Assert(basic_test_32bit("0.00000000000000000000000000000000000001175494210692441075487029444849287348827052428745893333857174530571588870475618904265502351336181163787841796875", 0.00000000000000000000000000000000000001175494210692441075487029444849287348827052428745893333857174530571588870475618904265502351336181163787841796875)); + std::cout << std::endl; + + std::cout << "All ok" << std::endl; + return EXIT_SUCCESS; +} diff --git a/tests/dtoa.c b/tests/dtoa.c new file mode 100644 index 0000000..24b9260 --- /dev/null +++ b/tests/dtoa.c @@ -0,0 +1,6203 @@ +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Please send bug reports to David M. Gay (dmg at acm dot org, + * with " at " changed at "@" and " dot " changed to "."). */ + +/* On a machine with IEEE extended-precision registers, it is + * necessary to specify double-precision (53-bit) rounding precision + * before invoking strtod or dtoa. If the machine uses (the equivalent + * of) Intel 80x87 arithmetic, the call + * _control87(PC_53, MCW_PC); + * does this with many compilers. Whether this or another call is + * appropriate depends on the compiler; for this to work, it may be + * necessary to #include "float.h" or another system-dependent header + * file. + */ + +/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. + * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.) + * + * This strtod returns a nearest machine number to the input decimal + * string (or sets errno to ERANGE). With IEEE arithmetic, ties are + * broken by the IEEE round-even rule. Otherwise ties are broken by + * biased rounding (add half and chop). + * + * Inspired loosely by William D. Clinger's paper "How to Read Floating + * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * + * 1. We only require IEEE, IBM, or VAX double-precision + * arithmetic (not IEEE double-extended). + * 2. We get by with floating-point arithmetic in a case that + * Clinger missed -- when we're computing d * 10^n + * for a small integer d and the integer n is not too + * much larger than 22 (the maximum integer k for which + * we can represent 10^k exactly), we may be able to + * compute (d*10^k) * 10^(e-k) with just one roundoff. + * 3. Rather than a bit-at-a-time adjustment of the binary + * result in the hard case, we use floating-point + * arithmetic to determine the adjustment to within + * one bit; only in really hard cases do we need to + * compute a second residual. + * 4. Because of 3., we don't need a large table of powers of 10 + * for ten-to-e (just some small tables, e.g. of 10^k + * for 0 <= k <= 22). + */ + +/* + * #define IEEE_8087 for IEEE-arithmetic machines where the least + * significant byte has the lowest address. + * #define IEEE_MC68k for IEEE-arithmetic machines where the most + * significant byte has the lowest address. + * #define Long int on machines with 32-bit ints and 64-bit longs. + * #define IBM for IBM mainframe-style floating-point arithmetic. + * #define VAX for VAX-style floating-point arithmetic (D_floating). + * #define No_leftright to omit left-right logic in fast floating-point + * computation of dtoa. This will cause dtoa modes 4 and 5 to be + * treated the same as modes 2 and 3 for some inputs. + * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 + * and strtod and dtoa should round accordingly. Unless Trust_FLT_ROUNDS + * is also #defined, fegetround() will be queried for the rounding mode. + * Note that both FLT_ROUNDS and fegetround() are specified by the C99 + * standard (and are specified to be consistent, with fesetround() + * affecting the value of FLT_ROUNDS), but that some (Linux) systems + * do not work correctly in this regard, so using fegetround() is more + * portable than using FLT_ROUNDS directly. + * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 + * and Honor_FLT_ROUNDS is not #defined. + * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines + * that use extended-precision instructions to compute rounded + * products and quotients) with IBM. + * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic + * that rounds toward +Infinity. + * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased + * rounding when the underlying floating-point arithmetic uses + * unbiased rounding. This prevent using ordinary floating-point + * arithmetic when the result could be computed with one rounding error. + * #define Inaccurate_Divide for IEEE-format with correctly rounded + * products but inaccurate quotients, e.g., for Intel i860. + * #define NO_LONG_LONG on machines that do not have a "long long" + * integer type (of >= 64 bits). On such machines, you can + * #define Just_16 to store 16 bits per 32-bit Long when doing + * high-precision integer arithmetic. Whether this speeds things + * up or slows things down depends on the machine and the number + * being converted. If long long is available and the name is + * something other than "long long", #define Llong to be the name, + * and if "unsigned Llong" does not work as an unsigned version of + * Llong, #define #ULLong to be the corresponding unsigned type. + * #define Bad_float_h if your system lacks a float.h or if it does not + * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, + * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. + * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) + * if memory is available and otherwise does something you deem + * appropriate. If MALLOC is undefined, malloc will be invoked + * directly -- and assumed always to succeed. Similarly, if you + * want something other than the system's free() to be called to + * recycle memory acquired from MALLOC, #define FREE to be the + * name of the alternate routine. (FREE or free is only called in + * pathological cases, e.g., in a dtoa call after a dtoa return in + * mode 3 with thousands of digits requested.) + * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making + * memory allocations from a private pool of memory when possible. + * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, + * unless #defined to be a different length. This default length + * suffices to get rid of MALLOC calls except for unusual cases, + * such as decimal-to-binary conversion of a very long string of + * digits. The longest string dtoa can return is about 751 bytes + * long. For conversions by strtod of strings of 800 digits and + * all dtoa conversions in single-threaded executions with 8-byte + * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte + * pointers, PRIVATE_MEM >= 7112 appears adequate. + * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK + * #defined automatically on IEEE systems. On such systems, + * when INFNAN_CHECK is #defined, strtod checks + * for Infinity and NaN (case insensitively). On some systems + * (e.g., some HP systems), it may be necessary to #define NAN_WORD0 + * appropriately -- to the most significant word of a quiet NaN. + * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) + * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, + * strtod also accepts (case insensitively) strings of the form + * NaN(x), where x is a string of hexadecimal digits and spaces; + * if there is only one string of hexadecimal digits, it is taken + * for the 52 fraction bits of the resulting NaN; if there are two + * or more strings of hex digits, the first is for the high 20 bits, + * the second and subsequent for the low 32 bits, with intervening + * white space ignored; but if this results in none of the 52 + * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 + * and NAN_WORD1 are used instead. + * #define MULTIPLE_THREADS if the system offers preemptively scheduled + * multiple threads. In this case, you must provide (or suitably + * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed + * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed + * in pow5mult, ensures lazy evaluation of only one copy of high + * powers of 5; omitting this lock would introduce a small + * probability of wasting memory, but would otherwise be harmless.) + * You must also invoke freedtoa(s) to free the value s returned by + * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. + + * When MULTIPLE_THREADS is #defined, this source file provides + * void set_max_dtoa_threads(unsigned int n); + * and expects + * unsigned int dtoa_get_threadno(void); + * to be available (possibly provided by + * #define dtoa_get_threadno omp_get_thread_num + * if OpenMP is in use or by + * #define dtoa_get_threadno pthread_self + * if Pthreads is in use), to return the current thread number. + * If set_max_dtoa_threads(n) was called and the current thread + * number is k with k < n, then calls on ACQUIRE_DTOA_LOCK(...) and + * FREE_DTOA_LOCK(...) are avoided; instead each thread with thread + * number < n has a separate copy of relevant data structures. + * After set_max_dtoa_threads(n), a call set_max_dtoa_threads(m) + * with m <= n has has no effect, but a call with m > n is honored. + * Such a call invokes REALLOC (assumed to be "realloc" if REALLOC + * is not #defined) to extend the size of the relevant array. + + * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that + * avoids underflows on inputs whose result does not underflow. + * If you #define NO_IEEE_Scale on a machine that uses IEEE-format + * floating-point numbers and flushes underflows to zero rather + * than implementing gradual underflow, then you must also #define + * Sudden_Underflow. + * #define USE_LOCALE to use the current locale's decimal_point value. + * #define SET_INEXACT if IEEE arithmetic is being used and extra + * computation should be done to set the inexact flag when the + * result is inexact and avoid setting inexact when the result + * is exact. In this case, dtoa.c must be compiled in + * an environment, perhaps provided by #include "dtoa.c" in a + * suitable wrapper, that defines two functions, + * int get_inexact(void); + * void clear_inexact(void); + * such that get_inexact() returns a nonzero value if the + * inexact bit is already set, and clear_inexact() sets the + * inexact bit to 0. When SET_INEXACT is #defined, strtod + * also does extra computations to set the underflow and overflow + * flags when appropriate (i.e., when the result is tiny and + * inexact or when it is a numeric value rounded to +-infinity). + * #define NO_ERRNO if strtod should not assign errno = ERANGE when + * the result overflows to +-Infinity or underflows to 0. + * When errno should be assigned, under seemingly rare conditions + * it may be necessary to define Set_errno(x) suitably, e.g., in + * a local errno.h, such as + * #include + * #define Set_errno(x) _set_errno(x) + * #define NO_HEX_FP to omit recognition of hexadecimal floating-point + * values by strtod. + * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now) + * to disable logic for "fast" testing of very long input strings + * to strtod. This testing proceeds by initially truncating the + * input string, then if necessary comparing the whole string with + * a decimal expansion to decide close cases. This logic is only + * used for input more than STRTOD_DIGLIM digits long (default 40). + */ + +#ifndef Long +#define Long int +#endif +#ifndef ULong +typedef unsigned Long ULong; +#endif + +#ifdef DEBUG +#include +#include "stdio.h" +#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} +#define Debug(x) x +int dtoa_stats[7]; /* strtod_{64,96,bigcomp},dtoa_{exact,64,96,bigcomp} */ +#else +//#define assert(x) /*nothing*/ +#define Debug(x) /*nothing*/ +#endif + +#include "stdlib.h" +#include "string.h" + +#ifdef USE_LOCALE +#include "locale.h" +#endif + +#ifdef Honor_FLT_ROUNDS +#ifndef Trust_FLT_ROUNDS +#include +#endif +#endif + +#ifdef __cplusplus +extern "C" { +#endif +#ifdef MALLOC +extern void *MALLOC(size_t); +#else +#define MALLOC malloc +#endif + +#ifdef REALLOC +extern void *REALLOC(void*,size_t); +#else +#define REALLOC realloc +#endif + +#ifndef FREE +#define FREE free +#endif + +#ifdef __cplusplus + } +#endif + +#ifndef Omit_Private_Memory +#ifndef PRIVATE_MEM +#define PRIVATE_MEM 2304 +#endif +#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) +static double private_mem[PRIVATE_mem], *pmem_next = private_mem; +#endif + +#undef IEEE_Arith +#undef Avoid_Underflow +#ifdef IEEE_MC68k +#define IEEE_Arith +#endif +#ifdef IEEE_8087 +#define IEEE_Arith +#endif + +#ifdef IEEE_Arith +#ifndef NO_INFNAN_CHECK +#undef INFNAN_CHECK +#define INFNAN_CHECK +#endif +#else +#undef INFNAN_CHECK +#define NO_STRTOD_BIGCOMP +#endif + +#include "errno.h" + +#ifdef NO_ERRNO /*{*/ +#undef Set_errno +#define Set_errno(x) +#else +#ifndef Set_errno +#define Set_errno(x) errno = x +#endif +#endif /*}*/ + +#ifdef Bad_float_h + +#ifdef IEEE_Arith +#define DBL_DIG 15 +#define DBL_MAX_10_EXP 308 +#define DBL_MAX_EXP 1024 +#define FLT_RADIX 2 +#endif /*IEEE_Arith*/ + +#ifdef IBM +#define DBL_DIG 16 +#define DBL_MAX_10_EXP 75 +#define DBL_MAX_EXP 63 +#define FLT_RADIX 16 +#define DBL_MAX 7.2370055773322621e+75 +#endif + +#ifdef VAX +#define DBL_DIG 16 +#define DBL_MAX_10_EXP 38 +#define DBL_MAX_EXP 127 +#define FLT_RADIX 2 +#define DBL_MAX 1.7014118346046923e+38 +#endif + +#ifndef LONG_MAX +#define LONG_MAX 2147483647 +#endif + +#else /* ifndef Bad_float_h */ +#include "float.h" +#endif /* Bad_float_h */ + +#ifndef __MATH_H__ +#include "math.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 +Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. +#endif + +#undef USE_BF96 + +#ifdef NO_LONG_LONG /*{{*/ +#undef ULLong +#ifdef Just_16 +#undef Pack_32 +/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. + * This makes some inner loops simpler and sometimes saves work + * during multiplications, but it often seems to make things slightly + * slower. Hence the default is now to store 32 bits per Long. + */ +#endif +#else /*}{ long long available */ +#ifndef Llong +#define Llong long long +#endif +#ifndef ULLong +#define ULLong unsigned Llong +#endif +#ifndef NO_BF96 /*{*/ +#define USE_BF96 + +#ifdef SET_INEXACT +#define dtoa_divmax 27 +#else +int dtoa_divmax = 2; /* Permit experimenting: on some systems, 64-bit integer */ + /* division is slow enough that we may sometimes want to */ + /* avoid using it. We assume (but do not check) that */ + /* dtoa_divmax <= 27.*/ +#endif + +typedef struct BF96 { /* Normalized 96-bit software floating point numbers */ + unsigned int b0,b1,b2; /* b0 = most significant, binary point just to its left */ + int e; /* number represented = b * 2^e, with .5 <= b < 1 */ + } BF96; + + static BF96 pten[667] = { + { 0xeef453d6, 0x923bd65a, 0x113faa29, -1136 }, + { 0x9558b466, 0x1b6565f8, 0x4ac7ca59, -1132 }, + { 0xbaaee17f, 0xa23ebf76, 0x5d79bcf0, -1129 }, + { 0xe95a99df, 0x8ace6f53, 0xf4d82c2c, -1126 }, + { 0x91d8a02b, 0xb6c10594, 0x79071b9b, -1122 }, + { 0xb64ec836, 0xa47146f9, 0x9748e282, -1119 }, + { 0xe3e27a44, 0x4d8d98b7, 0xfd1b1b23, -1116 }, + { 0x8e6d8c6a, 0xb0787f72, 0xfe30f0f5, -1112 }, + { 0xb208ef85, 0x5c969f4f, 0xbdbd2d33, -1109 }, + { 0xde8b2b66, 0xb3bc4723, 0xad2c7880, -1106 }, + { 0x8b16fb20, 0x3055ac76, 0x4c3bcb50, -1102 }, + { 0xaddcb9e8, 0x3c6b1793, 0xdf4abe24, -1099 }, + { 0xd953e862, 0x4b85dd78, 0xd71d6dad, -1096 }, + { 0x87d4713d, 0x6f33aa6b, 0x8672648c, -1092 }, + { 0xa9c98d8c, 0xcb009506, 0x680efdaf, -1089 }, + { 0xd43bf0ef, 0xfdc0ba48, 0x0212bd1b, -1086 }, + { 0x84a57695, 0xfe98746d, 0x014bb630, -1082 }, + { 0xa5ced43b, 0x7e3e9188, 0x419ea3bd, -1079 }, + { 0xcf42894a, 0x5dce35ea, 0x52064cac, -1076 }, + { 0x818995ce, 0x7aa0e1b2, 0x7343efeb, -1072 }, + { 0xa1ebfb42, 0x19491a1f, 0x1014ebe6, -1069 }, + { 0xca66fa12, 0x9f9b60a6, 0xd41a26e0, -1066 }, + { 0xfd00b897, 0x478238d0, 0x8920b098, -1063 }, + { 0x9e20735e, 0x8cb16382, 0x55b46e5f, -1059 }, + { 0xc5a89036, 0x2fddbc62, 0xeb2189f7, -1056 }, + { 0xf712b443, 0xbbd52b7b, 0xa5e9ec75, -1053 }, + { 0x9a6bb0aa, 0x55653b2d, 0x47b233c9, -1049 }, + { 0xc1069cd4, 0xeabe89f8, 0x999ec0bb, -1046 }, + { 0xf148440a, 0x256e2c76, 0xc00670ea, -1043 }, + { 0x96cd2a86, 0x5764dbca, 0x38040692, -1039 }, + { 0xbc807527, 0xed3e12bc, 0xc6050837, -1036 }, + { 0xeba09271, 0xe88d976b, 0xf7864a44, -1033 }, + { 0x93445b87, 0x31587ea3, 0x7ab3ee6a, -1029 }, + { 0xb8157268, 0xfdae9e4c, 0x5960ea05, -1026 }, + { 0xe61acf03, 0x3d1a45df, 0x6fb92487, -1023 }, + { 0x8fd0c162, 0x06306bab, 0xa5d3b6d4, -1019 }, + { 0xb3c4f1ba, 0x87bc8696, 0x8f48a489, -1016 }, + { 0xe0b62e29, 0x29aba83c, 0x331acdab, -1013 }, + { 0x8c71dcd9, 0xba0b4925, 0x9ff0c08b, -1009 }, + { 0xaf8e5410, 0x288e1b6f, 0x07ecf0ae, -1006 }, + { 0xdb71e914, 0x32b1a24a, 0xc9e82cd9, -1003 }, + { 0x892731ac, 0x9faf056e, 0xbe311c08, -999 }, + { 0xab70fe17, 0xc79ac6ca, 0x6dbd630a, -996 }, + { 0xd64d3d9d, 0xb981787d, 0x092cbbcc, -993 }, + { 0x85f04682, 0x93f0eb4e, 0x25bbf560, -989 }, + { 0xa76c5823, 0x38ed2621, 0xaf2af2b8, -986 }, + { 0xd1476e2c, 0x07286faa, 0x1af5af66, -983 }, + { 0x82cca4db, 0x847945ca, 0x50d98d9f, -979 }, + { 0xa37fce12, 0x6597973c, 0xe50ff107, -976 }, + { 0xcc5fc196, 0xfefd7d0c, 0x1e53ed49, -973 }, + { 0xff77b1fc, 0xbebcdc4f, 0x25e8e89c, -970 }, + { 0x9faacf3d, 0xf73609b1, 0x77b19161, -966 }, + { 0xc795830d, 0x75038c1d, 0xd59df5b9, -963 }, + { 0xf97ae3d0, 0xd2446f25, 0x4b057328, -960 }, + { 0x9becce62, 0x836ac577, 0x4ee367f9, -956 }, + { 0xc2e801fb, 0x244576d5, 0x229c41f7, -953 }, + { 0xf3a20279, 0xed56d48a, 0x6b435275, -950 }, + { 0x9845418c, 0x345644d6, 0x830a1389, -946 }, + { 0xbe5691ef, 0x416bd60c, 0x23cc986b, -943 }, + { 0xedec366b, 0x11c6cb8f, 0x2cbfbe86, -940 }, + { 0x94b3a202, 0xeb1c3f39, 0x7bf7d714, -936 }, + { 0xb9e08a83, 0xa5e34f07, 0xdaf5ccd9, -933 }, + { 0xe858ad24, 0x8f5c22c9, 0xd1b3400f, -930 }, + { 0x91376c36, 0xd99995be, 0x23100809, -926 }, + { 0xb5854744, 0x8ffffb2d, 0xabd40a0c, -923 }, + { 0xe2e69915, 0xb3fff9f9, 0x16c90c8f, -920 }, + { 0x8dd01fad, 0x907ffc3b, 0xae3da7d9, -916 }, + { 0xb1442798, 0xf49ffb4a, 0x99cd11cf, -913 }, + { 0xdd95317f, 0x31c7fa1d, 0x40405643, -910 }, + { 0x8a7d3eef, 0x7f1cfc52, 0x482835ea, -906 }, + { 0xad1c8eab, 0x5ee43b66, 0xda324365, -903 }, + { 0xd863b256, 0x369d4a40, 0x90bed43e, -900 }, + { 0x873e4f75, 0xe2224e68, 0x5a7744a6, -896 }, + { 0xa90de353, 0x5aaae202, 0x711515d0, -893 }, + { 0xd3515c28, 0x31559a83, 0x0d5a5b44, -890 }, + { 0x8412d999, 0x1ed58091, 0xe858790a, -886 }, + { 0xa5178fff, 0x668ae0b6, 0x626e974d, -883 }, + { 0xce5d73ff, 0x402d98e3, 0xfb0a3d21, -880 }, + { 0x80fa687f, 0x881c7f8e, 0x7ce66634, -876 }, + { 0xa139029f, 0x6a239f72, 0x1c1fffc1, -873 }, + { 0xc9874347, 0x44ac874e, 0xa327ffb2, -870 }, + { 0xfbe91419, 0x15d7a922, 0x4bf1ff9f, -867 }, + { 0x9d71ac8f, 0xada6c9b5, 0x6f773fc3, -863 }, + { 0xc4ce17b3, 0x99107c22, 0xcb550fb4, -860 }, + { 0xf6019da0, 0x7f549b2b, 0x7e2a53a1, -857 }, + { 0x99c10284, 0x4f94e0fb, 0x2eda7444, -853 }, + { 0xc0314325, 0x637a1939, 0xfa911155, -850 }, + { 0xf03d93ee, 0xbc589f88, 0x793555ab, -847 }, + { 0x96267c75, 0x35b763b5, 0x4bc1558b, -843 }, + { 0xbbb01b92, 0x83253ca2, 0x9eb1aaed, -840 }, + { 0xea9c2277, 0x23ee8bcb, 0x465e15a9, -837 }, + { 0x92a1958a, 0x7675175f, 0x0bfacd89, -833 }, + { 0xb749faed, 0x14125d36, 0xcef980ec, -830 }, + { 0xe51c79a8, 0x5916f484, 0x82b7e127, -827 }, + { 0x8f31cc09, 0x37ae58d2, 0xd1b2ecb8, -823 }, + { 0xb2fe3f0b, 0x8599ef07, 0x861fa7e6, -820 }, + { 0xdfbdcece, 0x67006ac9, 0x67a791e0, -817 }, + { 0x8bd6a141, 0x006042bd, 0xe0c8bb2c, -813 }, + { 0xaecc4991, 0x4078536d, 0x58fae9f7, -810 }, + { 0xda7f5bf5, 0x90966848, 0xaf39a475, -807 }, + { 0x888f9979, 0x7a5e012d, 0x6d8406c9, -803 }, + { 0xaab37fd7, 0xd8f58178, 0xc8e5087b, -800 }, + { 0xd5605fcd, 0xcf32e1d6, 0xfb1e4a9a, -797 }, + { 0x855c3be0, 0xa17fcd26, 0x5cf2eea0, -793 }, + { 0xa6b34ad8, 0xc9dfc06f, 0xf42faa48, -790 }, + { 0xd0601d8e, 0xfc57b08b, 0xf13b94da, -787 }, + { 0x823c1279, 0x5db6ce57, 0x76c53d08, -783 }, + { 0xa2cb1717, 0xb52481ed, 0x54768c4b, -780 }, + { 0xcb7ddcdd, 0xa26da268, 0xa9942f5d, -777 }, + { 0xfe5d5415, 0x0b090b02, 0xd3f93b35, -774 }, + { 0x9efa548d, 0x26e5a6e1, 0xc47bc501, -770 }, + { 0xc6b8e9b0, 0x709f109a, 0x359ab641, -767 }, + { 0xf867241c, 0x8cc6d4c0, 0xc30163d2, -764 }, + { 0x9b407691, 0xd7fc44f8, 0x79e0de63, -760 }, + { 0xc2109436, 0x4dfb5636, 0x985915fc, -757 }, + { 0xf294b943, 0xe17a2bc4, 0x3e6f5b7b, -754 }, + { 0x979cf3ca, 0x6cec5b5a, 0xa705992c, -750 }, + { 0xbd8430bd, 0x08277231, 0x50c6ff78, -747 }, + { 0xece53cec, 0x4a314ebd, 0xa4f8bf56, -744 }, + { 0x940f4613, 0xae5ed136, 0x871b7795, -740 }, + { 0xb9131798, 0x99f68584, 0x28e2557b, -737 }, + { 0xe757dd7e, 0xc07426e5, 0x331aeada, -734 }, + { 0x9096ea6f, 0x3848984f, 0x3ff0d2c8, -730 }, + { 0xb4bca50b, 0x065abe63, 0x0fed077a, -727 }, + { 0xe1ebce4d, 0xc7f16dfb, 0xd3e84959, -724 }, + { 0x8d3360f0, 0x9cf6e4bd, 0x64712dd7, -720 }, + { 0xb080392c, 0xc4349dec, 0xbd8d794d, -717 }, + { 0xdca04777, 0xf541c567, 0xecf0d7a0, -714 }, + { 0x89e42caa, 0xf9491b60, 0xf41686c4, -710 }, + { 0xac5d37d5, 0xb79b6239, 0x311c2875, -707 }, + { 0xd77485cb, 0x25823ac7, 0x7d633293, -704 }, + { 0x86a8d39e, 0xf77164bc, 0xae5dff9c, -700 }, + { 0xa8530886, 0xb54dbdeb, 0xd9f57f83, -697 }, + { 0xd267caa8, 0x62a12d66, 0xd072df63, -694 }, + { 0x8380dea9, 0x3da4bc60, 0x4247cb9e, -690 }, + { 0xa4611653, 0x8d0deb78, 0x52d9be85, -687 }, + { 0xcd795be8, 0x70516656, 0x67902e27, -684 }, + { 0x806bd971, 0x4632dff6, 0x00ba1cd8, -680 }, + { 0xa086cfcd, 0x97bf97f3, 0x80e8a40e, -677 }, + { 0xc8a883c0, 0xfdaf7df0, 0x6122cd12, -674 }, + { 0xfad2a4b1, 0x3d1b5d6c, 0x796b8057, -671 }, + { 0x9cc3a6ee, 0xc6311a63, 0xcbe33036, -667 }, + { 0xc3f490aa, 0x77bd60fc, 0xbedbfc44, -664 }, + { 0xf4f1b4d5, 0x15acb93b, 0xee92fb55, -661 }, + { 0x99171105, 0x2d8bf3c5, 0x751bdd15, -657 }, + { 0xbf5cd546, 0x78eef0b6, 0xd262d45a, -654 }, + { 0xef340a98, 0x172aace4, 0x86fb8971, -651 }, + { 0x9580869f, 0x0e7aac0e, 0xd45d35e6, -647 }, + { 0xbae0a846, 0xd2195712, 0x89748360, -644 }, + { 0xe998d258, 0x869facd7, 0x2bd1a438, -641 }, + { 0x91ff8377, 0x5423cc06, 0x7b6306a3, -637 }, + { 0xb67f6455, 0x292cbf08, 0x1a3bc84c, -634 }, + { 0xe41f3d6a, 0x7377eeca, 0x20caba5f, -631 }, + { 0x8e938662, 0x882af53e, 0x547eb47b, -627 }, + { 0xb23867fb, 0x2a35b28d, 0xe99e619a, -624 }, + { 0xdec681f9, 0xf4c31f31, 0x6405fa00, -621 }, + { 0x8b3c113c, 0x38f9f37e, 0xde83bc40, -617 }, + { 0xae0b158b, 0x4738705e, 0x9624ab50, -614 }, + { 0xd98ddaee, 0x19068c76, 0x3badd624, -611 }, + { 0x87f8a8d4, 0xcfa417c9, 0xe54ca5d7, -607 }, + { 0xa9f6d30a, 0x038d1dbc, 0x5e9fcf4c, -604 }, + { 0xd47487cc, 0x8470652b, 0x7647c320, -601 }, + { 0x84c8d4df, 0xd2c63f3b, 0x29ecd9f4, -597 }, + { 0xa5fb0a17, 0xc777cf09, 0xf4681071, -594 }, + { 0xcf79cc9d, 0xb955c2cc, 0x7182148d, -591 }, + { 0x81ac1fe2, 0x93d599bf, 0xc6f14cd8, -587 }, + { 0xa21727db, 0x38cb002f, 0xb8ada00e, -584 }, + { 0xca9cf1d2, 0x06fdc03b, 0xa6d90811, -581 }, + { 0xfd442e46, 0x88bd304a, 0x908f4a16, -578 }, + { 0x9e4a9cec, 0x15763e2e, 0x9a598e4e, -574 }, + { 0xc5dd4427, 0x1ad3cdba, 0x40eff1e1, -571 }, + { 0xf7549530, 0xe188c128, 0xd12bee59, -568 }, + { 0x9a94dd3e, 0x8cf578b9, 0x82bb74f8, -564 }, + { 0xc13a148e, 0x3032d6e7, 0xe36a5236, -561 }, + { 0xf18899b1, 0xbc3f8ca1, 0xdc44e6c3, -558 }, + { 0x96f5600f, 0x15a7b7e5, 0x29ab103a, -554 }, + { 0xbcb2b812, 0xdb11a5de, 0x7415d448, -551 }, + { 0xebdf6617, 0x91d60f56, 0x111b495b, -548 }, + { 0x936b9fce, 0xbb25c995, 0xcab10dd9, -544 }, + { 0xb84687c2, 0x69ef3bfb, 0x3d5d514f, -541 }, + { 0xe65829b3, 0x046b0afa, 0x0cb4a5a3, -538 }, + { 0x8ff71a0f, 0xe2c2e6dc, 0x47f0e785, -534 }, + { 0xb3f4e093, 0xdb73a093, 0x59ed2167, -531 }, + { 0xe0f218b8, 0xd25088b8, 0x306869c1, -528 }, + { 0x8c974f73, 0x83725573, 0x1e414218, -524 }, + { 0xafbd2350, 0x644eeacf, 0xe5d1929e, -521 }, + { 0xdbac6c24, 0x7d62a583, 0xdf45f746, -518 }, + { 0x894bc396, 0xce5da772, 0x6b8bba8c, -514 }, + { 0xab9eb47c, 0x81f5114f, 0x066ea92f, -511 }, + { 0xd686619b, 0xa27255a2, 0xc80a537b, -508 }, + { 0x8613fd01, 0x45877585, 0xbd06742c, -504 }, + { 0xa798fc41, 0x96e952e7, 0x2c481138, -501 }, + { 0xd17f3b51, 0xfca3a7a0, 0xf75a1586, -498 }, + { 0x82ef8513, 0x3de648c4, 0x9a984d73, -494 }, + { 0xa3ab6658, 0x0d5fdaf5, 0xc13e60d0, -491 }, + { 0xcc963fee, 0x10b7d1b3, 0x318df905, -488 }, + { 0xffbbcfe9, 0x94e5c61f, 0xfdf17746, -485 }, + { 0x9fd561f1, 0xfd0f9bd3, 0xfeb6ea8b, -481 }, + { 0xc7caba6e, 0x7c5382c8, 0xfe64a52e, -478 }, + { 0xf9bd690a, 0x1b68637b, 0x3dfdce7a, -475 }, + { 0x9c1661a6, 0x51213e2d, 0x06bea10c, -471 }, + { 0xc31bfa0f, 0xe5698db8, 0x486e494f, -468 }, + { 0xf3e2f893, 0xdec3f126, 0x5a89dba3, -465 }, + { 0x986ddb5c, 0x6b3a76b7, 0xf8962946, -461 }, + { 0xbe895233, 0x86091465, 0xf6bbb397, -458 }, + { 0xee2ba6c0, 0x678b597f, 0x746aa07d, -455 }, + { 0x94db4838, 0x40b717ef, 0xa8c2a44e, -451 }, + { 0xba121a46, 0x50e4ddeb, 0x92f34d62, -448 }, + { 0xe896a0d7, 0xe51e1566, 0x77b020ba, -445 }, + { 0x915e2486, 0xef32cd60, 0x0ace1474, -441 }, + { 0xb5b5ada8, 0xaaff80b8, 0x0d819992, -438 }, + { 0xe3231912, 0xd5bf60e6, 0x10e1fff6, -435 }, + { 0x8df5efab, 0xc5979c8f, 0xca8d3ffa, -431 }, + { 0xb1736b96, 0xb6fd83b3, 0xbd308ff8, -428 }, + { 0xddd0467c, 0x64bce4a0, 0xac7cb3f6, -425 }, + { 0x8aa22c0d, 0xbef60ee4, 0x6bcdf07a, -421 }, + { 0xad4ab711, 0x2eb3929d, 0x86c16c98, -418 }, + { 0xd89d64d5, 0x7a607744, 0xe871c7bf, -415 }, + { 0x87625f05, 0x6c7c4a8b, 0x11471cd7, -411 }, + { 0xa93af6c6, 0xc79b5d2d, 0xd598e40d, -408 }, + { 0xd389b478, 0x79823479, 0x4aff1d10, -405 }, + { 0x843610cb, 0x4bf160cb, 0xcedf722a, -401 }, + { 0xa54394fe, 0x1eedb8fe, 0xc2974eb4, -398 }, + { 0xce947a3d, 0xa6a9273e, 0x733d2262, -395 }, + { 0x811ccc66, 0x8829b887, 0x0806357d, -391 }, + { 0xa163ff80, 0x2a3426a8, 0xca07c2dc, -388 }, + { 0xc9bcff60, 0x34c13052, 0xfc89b393, -385 }, + { 0xfc2c3f38, 0x41f17c67, 0xbbac2078, -382 }, + { 0x9d9ba783, 0x2936edc0, 0xd54b944b, -378 }, + { 0xc5029163, 0xf384a931, 0x0a9e795e, -375 }, + { 0xf64335bc, 0xf065d37d, 0x4d4617b5, -372 }, + { 0x99ea0196, 0x163fa42e, 0x504bced1, -368 }, + { 0xc06481fb, 0x9bcf8d39, 0xe45ec286, -365 }, + { 0xf07da27a, 0x82c37088, 0x5d767327, -362 }, + { 0x964e858c, 0x91ba2655, 0x3a6a07f8, -358 }, + { 0xbbe226ef, 0xb628afea, 0x890489f7, -355 }, + { 0xeadab0ab, 0xa3b2dbe5, 0x2b45ac74, -352 }, + { 0x92c8ae6b, 0x464fc96f, 0x3b0b8bc9, -348 }, + { 0xb77ada06, 0x17e3bbcb, 0x09ce6ebb, -345 }, + { 0xe5599087, 0x9ddcaabd, 0xcc420a6a, -342 }, + { 0x8f57fa54, 0xc2a9eab6, 0x9fa94682, -338 }, + { 0xb32df8e9, 0xf3546564, 0x47939822, -335 }, + { 0xdff97724, 0x70297ebd, 0x59787e2b, -332 }, + { 0x8bfbea76, 0xc619ef36, 0x57eb4edb, -328 }, + { 0xaefae514, 0x77a06b03, 0xede62292, -325 }, + { 0xdab99e59, 0x958885c4, 0xe95fab36, -322 }, + { 0x88b402f7, 0xfd75539b, 0x11dbcb02, -318 }, + { 0xaae103b5, 0xfcd2a881, 0xd652bdc2, -315 }, + { 0xd59944a3, 0x7c0752a2, 0x4be76d33, -312 }, + { 0x857fcae6, 0x2d8493a5, 0x6f70a440, -308 }, + { 0xa6dfbd9f, 0xb8e5b88e, 0xcb4ccd50, -305 }, + { 0xd097ad07, 0xa71f26b2, 0x7e2000a4, -302 }, + { 0x825ecc24, 0xc873782f, 0x8ed40066, -298 }, + { 0xa2f67f2d, 0xfa90563b, 0x72890080, -295 }, + { 0xcbb41ef9, 0x79346bca, 0x4f2b40a0, -292 }, + { 0xfea126b7, 0xd78186bc, 0xe2f610c8, -289 }, + { 0x9f24b832, 0xe6b0f436, 0x0dd9ca7d, -285 }, + { 0xc6ede63f, 0xa05d3143, 0x91503d1c, -282 }, + { 0xf8a95fcf, 0x88747d94, 0x75a44c63, -279 }, + { 0x9b69dbe1, 0xb548ce7c, 0xc986afbe, -275 }, + { 0xc24452da, 0x229b021b, 0xfbe85bad, -272 }, + { 0xf2d56790, 0xab41c2a2, 0xfae27299, -269 }, + { 0x97c560ba, 0x6b0919a5, 0xdccd879f, -265 }, + { 0xbdb6b8e9, 0x05cb600f, 0x5400e987, -262 }, + { 0xed246723, 0x473e3813, 0x290123e9, -259 }, + { 0x9436c076, 0x0c86e30b, 0xf9a0b672, -255 }, + { 0xb9447093, 0x8fa89bce, 0xf808e40e, -252 }, + { 0xe7958cb8, 0x7392c2c2, 0xb60b1d12, -249 }, + { 0x90bd77f3, 0x483bb9b9, 0xb1c6f22b, -245 }, + { 0xb4ecd5f0, 0x1a4aa828, 0x1e38aeb6, -242 }, + { 0xe2280b6c, 0x20dd5232, 0x25c6da63, -239 }, + { 0x8d590723, 0x948a535f, 0x579c487e, -235 }, + { 0xb0af48ec, 0x79ace837, 0x2d835a9d, -232 }, + { 0xdcdb1b27, 0x98182244, 0xf8e43145, -229 }, + { 0x8a08f0f8, 0xbf0f156b, 0x1b8e9ecb, -225 }, + { 0xac8b2d36, 0xeed2dac5, 0xe272467e, -222 }, + { 0xd7adf884, 0xaa879177, 0x5b0ed81d, -219 }, + { 0x86ccbb52, 0xea94baea, 0x98e94712, -215 }, + { 0xa87fea27, 0xa539e9a5, 0x3f2398d7, -212 }, + { 0xd29fe4b1, 0x8e88640e, 0x8eec7f0d, -209 }, + { 0x83a3eeee, 0xf9153e89, 0x1953cf68, -205 }, + { 0xa48ceaaa, 0xb75a8e2b, 0x5fa8c342, -202 }, + { 0xcdb02555, 0x653131b6, 0x3792f412, -199 }, + { 0x808e1755, 0x5f3ebf11, 0xe2bbd88b, -195 }, + { 0xa0b19d2a, 0xb70e6ed6, 0x5b6aceae, -192 }, + { 0xc8de0475, 0x64d20a8b, 0xf245825a, -189 }, + { 0xfb158592, 0xbe068d2e, 0xeed6e2f0, -186 }, + { 0x9ced737b, 0xb6c4183d, 0x55464dd6, -182 }, + { 0xc428d05a, 0xa4751e4c, 0xaa97e14c, -179 }, + { 0xf5330471, 0x4d9265df, 0xd53dd99f, -176 }, + { 0x993fe2c6, 0xd07b7fab, 0xe546a803, -172 }, + { 0xbf8fdb78, 0x849a5f96, 0xde985204, -169 }, + { 0xef73d256, 0xa5c0f77c, 0x963e6685, -166 }, + { 0x95a86376, 0x27989aad, 0xdde70013, -162 }, + { 0xbb127c53, 0xb17ec159, 0x5560c018, -159 }, + { 0xe9d71b68, 0x9dde71af, 0xaab8f01e, -156 }, + { 0x92267121, 0x62ab070d, 0xcab39613, -152 }, + { 0xb6b00d69, 0xbb55c8d1, 0x3d607b97, -149 }, + { 0xe45c10c4, 0x2a2b3b05, 0x8cb89a7d, -146 }, + { 0x8eb98a7a, 0x9a5b04e3, 0x77f3608e, -142 }, + { 0xb267ed19, 0x40f1c61c, 0x55f038b2, -139 }, + { 0xdf01e85f, 0x912e37a3, 0x6b6c46de, -136 }, + { 0x8b61313b, 0xbabce2c6, 0x2323ac4b, -132 }, + { 0xae397d8a, 0xa96c1b77, 0xabec975e, -129 }, + { 0xd9c7dced, 0x53c72255, 0x96e7bd35, -126 }, + { 0x881cea14, 0x545c7575, 0x7e50d641, -122 }, + { 0xaa242499, 0x697392d2, 0xdde50bd1, -119 }, + { 0xd4ad2dbf, 0xc3d07787, 0x955e4ec6, -116 }, + { 0x84ec3c97, 0xda624ab4, 0xbd5af13b, -112 }, + { 0xa6274bbd, 0xd0fadd61, 0xecb1ad8a, -109 }, + { 0xcfb11ead, 0x453994ba, 0x67de18ed, -106 }, + { 0x81ceb32c, 0x4b43fcf4, 0x80eacf94, -102 }, + { 0xa2425ff7, 0x5e14fc31, 0xa1258379, -99 }, + { 0xcad2f7f5, 0x359a3b3e, 0x096ee458, -96 }, + { 0xfd87b5f2, 0x8300ca0d, 0x8bca9d6e, -93 }, + { 0x9e74d1b7, 0x91e07e48, 0x775ea264, -89 }, + { 0xc6120625, 0x76589dda, 0x95364afe, -86 }, + { 0xf79687ae, 0xd3eec551, 0x3a83ddbd, -83 }, + { 0x9abe14cd, 0x44753b52, 0xc4926a96, -79 }, + { 0xc16d9a00, 0x95928a27, 0x75b7053c, -76 }, + { 0xf1c90080, 0xbaf72cb1, 0x5324c68b, -73 }, + { 0x971da050, 0x74da7bee, 0xd3f6fc16, -69 }, + { 0xbce50864, 0x92111aea, 0x88f4bb1c, -66 }, + { 0xec1e4a7d, 0xb69561a5, 0x2b31e9e3, -63 }, + { 0x9392ee8e, 0x921d5d07, 0x3aff322e, -59 }, + { 0xb877aa32, 0x36a4b449, 0x09befeb9, -56 }, + { 0xe69594be, 0xc44de15b, 0x4c2ebe68, -53 }, + { 0x901d7cf7, 0x3ab0acd9, 0x0f9d3701, -49 }, + { 0xb424dc35, 0x095cd80f, 0x538484c1, -46 }, + { 0xe12e1342, 0x4bb40e13, 0x2865a5f2, -43 }, + { 0x8cbccc09, 0x6f5088cb, 0xf93f87b7, -39 }, + { 0xafebff0b, 0xcb24aafe, 0xf78f69a5, -36 }, + { 0xdbe6fece, 0xbdedd5be, 0xb573440e, -33 }, + { 0x89705f41, 0x36b4a597, 0x31680a88, -29 }, + { 0xabcc7711, 0x8461cefc, 0xfdc20d2b, -26 }, + { 0xd6bf94d5, 0xe57a42bc, 0x3d329076, -23 }, + { 0x8637bd05, 0xaf6c69b5, 0xa63f9a49, -19 }, + { 0xa7c5ac47, 0x1b478423, 0x0fcf80dc, -16 }, + { 0xd1b71758, 0xe219652b, 0xd3c36113, -13 }, + { 0x83126e97, 0x8d4fdf3b, 0x645a1cac, -9 }, + { 0xa3d70a3d, 0x70a3d70a, 0x3d70a3d7, -6 }, + { 0xcccccccc, 0xcccccccc, 0xcccccccc, -3 }, + { 0x80000000, 0x00000000, 0x00000000, 1 }, + { 0xa0000000, 0x00000000, 0x00000000, 4 }, + { 0xc8000000, 0x00000000, 0x00000000, 7 }, + { 0xfa000000, 0x00000000, 0x00000000, 10 }, + { 0x9c400000, 0x00000000, 0x00000000, 14 }, + { 0xc3500000, 0x00000000, 0x00000000, 17 }, + { 0xf4240000, 0x00000000, 0x00000000, 20 }, + { 0x98968000, 0x00000000, 0x00000000, 24 }, + { 0xbebc2000, 0x00000000, 0x00000000, 27 }, + { 0xee6b2800, 0x00000000, 0x00000000, 30 }, + { 0x9502f900, 0x00000000, 0x00000000, 34 }, + { 0xba43b740, 0x00000000, 0x00000000, 37 }, + { 0xe8d4a510, 0x00000000, 0x00000000, 40 }, + { 0x9184e72a, 0x00000000, 0x00000000, 44 }, + { 0xb5e620f4, 0x80000000, 0x00000000, 47 }, + { 0xe35fa931, 0xa0000000, 0x00000000, 50 }, + { 0x8e1bc9bf, 0x04000000, 0x00000000, 54 }, + { 0xb1a2bc2e, 0xc5000000, 0x00000000, 57 }, + { 0xde0b6b3a, 0x76400000, 0x00000000, 60 }, + { 0x8ac72304, 0x89e80000, 0x00000000, 64 }, + { 0xad78ebc5, 0xac620000, 0x00000000, 67 }, + { 0xd8d726b7, 0x177a8000, 0x00000000, 70 }, + { 0x87867832, 0x6eac9000, 0x00000000, 74 }, + { 0xa968163f, 0x0a57b400, 0x00000000, 77 }, + { 0xd3c21bce, 0xcceda100, 0x00000000, 80 }, + { 0x84595161, 0x401484a0, 0x00000000, 84 }, + { 0xa56fa5b9, 0x9019a5c8, 0x00000000, 87 }, + { 0xcecb8f27, 0xf4200f3a, 0x00000000, 90 }, + { 0x813f3978, 0xf8940984, 0x40000000, 94 }, + { 0xa18f07d7, 0x36b90be5, 0x50000000, 97 }, + { 0xc9f2c9cd, 0x04674ede, 0xa4000000, 100 }, + { 0xfc6f7c40, 0x45812296, 0x4d000000, 103 }, + { 0x9dc5ada8, 0x2b70b59d, 0xf0200000, 107 }, + { 0xc5371912, 0x364ce305, 0x6c280000, 110 }, + { 0xf684df56, 0xc3e01bc6, 0xc7320000, 113 }, + { 0x9a130b96, 0x3a6c115c, 0x3c7f4000, 117 }, + { 0xc097ce7b, 0xc90715b3, 0x4b9f1000, 120 }, + { 0xf0bdc21a, 0xbb48db20, 0x1e86d400, 123 }, + { 0x96769950, 0xb50d88f4, 0x13144480, 127 }, + { 0xbc143fa4, 0xe250eb31, 0x17d955a0, 130 }, + { 0xeb194f8e, 0x1ae525fd, 0x5dcfab08, 133 }, + { 0x92efd1b8, 0xd0cf37be, 0x5aa1cae5, 137 }, + { 0xb7abc627, 0x050305ad, 0xf14a3d9e, 140 }, + { 0xe596b7b0, 0xc643c719, 0x6d9ccd05, 143 }, + { 0x8f7e32ce, 0x7bea5c6f, 0xe4820023, 147 }, + { 0xb35dbf82, 0x1ae4f38b, 0xdda2802c, 150 }, + { 0xe0352f62, 0xa19e306e, 0xd50b2037, 153 }, + { 0x8c213d9d, 0xa502de45, 0x4526f422, 157 }, + { 0xaf298d05, 0x0e4395d6, 0x9670b12b, 160 }, + { 0xdaf3f046, 0x51d47b4c, 0x3c0cdd76, 163 }, + { 0x88d8762b, 0xf324cd0f, 0xa5880a69, 167 }, + { 0xab0e93b6, 0xefee0053, 0x8eea0d04, 170 }, + { 0xd5d238a4, 0xabe98068, 0x72a49045, 173 }, + { 0x85a36366, 0xeb71f041, 0x47a6da2b, 177 }, + { 0xa70c3c40, 0xa64e6c51, 0x999090b6, 180 }, + { 0xd0cf4b50, 0xcfe20765, 0xfff4b4e3, 183 }, + { 0x82818f12, 0x81ed449f, 0xbff8f10e, 187 }, + { 0xa321f2d7, 0x226895c7, 0xaff72d52, 190 }, + { 0xcbea6f8c, 0xeb02bb39, 0x9bf4f8a6, 193 }, + { 0xfee50b70, 0x25c36a08, 0x02f236d0, 196 }, + { 0x9f4f2726, 0x179a2245, 0x01d76242, 200 }, + { 0xc722f0ef, 0x9d80aad6, 0x424d3ad2, 203 }, + { 0xf8ebad2b, 0x84e0d58b, 0xd2e08987, 206 }, + { 0x9b934c3b, 0x330c8577, 0x63cc55f4, 210 }, + { 0xc2781f49, 0xffcfa6d5, 0x3cbf6b71, 213 }, + { 0xf316271c, 0x7fc3908a, 0x8bef464e, 216 }, + { 0x97edd871, 0xcfda3a56, 0x97758bf0, 220 }, + { 0xbde94e8e, 0x43d0c8ec, 0x3d52eeed, 223 }, + { 0xed63a231, 0xd4c4fb27, 0x4ca7aaa8, 226 }, + { 0x945e455f, 0x24fb1cf8, 0x8fe8caa9, 230 }, + { 0xb975d6b6, 0xee39e436, 0xb3e2fd53, 233 }, + { 0xe7d34c64, 0xa9c85d44, 0x60dbbca8, 236 }, + { 0x90e40fbe, 0xea1d3a4a, 0xbc8955e9, 240 }, + { 0xb51d13ae, 0xa4a488dd, 0x6babab63, 243 }, + { 0xe264589a, 0x4dcdab14, 0xc696963c, 246 }, + { 0x8d7eb760, 0x70a08aec, 0xfc1e1de5, 250 }, + { 0xb0de6538, 0x8cc8ada8, 0x3b25a55f, 253 }, + { 0xdd15fe86, 0xaffad912, 0x49ef0eb7, 256 }, + { 0x8a2dbf14, 0x2dfcc7ab, 0x6e356932, 260 }, + { 0xacb92ed9, 0x397bf996, 0x49c2c37f, 263 }, + { 0xd7e77a8f, 0x87daf7fb, 0xdc33745e, 266 }, + { 0x86f0ac99, 0xb4e8dafd, 0x69a028bb, 270 }, + { 0xa8acd7c0, 0x222311bc, 0xc40832ea, 273 }, + { 0xd2d80db0, 0x2aabd62b, 0xf50a3fa4, 276 }, + { 0x83c7088e, 0x1aab65db, 0x792667c6, 280 }, + { 0xa4b8cab1, 0xa1563f52, 0x577001b8, 283 }, + { 0xcde6fd5e, 0x09abcf26, 0xed4c0226, 286 }, + { 0x80b05e5a, 0xc60b6178, 0x544f8158, 290 }, + { 0xa0dc75f1, 0x778e39d6, 0x696361ae, 293 }, + { 0xc913936d, 0xd571c84c, 0x03bc3a19, 296 }, + { 0xfb587849, 0x4ace3a5f, 0x04ab48a0, 299 }, + { 0x9d174b2d, 0xcec0e47b, 0x62eb0d64, 303 }, + { 0xc45d1df9, 0x42711d9a, 0x3ba5d0bd, 306 }, + { 0xf5746577, 0x930d6500, 0xca8f44ec, 309 }, + { 0x9968bf6a, 0xbbe85f20, 0x7e998b13, 313 }, + { 0xbfc2ef45, 0x6ae276e8, 0x9e3fedd8, 316 }, + { 0xefb3ab16, 0xc59b14a2, 0xc5cfe94e, 319 }, + { 0x95d04aee, 0x3b80ece5, 0xbba1f1d1, 323 }, + { 0xbb445da9, 0xca61281f, 0x2a8a6e45, 326 }, + { 0xea157514, 0x3cf97226, 0xf52d09d7, 329 }, + { 0x924d692c, 0xa61be758, 0x593c2626, 333 }, + { 0xb6e0c377, 0xcfa2e12e, 0x6f8b2fb0, 336 }, + { 0xe498f455, 0xc38b997a, 0x0b6dfb9c, 339 }, + { 0x8edf98b5, 0x9a373fec, 0x4724bd41, 343 }, + { 0xb2977ee3, 0x00c50fe7, 0x58edec91, 346 }, + { 0xdf3d5e9b, 0xc0f653e1, 0x2f2967b6, 349 }, + { 0x8b865b21, 0x5899f46c, 0xbd79e0d2, 353 }, + { 0xae67f1e9, 0xaec07187, 0xecd85906, 356 }, + { 0xda01ee64, 0x1a708de9, 0xe80e6f48, 359 }, + { 0x884134fe, 0x908658b2, 0x3109058d, 363 }, + { 0xaa51823e, 0x34a7eede, 0xbd4b46f0, 366 }, + { 0xd4e5e2cd, 0xc1d1ea96, 0x6c9e18ac, 369 }, + { 0x850fadc0, 0x9923329e, 0x03e2cf6b, 373 }, + { 0xa6539930, 0xbf6bff45, 0x84db8346, 376 }, + { 0xcfe87f7c, 0xef46ff16, 0xe6126418, 379 }, + { 0x81f14fae, 0x158c5f6e, 0x4fcb7e8f, 383 }, + { 0xa26da399, 0x9aef7749, 0xe3be5e33, 386 }, + { 0xcb090c80, 0x01ab551c, 0x5cadf5bf, 389 }, + { 0xfdcb4fa0, 0x02162a63, 0x73d9732f, 392 }, + { 0x9e9f11c4, 0x014dda7e, 0x2867e7fd, 396 }, + { 0xc646d635, 0x01a1511d, 0xb281e1fd, 399 }, + { 0xf7d88bc2, 0x4209a565, 0x1f225a7c, 402 }, + { 0x9ae75759, 0x6946075f, 0x3375788d, 406 }, + { 0xc1a12d2f, 0xc3978937, 0x0052d6b1, 409 }, + { 0xf209787b, 0xb47d6b84, 0xc0678c5d, 412 }, + { 0x9745eb4d, 0x50ce6332, 0xf840b7ba, 416 }, + { 0xbd176620, 0xa501fbff, 0xb650e5a9, 419 }, + { 0xec5d3fa8, 0xce427aff, 0xa3e51f13, 422 }, + { 0x93ba47c9, 0x80e98cdf, 0xc66f336c, 426 }, + { 0xb8a8d9bb, 0xe123f017, 0xb80b0047, 429 }, + { 0xe6d3102a, 0xd96cec1d, 0xa60dc059, 432 }, + { 0x9043ea1a, 0xc7e41392, 0x87c89837, 436 }, + { 0xb454e4a1, 0x79dd1877, 0x29babe45, 439 }, + { 0xe16a1dc9, 0xd8545e94, 0xf4296dd6, 442 }, + { 0x8ce2529e, 0x2734bb1d, 0x1899e4a6, 446 }, + { 0xb01ae745, 0xb101e9e4, 0x5ec05dcf, 449 }, + { 0xdc21a117, 0x1d42645d, 0x76707543, 452 }, + { 0x899504ae, 0x72497eba, 0x6a06494a, 456 }, + { 0xabfa45da, 0x0edbde69, 0x0487db9d, 459 }, + { 0xd6f8d750, 0x9292d603, 0x45a9d284, 462 }, + { 0x865b8692, 0x5b9bc5c2, 0x0b8a2392, 466 }, + { 0xa7f26836, 0xf282b732, 0x8e6cac77, 469 }, + { 0xd1ef0244, 0xaf2364ff, 0x3207d795, 472 }, + { 0x8335616a, 0xed761f1f, 0x7f44e6bd, 476 }, + { 0xa402b9c5, 0xa8d3a6e7, 0x5f16206c, 479 }, + { 0xcd036837, 0x130890a1, 0x36dba887, 482 }, + { 0x80222122, 0x6be55a64, 0xc2494954, 486 }, + { 0xa02aa96b, 0x06deb0fd, 0xf2db9baa, 489 }, + { 0xc83553c5, 0xc8965d3d, 0x6f928294, 492 }, + { 0xfa42a8b7, 0x3abbf48c, 0xcb772339, 495 }, + { 0x9c69a972, 0x84b578d7, 0xff2a7604, 499 }, + { 0xc38413cf, 0x25e2d70d, 0xfef51385, 502 }, + { 0xf46518c2, 0xef5b8cd1, 0x7eb25866, 505 }, + { 0x98bf2f79, 0xd5993802, 0xef2f773f, 509 }, + { 0xbeeefb58, 0x4aff8603, 0xaafb550f, 512 }, + { 0xeeaaba2e, 0x5dbf6784, 0x95ba2a53, 515 }, + { 0x952ab45c, 0xfa97a0b2, 0xdd945a74, 519 }, + { 0xba756174, 0x393d88df, 0x94f97111, 522 }, + { 0xe912b9d1, 0x478ceb17, 0x7a37cd56, 525 }, + { 0x91abb422, 0xccb812ee, 0xac62e055, 529 }, + { 0xb616a12b, 0x7fe617aa, 0x577b986b, 532 }, + { 0xe39c4976, 0x5fdf9d94, 0xed5a7e85, 535 }, + { 0x8e41ade9, 0xfbebc27d, 0x14588f13, 539 }, + { 0xb1d21964, 0x7ae6b31c, 0x596eb2d8, 542 }, + { 0xde469fbd, 0x99a05fe3, 0x6fca5f8e, 545 }, + { 0x8aec23d6, 0x80043bee, 0x25de7bb9, 549 }, + { 0xada72ccc, 0x20054ae9, 0xaf561aa7, 552 }, + { 0xd910f7ff, 0x28069da4, 0x1b2ba151, 555 }, + { 0x87aa9aff, 0x79042286, 0x90fb44d2, 559 }, + { 0xa99541bf, 0x57452b28, 0x353a1607, 562 }, + { 0xd3fa922f, 0x2d1675f2, 0x42889b89, 565 }, + { 0x847c9b5d, 0x7c2e09b7, 0x69956135, 569 }, + { 0xa59bc234, 0xdb398c25, 0x43fab983, 572 }, + { 0xcf02b2c2, 0x1207ef2e, 0x94f967e4, 575 }, + { 0x8161afb9, 0x4b44f57d, 0x1d1be0ee, 579 }, + { 0xa1ba1ba7, 0x9e1632dc, 0x6462d92a, 582 }, + { 0xca28a291, 0x859bbf93, 0x7d7b8f75, 585 }, + { 0xfcb2cb35, 0xe702af78, 0x5cda7352, 588 }, + { 0x9defbf01, 0xb061adab, 0x3a088813, 592 }, + { 0xc56baec2, 0x1c7a1916, 0x088aaa18, 595 }, + { 0xf6c69a72, 0xa3989f5b, 0x8aad549e, 598 }, + { 0x9a3c2087, 0xa63f6399, 0x36ac54e2, 602 }, + { 0xc0cb28a9, 0x8fcf3c7f, 0x84576a1b, 605 }, + { 0xf0fdf2d3, 0xf3c30b9f, 0x656d44a2, 608 }, + { 0x969eb7c4, 0x7859e743, 0x9f644ae5, 612 }, + { 0xbc4665b5, 0x96706114, 0x873d5d9f, 615 }, + { 0xeb57ff22, 0xfc0c7959, 0xa90cb506, 618 }, + { 0x9316ff75, 0xdd87cbd8, 0x09a7f124, 622 }, + { 0xb7dcbf53, 0x54e9bece, 0x0c11ed6d, 625 }, + { 0xe5d3ef28, 0x2a242e81, 0x8f1668c8, 628 }, + { 0x8fa47579, 0x1a569d10, 0xf96e017d, 632 }, + { 0xb38d92d7, 0x60ec4455, 0x37c981dc, 635 }, + { 0xe070f78d, 0x3927556a, 0x85bbe253, 638 }, + { 0x8c469ab8, 0x43b89562, 0x93956d74, 642 }, + { 0xaf584166, 0x54a6babb, 0x387ac8d1, 645 }, + { 0xdb2e51bf, 0xe9d0696a, 0x06997b05, 648 }, + { 0x88fcf317, 0xf22241e2, 0x441fece3, 652 }, + { 0xab3c2fdd, 0xeeaad25a, 0xd527e81c, 655 }, + { 0xd60b3bd5, 0x6a5586f1, 0x8a71e223, 658 }, + { 0x85c70565, 0x62757456, 0xf6872d56, 662 }, + { 0xa738c6be, 0xbb12d16c, 0xb428f8ac, 665 }, + { 0xd106f86e, 0x69d785c7, 0xe13336d7, 668 }, + { 0x82a45b45, 0x0226b39c, 0xecc00246, 672 }, + { 0xa34d7216, 0x42b06084, 0x27f002d7, 675 }, + { 0xcc20ce9b, 0xd35c78a5, 0x31ec038d, 678 }, + { 0xff290242, 0xc83396ce, 0x7e670471, 681 }, + { 0x9f79a169, 0xbd203e41, 0x0f0062c6, 685 }, + { 0xc75809c4, 0x2c684dd1, 0x52c07b78, 688 }, + { 0xf92e0c35, 0x37826145, 0xa7709a56, 691 }, + { 0x9bbcc7a1, 0x42b17ccb, 0x88a66076, 695 }, + { 0xc2abf989, 0x935ddbfe, 0x6acff893, 698 }, + { 0xf356f7eb, 0xf83552fe, 0x0583f6b8, 701 }, + { 0x98165af3, 0x7b2153de, 0xc3727a33, 705 }, + { 0xbe1bf1b0, 0x59e9a8d6, 0x744f18c0, 708 }, + { 0xeda2ee1c, 0x7064130c, 0x1162def0, 711 }, + { 0x9485d4d1, 0xc63e8be7, 0x8addcb56, 715 }, + { 0xb9a74a06, 0x37ce2ee1, 0x6d953e2b, 718 }, + { 0xe8111c87, 0xc5c1ba99, 0xc8fa8db6, 721 }, + { 0x910ab1d4, 0xdb9914a0, 0x1d9c9892, 725 }, + { 0xb54d5e4a, 0x127f59c8, 0x2503beb6, 728 }, + { 0xe2a0b5dc, 0x971f303a, 0x2e44ae64, 731 }, + { 0x8da471a9, 0xde737e24, 0x5ceaecfe, 735 }, + { 0xb10d8e14, 0x56105dad, 0x7425a83e, 738 }, + { 0xdd50f199, 0x6b947518, 0xd12f124e, 741 }, + { 0x8a5296ff, 0xe33cc92f, 0x82bd6b70, 745 }, + { 0xace73cbf, 0xdc0bfb7b, 0x636cc64d, 748 }, + { 0xd8210bef, 0xd30efa5a, 0x3c47f7e0, 751 }, + { 0x8714a775, 0xe3e95c78, 0x65acfaec, 755 }, + { 0xa8d9d153, 0x5ce3b396, 0x7f1839a7, 758 }, + { 0xd31045a8, 0x341ca07c, 0x1ede4811, 761 }, + { 0x83ea2b89, 0x2091e44d, 0x934aed0a, 765 }, + { 0xa4e4b66b, 0x68b65d60, 0xf81da84d, 768 }, + { 0xce1de406, 0x42e3f4b9, 0x36251260, 771 }, + { 0x80d2ae83, 0xe9ce78f3, 0xc1d72b7c, 775 }, + { 0xa1075a24, 0xe4421730, 0xb24cf65b, 778 }, + { 0xc94930ae, 0x1d529cfc, 0xdee033f2, 781 }, + { 0xfb9b7cd9, 0xa4a7443c, 0x169840ef, 784 }, + { 0x9d412e08, 0x06e88aa5, 0x8e1f2895, 788 }, + { 0xc491798a, 0x08a2ad4e, 0xf1a6f2ba, 791 }, + { 0xf5b5d7ec, 0x8acb58a2, 0xae10af69, 794 }, + { 0x9991a6f3, 0xd6bf1765, 0xacca6da1, 798 }, + { 0xbff610b0, 0xcc6edd3f, 0x17fd090a, 801 }, + { 0xeff394dc, 0xff8a948e, 0xddfc4b4c, 804 }, + { 0x95f83d0a, 0x1fb69cd9, 0x4abdaf10, 808 }, + { 0xbb764c4c, 0xa7a4440f, 0x9d6d1ad4, 811 }, + { 0xea53df5f, 0xd18d5513, 0x84c86189, 814 }, + { 0x92746b9b, 0xe2f8552c, 0x32fd3cf5, 818 }, + { 0xb7118682, 0xdbb66a77, 0x3fbc8c33, 821 }, + { 0xe4d5e823, 0x92a40515, 0x0fabaf3f, 824 }, + { 0x8f05b116, 0x3ba6832d, 0x29cb4d87, 828 }, + { 0xb2c71d5b, 0xca9023f8, 0x743e20e9, 831 }, + { 0xdf78e4b2, 0xbd342cf6, 0x914da924, 834 }, + { 0x8bab8eef, 0xb6409c1a, 0x1ad089b6, 838 }, + { 0xae9672ab, 0xa3d0c320, 0xa184ac24, 841 }, + { 0xda3c0f56, 0x8cc4f3e8, 0xc9e5d72d, 844 }, + { 0x88658996, 0x17fb1871, 0x7e2fa67c, 848 }, + { 0xaa7eebfb, 0x9df9de8d, 0xddbb901b, 851 }, + { 0xd51ea6fa, 0x85785631, 0x552a7422, 854 }, + { 0x8533285c, 0x936b35de, 0xd53a8895, 858 }, + { 0xa67ff273, 0xb8460356, 0x8a892aba, 861 }, + { 0xd01fef10, 0xa657842c, 0x2d2b7569, 864 }, + { 0x8213f56a, 0x67f6b29b, 0x9c3b2962, 868 }, + { 0xa298f2c5, 0x01f45f42, 0x8349f3ba, 871 }, + { 0xcb3f2f76, 0x42717713, 0x241c70a9, 874 }, + { 0xfe0efb53, 0xd30dd4d7, 0xed238cd3, 877 }, + { 0x9ec95d14, 0x63e8a506, 0xf4363804, 881 }, + { 0xc67bb459, 0x7ce2ce48, 0xb143c605, 884 }, + { 0xf81aa16f, 0xdc1b81da, 0xdd94b786, 887 }, + { 0x9b10a4e5, 0xe9913128, 0xca7cf2b4, 891 }, + { 0xc1d4ce1f, 0x63f57d72, 0xfd1c2f61, 894 }, + { 0xf24a01a7, 0x3cf2dccf, 0xbc633b39, 897 }, + { 0x976e4108, 0x8617ca01, 0xd5be0503, 901 }, + { 0xbd49d14a, 0xa79dbc82, 0x4b2d8644, 904 }, + { 0xec9c459d, 0x51852ba2, 0xddf8e7d6, 907 }, + { 0x93e1ab82, 0x52f33b45, 0xcabb90e5, 911 }, + { 0xb8da1662, 0xe7b00a17, 0x3d6a751f, 914 }, + { 0xe7109bfb, 0xa19c0c9d, 0x0cc51267, 917 }, + { 0x906a617d, 0x450187e2, 0x27fb2b80, 921 }, + { 0xb484f9dc, 0x9641e9da, 0xb1f9f660, 924 }, + { 0xe1a63853, 0xbbd26451, 0x5e7873f8, 927 }, + { 0x8d07e334, 0x55637eb2, 0xdb0b487b, 931 }, + { 0xb049dc01, 0x6abc5e5f, 0x91ce1a9a, 934 }, + { 0xdc5c5301, 0xc56b75f7, 0x7641a140, 937 }, + { 0x89b9b3e1, 0x1b6329ba, 0xa9e904c8, 941 }, + { 0xac2820d9, 0x623bf429, 0x546345fa, 944 }, + { 0xd732290f, 0xbacaf133, 0xa97c1779, 947 }, + { 0x867f59a9, 0xd4bed6c0, 0x49ed8eab, 951 }, + { 0xa81f3014, 0x49ee8c70, 0x5c68f256, 954 }, + { 0xd226fc19, 0x5c6a2f8c, 0x73832eec, 957 }, + { 0x83585d8f, 0xd9c25db7, 0xc831fd53, 961 }, + { 0xa42e74f3, 0xd032f525, 0xba3e7ca8, 964 }, + { 0xcd3a1230, 0xc43fb26f, 0x28ce1bd2, 967 }, + { 0x80444b5e, 0x7aa7cf85, 0x7980d163, 971 }, + { 0xa0555e36, 0x1951c366, 0xd7e105bc, 974 }, + { 0xc86ab5c3, 0x9fa63440, 0x8dd9472b, 977 }, + { 0xfa856334, 0x878fc150, 0xb14f98f6, 980 }, + { 0x9c935e00, 0xd4b9d8d2, 0x6ed1bf9a, 984 }, + { 0xc3b83581, 0x09e84f07, 0x0a862f80, 987 }, + { 0xf4a642e1, 0x4c6262c8, 0xcd27bb61, 990 }, + { 0x98e7e9cc, 0xcfbd7dbd, 0x8038d51c, 994 }, + { 0xbf21e440, 0x03acdd2c, 0xe0470a63, 997 }, + { 0xeeea5d50, 0x04981478, 0x1858ccfc, 1000 }, + { 0x95527a52, 0x02df0ccb, 0x0f37801e, 1004 }, + { 0xbaa718e6, 0x8396cffd, 0xd3056025, 1007 }, + { 0xe950df20, 0x247c83fd, 0x47c6b82e, 1010 }, + { 0x91d28b74, 0x16cdd27e, 0x4cdc331d, 1014 }, + { 0xb6472e51, 0x1c81471d, 0xe0133fe4, 1017 }, + { 0xe3d8f9e5, 0x63a198e5, 0x58180fdd, 1020 }, + { 0x8e679c2f, 0x5e44ff8f, 0x570f09ea, 1024 }, + { 0xb201833b, 0x35d63f73, 0x2cd2cc65, 1027 }, + { 0xde81e40a, 0x034bcf4f, 0xf8077f7e, 1030 }, + { 0x8b112e86, 0x420f6191, 0xfb04afaf, 1034 }, + { 0xadd57a27, 0xd29339f6, 0x79c5db9a, 1037 }, + { 0xd94ad8b1, 0xc7380874, 0x18375281, 1040 }, + { 0x87cec76f, 0x1c830548, 0x8f229391, 1044 }, + { 0xa9c2794a, 0xe3a3c69a, 0xb2eb3875, 1047 }, + { 0xd433179d, 0x9c8cb841, 0x5fa60692, 1050 }, + { 0x849feec2, 0x81d7f328, 0xdbc7c41b, 1054 }, + { 0xa5c7ea73, 0x224deff3, 0x12b9b522, 1057 }, + { 0xcf39e50f, 0xeae16bef, 0xd768226b, 1060 }, + { 0x81842f29, 0xf2cce375, 0xe6a11583, 1064 }, + { 0xa1e53af4, 0x6f801c53, 0x60495ae3, 1067 }, + { 0xca5e89b1, 0x8b602368, 0x385bb19c, 1070 }, + { 0xfcf62c1d, 0xee382c42, 0x46729e03, 1073 }, + { 0x9e19db92, 0xb4e31ba9, 0x6c07a2c2, 1077 } + }; + static short int Lhint[2098] = { + /*18,*/19, 19, 19, 19, 20, 20, 20, 21, 21, + 21, 22, 22, 22, 23, 23, 23, 23, 24, 24, + 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, + 27, 28, 28, 28, 29, 29, 29, 29, 30, 30, + 30, 31, 31, 31, 32, 32, 32, 32, 33, 33, + 33, 34, 34, 34, 35, 35, 35, 35, 36, 36, + 36, 37, 37, 37, 38, 38, 38, 38, 39, 39, + 39, 40, 40, 40, 41, 41, 41, 41, 42, 42, + 42, 43, 43, 43, 44, 44, 44, 44, 45, 45, + 45, 46, 46, 46, 47, 47, 47, 47, 48, 48, + 48, 49, 49, 49, 50, 50, 50, 51, 51, 51, + 51, 52, 52, 52, 53, 53, 53, 54, 54, 54, + 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, + 57, 58, 58, 58, 59, 59, 59, 60, 60, 60, + 60, 61, 61, 61, 62, 62, 62, 63, 63, 63, + 63, 64, 64, 64, 65, 65, 65, 66, 66, 66, + 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, + 69, 70, 70, 70, 71, 71, 71, 72, 72, 72, + 72, 73, 73, 73, 74, 74, 74, 75, 75, 75, + 75, 76, 76, 76, 77, 77, 77, 78, 78, 78, + 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, + 82, 82, 82, 82, 83, 83, 83, 84, 84, 84, + 85, 85, 85, 85, 86, 86, 86, 87, 87, 87, + 88, 88, 88, 88, 89, 89, 89, 90, 90, 90, + 91, 91, 91, 91, 92, 92, 92, 93, 93, 93, + 94, 94, 94, 94, 95, 95, 95, 96, 96, 96, + 97, 97, 97, 97, 98, 98, 98, 99, 99, 99, + 100, 100, 100, 100, 101, 101, 101, 102, 102, 102, + 103, 103, 103, 103, 104, 104, 104, 105, 105, 105, + 106, 106, 106, 106, 107, 107, 107, 108, 108, 108, + 109, 109, 109, 110, 110, 110, 110, 111, 111, 111, + 112, 112, 112, 113, 113, 113, 113, 114, 114, 114, + 115, 115, 115, 116, 116, 116, 116, 117, 117, 117, + 118, 118, 118, 119, 119, 119, 119, 120, 120, 120, + 121, 121, 121, 122, 122, 122, 122, 123, 123, 123, + 124, 124, 124, 125, 125, 125, 125, 126, 126, 126, + 127, 127, 127, 128, 128, 128, 128, 129, 129, 129, + 130, 130, 130, 131, 131, 131, 131, 132, 132, 132, + 133, 133, 133, 134, 134, 134, 134, 135, 135, 135, + 136, 136, 136, 137, 137, 137, 137, 138, 138, 138, + 139, 139, 139, 140, 140, 140, 141, 141, 141, 141, + 142, 142, 142, 143, 143, 143, 144, 144, 144, 144, + 145, 145, 145, 146, 146, 146, 147, 147, 147, 147, + 148, 148, 148, 149, 149, 149, 150, 150, 150, 150, + 151, 151, 151, 152, 152, 152, 153, 153, 153, 153, + 154, 154, 154, 155, 155, 155, 156, 156, 156, 156, + 157, 157, 157, 158, 158, 158, 159, 159, 159, 159, + 160, 160, 160, 161, 161, 161, 162, 162, 162, 162, + 163, 163, 163, 164, 164, 164, 165, 165, 165, 165, + 166, 166, 166, 167, 167, 167, 168, 168, 168, 169, + 169, 169, 169, 170, 170, 170, 171, 171, 171, 172, + 172, 172, 172, 173, 173, 173, 174, 174, 174, 175, + 175, 175, 175, 176, 176, 176, 177, 177, 177, 178, + 178, 178, 178, 179, 179, 179, 180, 180, 180, 181, + 181, 181, 181, 182, 182, 182, 183, 183, 183, 184, + 184, 184, 184, 185, 185, 185, 186, 186, 186, 187, + 187, 187, 187, 188, 188, 188, 189, 189, 189, 190, + 190, 190, 190, 191, 191, 191, 192, 192, 192, 193, + 193, 193, 193, 194, 194, 194, 195, 195, 195, 196, + 196, 196, 197, 197, 197, 197, 198, 198, 198, 199, + 199, 199, 200, 200, 200, 200, 201, 201, 201, 202, + 202, 202, 203, 203, 203, 203, 204, 204, 204, 205, + 205, 205, 206, 206, 206, 206, 207, 207, 207, 208, + 208, 208, 209, 209, 209, 209, 210, 210, 210, 211, + 211, 211, 212, 212, 212, 212, 213, 213, 213, 214, + 214, 214, 215, 215, 215, 215, 216, 216, 216, 217, + 217, 217, 218, 218, 218, 218, 219, 219, 219, 220, + 220, 220, 221, 221, 221, 221, 222, 222, 222, 223, + 223, 223, 224, 224, 224, 224, 225, 225, 225, 226, + 226, 226, 227, 227, 227, 228, 228, 228, 228, 229, + 229, 229, 230, 230, 230, 231, 231, 231, 231, 232, + 232, 232, 233, 233, 233, 234, 234, 234, 234, 235, + 235, 235, 236, 236, 236, 237, 237, 237, 237, 238, + 238, 238, 239, 239, 239, 240, 240, 240, 240, 241, + 241, 241, 242, 242, 242, 243, 243, 243, 243, 244, + 244, 244, 245, 245, 245, 246, 246, 246, 246, 247, + 247, 247, 248, 248, 248, 249, 249, 249, 249, 250, + 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, + 253, 253, 254, 254, 254, 255, 255, 255, 256, 256, + 256, 256, 257, 257, 257, 258, 258, 258, 259, 259, + 259, 259, 260, 260, 260, 261, 261, 261, 262, 262, + 262, 262, 263, 263, 263, 264, 264, 264, 265, 265, + 265, 265, 266, 266, 266, 267, 267, 267, 268, 268, + 268, 268, 269, 269, 269, 270, 270, 270, 271, 271, + 271, 271, 272, 272, 272, 273, 273, 273, 274, 274, + 274, 274, 275, 275, 275, 276, 276, 276, 277, 277, + 277, 277, 278, 278, 278, 279, 279, 279, 280, 280, + 280, 280, 281, 281, 281, 282, 282, 282, 283, 283, + 283, 283, 284, 284, 284, 285, 285, 285, 286, 286, + 286, 287, 287, 287, 287, 288, 288, 288, 289, 289, + 289, 290, 290, 290, 290, 291, 291, 291, 292, 292, + 292, 293, 293, 293, 293, 294, 294, 294, 295, 295, + 295, 296, 296, 296, 296, 297, 297, 297, 298, 298, + 298, 299, 299, 299, 299, 300, 300, 300, 301, 301, + 301, 302, 302, 302, 302, 303, 303, 303, 304, 304, + 304, 305, 305, 305, 305, 306, 306, 306, 307, 307, + 307, 308, 308, 308, 308, 309, 309, 309, 310, 310, + 310, 311, 311, 311, 311, 312, 312, 312, 313, 313, + 313, 314, 314, 314, 315, 315, 315, 315, 316, 316, + 316, 317, 317, 317, 318, 318, 318, 318, 319, 319, + 319, 320, 320, 320, 321, 321, 321, 321, 322, 322, + 322, 323, 323, 323, 324, 324, 324, 324, 325, 325, + 325, 326, 326, 326, 327, 327, 327, 327, 328, 328, + 328, 329, 329, 329, 330, 330, 330, 330, 331, 331, + 331, 332, 332, 332, 333, 333, 333, 333, 334, 334, + 334, 335, 335, 335, 336, 336, 336, 336, 337, 337, + 337, 338, 338, 338, 339, 339, 339, 339, 340, 340, + 340, 341, 341, 341, 342, 342, 342, 342, 343, 343, + 343, 344, 344, 344, 345, 345, 345, 346, 346, 346, + 346, 347, 347, 347, 348, 348, 348, 349, 349, 349, + 349, 350, 350, 350, 351, 351, 351, 352, 352, 352, + 352, 353, 353, 353, 354, 354, 354, 355, 355, 355, + 355, 356, 356, 356, 357, 357, 357, 358, 358, 358, + 358, 359, 359, 359, 360, 360, 360, 361, 361, 361, + 361, 362, 362, 362, 363, 363, 363, 364, 364, 364, + 364, 365, 365, 365, 366, 366, 366, 367, 367, 367, + 367, 368, 368, 368, 369, 369, 369, 370, 370, 370, + 370, 371, 371, 371, 372, 372, 372, 373, 373, 373, + 374, 374, 374, 374, 375, 375, 375, 376, 376, 376, + 377, 377, 377, 377, 378, 378, 378, 379, 379, 379, + 380, 380, 380, 380, 381, 381, 381, 382, 382, 382, + 383, 383, 383, 383, 384, 384, 384, 385, 385, 385, + 386, 386, 386, 386, 387, 387, 387, 388, 388, 388, + 389, 389, 389, 389, 390, 390, 390, 391, 391, 391, + 392, 392, 392, 392, 393, 393, 393, 394, 394, 394, + 395, 395, 395, 395, 396, 396, 396, 397, 397, 397, + 398, 398, 398, 398, 399, 399, 399, 400, 400, 400, + 401, 401, 401, 402, 402, 402, 402, 403, 403, 403, + 404, 404, 404, 405, 405, 405, 405, 406, 406, 406, + 407, 407, 407, 408, 408, 408, 408, 409, 409, 409, + 410, 410, 410, 411, 411, 411, 411, 412, 412, 412, + 413, 413, 413, 414, 414, 414, 414, 415, 415, 415, + 416, 416, 416, 417, 417, 417, 417, 418, 418, 418, + 419, 419, 419, 420, 420, 420, 420, 421, 421, 421, + 422, 422, 422, 423, 423, 423, 423, 424, 424, 424, + 425, 425, 425, 426, 426, 426, 426, 427, 427, 427, + 428, 428, 428, 429, 429, 429, 429, 430, 430, 430, + 431, 431, 431, 432, 432, 432, 433, 433, 433, 433, + 434, 434, 434, 435, 435, 435, 436, 436, 436, 436, + 437, 437, 437, 438, 438, 438, 439, 439, 439, 439, + 440, 440, 440, 441, 441, 441, 442, 442, 442, 442, + 443, 443, 443, 444, 444, 444, 445, 445, 445, 445, + 446, 446, 446, 447, 447, 447, 448, 448, 448, 448, + 449, 449, 449, 450, 450, 450, 451, 451, 451, 451, + 452, 452, 452, 453, 453, 453, 454, 454, 454, 454, + 455, 455, 455, 456, 456, 456, 457, 457, 457, 457, + 458, 458, 458, 459, 459, 459, 460, 460, 460, 461, + 461, 461, 461, 462, 462, 462, 463, 463, 463, 464, + 464, 464, 464, 465, 465, 465, 466, 466, 466, 467, + 467, 467, 467, 468, 468, 468, 469, 469, 469, 470, + 470, 470, 470, 471, 471, 471, 472, 472, 472, 473, + 473, 473, 473, 474, 474, 474, 475, 475, 475, 476, + 476, 476, 476, 477, 477, 477, 478, 478, 478, 479, + 479, 479, 479, 480, 480, 480, 481, 481, 481, 482, + 482, 482, 482, 483, 483, 483, 484, 484, 484, 485, + 485, 485, 485, 486, 486, 486, 487, 487, 487, 488, + 488, 488, 488, 489, 489, 489, 490, 490, 490, 491, + 491, 491, 492, 492, 492, 492, 493, 493, 493, 494, + 494, 494, 495, 495, 495, 495, 496, 496, 496, 497, + 497, 497, 498, 498, 498, 498, 499, 499, 499, 500, + 500, 500, 501, 501, 501, 501, 502, 502, 502, 503, + 503, 503, 504, 504, 504, 504, 505, 505, 505, 506, + 506, 506, 507, 507, 507, 507, 508, 508, 508, 509, + 509, 509, 510, 510, 510, 510, 511, 511, 511, 512, + 512, 512, 513, 513, 513, 513, 514, 514, 514, 515, + 515, 515, 516, 516, 516, 516, 517, 517, 517, 518, + 518, 518, 519, 519, 519, 520, 520, 520, 520, 521, + 521, 521, 522, 522, 522, 523, 523, 523, 523, 524, + 524, 524, 525, 525, 525, 526, 526, 526, 526, 527, + 527, 527, 528, 528, 528, 529, 529, 529, 529, 530, + 530, 530, 531, 531, 531, 532, 532, 532, 532, 533, + 533, 533, 534, 534, 534, 535, 535, 535, 535, 536, + 536, 536, 537, 537, 537, 538, 538, 538, 538, 539, + 539, 539, 540, 540, 540, 541, 541, 541, 541, 542, + 542, 542, 543, 543, 543, 544, 544, 544, 544, 545, + 545, 545, 546, 546, 546, 547, 547, 547, 548, 548, + 548, 548, 549, 549, 549, 550, 550, 550, 551, 551, + 551, 551, 552, 552, 552, 553, 553, 553, 554, 554, + 554, 554, 555, 555, 555, 556, 556, 556, 557, 557, + 557, 557, 558, 558, 558, 559, 559, 559, 560, 560, + 560, 560, 561, 561, 561, 562, 562, 562, 563, 563, + 563, 563, 564, 564, 564, 565, 565, 565, 566, 566, + 566, 566, 567, 567, 567, 568, 568, 568, 569, 569, + 569, 569, 570, 570, 570, 571, 571, 571, 572, 572, + 572, 572, 573, 573, 573, 574, 574, 574, 575, 575, + 575, 575, 576, 576, 576, 577, 577, 577, 578, 578, + 578, 579, 579, 579, 579, 580, 580, 580, 581, 581, + 581, 582, 582, 582, 582, 583, 583, 583, 584, 584, + 584, 585, 585, 585, 585, 586, 586, 586, 587, 587, + 587, 588, 588, 588, 588, 589, 589, 589, 590, 590, + 590, 591, 591, 591, 591, 592, 592, 592, 593, 593, + 593, 594, 594, 594, 594, 595, 595, 595, 596, 596, + 596, 597, 597, 597, 597, 598, 598, 598, 599, 599, + 599, 600, 600, 600, 600, 601, 601, 601, 602, 602, + 602, 603, 603, 603, 603, 604, 604, 604, 605, 605, + 605, 606, 606, 606, 607, 607, 607, 607, 608, 608, + 608, 609, 609, 609, 610, 610, 610, 610, 611, 611, + 611, 612, 612, 612, 613, 613, 613, 613, 614, 614, + 614, 615, 615, 615, 616, 616, 616, 616, 617, 617, + 617, 618, 618, 618, 619, 619, 619, 619, 620, 620, + 620, 621, 621, 621, 622, 622, 622, 622, 623, 623, + 623, 624, 624, 624, 625, 625, 625, 625, 626, 626, + 626, 627, 627, 627, 628, 628, 628, 628, 629, 629, + 629, 630, 630, 630, 631, 631, 631, 631, 632, 632, + 632, 633, 633, 633, 634, 634, 634, 634, 635, 635, + 635, 636, 636, 636, 637, 637, 637, 638, 638, 638, + 638, 639, 639, 639, 640, 640, 640, 641, 641, 641, + 641, 642, 642, 642, 643, 643, 643, 644, 644, 644, + 644, 645, 645, 645, 646, 646, 646, 647, 647, 647, + 647, 648, 648, 648, 649, 649, 649, 650, 650 }; + static ULLong pfive[27] = { + 5ll, + 25ll, + 125ll, + 625ll, + 3125ll, + 15625ll, + 78125ll, + 390625ll, + 1953125ll, + 9765625ll, + 48828125ll, + 244140625ll, + 1220703125ll, + 6103515625ll, + 30517578125ll, + 152587890625ll, + 762939453125ll, + 3814697265625ll, + 19073486328125ll, + 95367431640625ll, + 476837158203125ll, + 2384185791015625ll, + 11920928955078125ll, + 59604644775390625ll, + 298023223876953125ll, + 1490116119384765625ll, + 7450580596923828125ll + }; + + static int pfivebits[25] = {3, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28, 31, + 33, 35, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59}; +#endif /*}*/ +#endif /*}} NO_LONG_LONG */ + +typedef union { double d; ULong L[2]; +#ifdef USE_BF96 + ULLong LL; +#endif + } U; + +#ifdef IEEE_8087 +#define word0(x) (x)->L[1] +#define word1(x) (x)->L[0] +#else +#define word0(x) (x)->L[0] +#define word1(x) (x)->L[1] +#endif +#define dval(x) (x)->d +#define LLval(x) (x)->LL + +#ifndef STRTOD_DIGLIM +#define STRTOD_DIGLIM 40 +#endif + +#ifdef DIGLIM_DEBUG +extern int strtod_diglim; +#else +#define strtod_diglim STRTOD_DIGLIM +#endif + +/* The following definition of Storeinc is appropriate for MIPS processors. + * An alternative that might be better on some machines is + * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) + */ +#if defined(IEEE_8087) + defined(VAX) +#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ +((unsigned short *)a)[0] = (unsigned short)c, a++) +#else +#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ +((unsigned short *)a)[1] = (unsigned short)c, a++) +#endif + +/* #define P DBL_MANT_DIG */ +/* Ten_pmax = floor(P*log(2)/log(5)) */ +/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ +/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ +/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ + +#ifdef IEEE_Arith +#define Exp_shift 20 +#define Exp_shift1 20 +#define Exp_msk1 0x100000 +#define Exp_msk11 0x100000 +#define Exp_mask 0x7ff00000 +#define P 53 +#define Nbits 53 +#define Bias 1023 +#define Emax 1023 +#define Emin (-1022) +#define Exp_1 0x3ff00000 +#define Exp_11 0x3ff00000 +#define Ebits 11 +#define Frac_mask 0xfffff +#define Frac_mask1 0xfffff +#define Ten_pmax 22 +#define Bletch 0x10 +#define Bndry_mask 0xfffff +#define Bndry_mask1 0xfffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 1 +#define Tiny0 0 +#define Tiny1 1 +#define Quick_max 14 +#define Int_max 14 +#ifndef NO_IEEE_Scale +#define Avoid_Underflow +#ifdef Flush_Denorm /* debugging option */ +#undef Sudden_Underflow +#endif +#endif + +#ifndef Flt_Rounds +#ifdef FLT_ROUNDS +#define Flt_Rounds FLT_ROUNDS +#else +#define Flt_Rounds 1 +#endif +#endif /*Flt_Rounds*/ + +#ifdef Honor_FLT_ROUNDS +#undef Check_FLT_ROUNDS +#define Check_FLT_ROUNDS +#else +#define Rounding Flt_Rounds +#endif + +#else /* ifndef IEEE_Arith */ +#undef Check_FLT_ROUNDS +#undef Honor_FLT_ROUNDS +#undef SET_INEXACT +#undef Sudden_Underflow +#define Sudden_Underflow +#ifdef IBM +#undef Flt_Rounds +#define Flt_Rounds 0 +#define Exp_shift 24 +#define Exp_shift1 24 +#define Exp_msk1 0x1000000 +#define Exp_msk11 0x1000000 +#define Exp_mask 0x7f000000 +#define P 14 +#define Nbits 56 +#define Bias 65 +#define Emax 248 +#define Emin (-260) +#define Exp_1 0x41000000 +#define Exp_11 0x41000000 +#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ +#define Frac_mask 0xffffff +#define Frac_mask1 0xffffff +#define Bletch 4 +#define Ten_pmax 22 +#define Bndry_mask 0xefffff +#define Bndry_mask1 0xffffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 4 +#define Tiny0 0x100000 +#define Tiny1 0 +#define Quick_max 14 +#define Int_max 15 +#else /* VAX */ +#undef Flt_Rounds +#define Flt_Rounds 1 +#define Exp_shift 23 +#define Exp_shift1 7 +#define Exp_msk1 0x80 +#define Exp_msk11 0x800000 +#define Exp_mask 0x7f80 +#define P 56 +#define Nbits 56 +#define Bias 129 +#define Emax 126 +#define Emin (-129) +#define Exp_1 0x40800000 +#define Exp_11 0x4080 +#define Ebits 8 +#define Frac_mask 0x7fffff +#define Frac_mask1 0xffff007f +#define Ten_pmax 24 +#define Bletch 2 +#define Bndry_mask 0xffff007f +#define Bndry_mask1 0xffff007f +#define LSB 0x10000 +#define Sign_bit 0x8000 +#define Log2P 1 +#define Tiny0 0x80 +#define Tiny1 0 +#define Quick_max 15 +#define Int_max 15 +#endif /* IBM, VAX */ +#endif /* IEEE_Arith */ + +#ifndef IEEE_Arith +#define ROUND_BIASED +#else +#ifdef ROUND_BIASED_without_Round_Up +#undef ROUND_BIASED +#define ROUND_BIASED +#endif +#endif + +#ifdef RND_PRODQUOT +#define rounded_product(a,b) a = rnd_prod(a, b) +#define rounded_quotient(a,b) a = rnd_quot(a, b) +extern double rnd_prod(double, double), rnd_quot(double, double); +#else +#define rounded_product(a,b) a *= b +#define rounded_quotient(a,b) a /= b +#endif + +#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) +#define Big1 0xffffffff + +#ifndef Pack_32 +#define Pack_32 +#endif + +typedef struct BCinfo BCinfo; + struct +BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; }; + +#define FFFFFFFF 0xffffffffUL + +#ifdef MULTIPLE_THREADS +#define MTa , PTI +#define MTb , &TI +#define MTd , ThInfo **PTI +static unsigned int maxthreads = 0; +#else +#define MTa /*nothing*/ +#define MTb /*nothing*/ +#define MTd /*nothing*/ +#endif + +#define Kmax 7 + +#ifdef __cplusplus +extern "C" double netlib_strtod(const char *s00, char **se); +extern "C" char *netlib_dtoa(double d, int mode, int ndigits, + int *decpt, int *sign, char **rve); +#endif + + struct +Bigint { + struct Bigint *next; + int k, maxwds, sign, wds; + ULong x[1]; + }; + + typedef struct Bigint Bigint; + typedef struct +ThInfo { + Bigint *Freelist[Kmax+1]; + Bigint *P5s; + } ThInfo; + + static ThInfo TI0; + +#ifdef MULTIPLE_THREADS + static ThInfo *TI1; + static int TI0_used; + + void +set_max_dtoa_threads(unsigned int n) +{ + size_t L; + + if (n > maxthreads) { + L = n*sizeof(ThInfo); + if (TI1) { + TI1 = (ThInfo*)REALLOC(TI1, L); + memset(TI1 + maxthreads, 0, (n-maxthreads)*sizeof(ThInfo)); + } + else { + TI1 = (ThInfo*)MALLOC(L); + if (TI0_used) { + memcpy(TI1, &TI0, sizeof(ThInfo)); + if (n > 1) + memset(TI1 + 1, 0, L - sizeof(ThInfo)); + memset(&TI0, 0, sizeof(ThInfo)); + } + else + memset(TI1, 0, L); + } + maxthreads = n; + } + } + + static ThInfo* +get_TI(void) +{ + unsigned int thno = dtoa_get_threadno(); + if (thno < maxthreads) + return TI1 + thno; + if (thno == 0) + TI0_used = 1; + return &TI0; + } +#define freelist TI->Freelist +#define p5s TI->P5s +#else +#define freelist TI0.Freelist +#define p5s TI0.P5s +#endif + + static Bigint * +Balloc(int k MTd) +{ + int x; + Bigint *rv; +#ifndef Omit_Private_Memory + unsigned int len; +#endif +#ifdef MULTIPLE_THREADS + ThInfo *TI; + + if (!(TI = *PTI)) + *PTI = TI = get_TI(); + if (TI == &TI0) + ACQUIRE_DTOA_LOCK(0); +#endif + /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */ + /* but this case seems very unlikely. */ + if (k <= Kmax && (rv = freelist[k])) + freelist[k] = rv->next; + else { + x = 1 << k; +#ifdef Omit_Private_Memory + rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); +#else + len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) + /sizeof(double); + if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem +#ifdef MULTIPLE_THREADS + && TI == TI1 +#endif + ) { + rv = (Bigint*)pmem_next; + pmem_next += len; + } + else + rv = (Bigint*)MALLOC(len*sizeof(double)); +#endif + rv->k = k; + rv->maxwds = x; + } +#ifdef MULTIPLE_THREADS + if (TI == &TI0) + FREE_DTOA_LOCK(0); +#endif + rv->sign = rv->wds = 0; + return rv; + } + + static void +Bfree(Bigint *v MTd) +{ +#ifdef MULTIPLE_THREADS + ThInfo *TI; +#endif + if (v) { + if (v->k > Kmax) + FREE((void*)v); + else { +#ifdef MULTIPLE_THREADS + if (!(TI = *PTI)) + *PTI = TI = get_TI(); + if (TI == &TI0) + ACQUIRE_DTOA_LOCK(0); +#endif + v->next = freelist[v->k]; + freelist[v->k] = v; +#ifdef MULTIPLE_THREADS + if (TI == &TI0) + FREE_DTOA_LOCK(0); +#endif + } + } + } + +#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ +y->wds*sizeof(Long) + 2*sizeof(int)) + + static Bigint * +multadd(Bigint *b, int m, int a MTd) /* multiply by m and add a */ +{ + int i, wds; +#ifdef ULLong + ULong *x; + ULLong carry, y; +#else + ULong carry, *x, y; +#ifdef Pack_32 + ULong xi, z; +#endif +#endif + Bigint *b1; + + wds = b->wds; + x = b->x; + i = 0; + carry = a; + do { +#ifdef ULLong + y = *x * (ULLong)m + carry; + carry = y >> 32; + *x++ = y & FFFFFFFF; +#else +#ifdef Pack_32 + xi = *x; + y = (xi & 0xffff) * m + carry; + z = (xi >> 16) * m + (y >> 16); + carry = z >> 16; + *x++ = (z << 16) + (y & 0xffff); +#else + y = *x * m + carry; + carry = y >> 16; + *x++ = y & 0xffff; +#endif +#endif + } + while(++i < wds); + if (carry) { + if (wds >= b->maxwds) { + b1 = Balloc(b->k+1 MTa); + Bcopy(b1, b); + Bfree(b MTa); + b = b1; + } + b->x[wds++] = carry; + b->wds = wds; + } + return b; + } + + static Bigint * +s2b(const char *s, int nd0, int nd, ULong y9, int dplen MTd) +{ + Bigint *b; + int i, k; + Long x, y; + + x = (nd + 8) / 9; + for(k = 0, y = 1; x > y; y <<= 1, k++) ; +#ifdef Pack_32 + b = Balloc(k MTa); + b->x[0] = y9; + b->wds = 1; +#else + b = Balloc(k+1 MTa); + b->x[0] = y9 & 0xffff; + b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; +#endif + + i = 9; + if (9 < nd0) { + s += 9; + do b = multadd(b, 10, *s++ - '0' MTa); + while(++i < nd0); + s += dplen; + } + else + s += dplen + 9; + for(; i < nd; i++) + b = multadd(b, 10, *s++ - '0' MTa); + return b; + } + + static int +hi0bits(ULong x) +{ + int k = 0; + + if (!(x & 0xffff0000)) { + k = 16; + x <<= 16; + } + if (!(x & 0xff000000)) { + k += 8; + x <<= 8; + } + if (!(x & 0xf0000000)) { + k += 4; + x <<= 4; + } + if (!(x & 0xc0000000)) { + k += 2; + x <<= 2; + } + if (!(x & 0x80000000)) { + k++; + if (!(x & 0x40000000)) + return 32; + } + return k; + } + + static int +lo0bits(ULong *y) +{ + int k; + ULong x = *y; + + if (x & 7) { + if (x & 1) + return 0; + if (x & 2) { + *y = x >> 1; + return 1; + } + *y = x >> 2; + return 2; + } + k = 0; + if (!(x & 0xffff)) { + k = 16; + x >>= 16; + } + if (!(x & 0xff)) { + k += 8; + x >>= 8; + } + if (!(x & 0xf)) { + k += 4; + x >>= 4; + } + if (!(x & 0x3)) { + k += 2; + x >>= 2; + } + if (!(x & 1)) { + k++; + x >>= 1; + if (!x) + return 32; + } + *y = x; + return k; + } + + static Bigint * +i2b(int i MTd) +{ + Bigint *b; + + b = Balloc(1 MTa); + b->x[0] = i; + b->wds = 1; + return b; + } + + static Bigint * +mult(Bigint *a, Bigint *b MTd) +{ + Bigint *c; + int k, wa, wb, wc; + ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; + ULong y; +#ifdef ULLong + ULLong carry, z; +#else + ULong carry, z; +#ifdef Pack_32 + ULong z2; +#endif +#endif + + if (a->wds < b->wds) { + c = a; + a = b; + b = c; + } + k = a->k; + wa = a->wds; + wb = b->wds; + wc = wa + wb; + if (wc > a->maxwds) + k++; + c = Balloc(k MTa); + for(x = c->x, xa = x + wc; x < xa; x++) + *x = 0; + xa = a->x; + xae = xa + wa; + xb = b->x; + xbe = xb + wb; + xc0 = c->x; +#ifdef ULLong + for(; xb < xbe; xc0++) { + if ((y = *xb++)) { + x = xa; + xc = xc0; + carry = 0; + do { + z = *x++ * (ULLong)y + *xc + carry; + carry = z >> 32; + *xc++ = z & FFFFFFFF; + } + while(x < xae); + *xc = carry; + } + } +#else +#ifdef Pack_32 + for(; xb < xbe; xb++, xc0++) { + if (y = *xb & 0xffff) { + x = xa; + xc = xc0; + carry = 0; + do { + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; + carry = z >> 16; + z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; + carry = z2 >> 16; + Storeinc(xc, z2, z); + } + while(x < xae); + *xc = carry; + } + if (y = *xb >> 16) { + x = xa; + xc = xc0; + carry = 0; + z2 = *xc; + do { + z = (*x & 0xffff) * y + (*xc >> 16) + carry; + carry = z >> 16; + Storeinc(xc, z, z2); + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; + carry = z2 >> 16; + } + while(x < xae); + *xc = z2; + } + } +#else + for(; xb < xbe; xc0++) { + if (y = *xb++) { + x = xa; + xc = xc0; + carry = 0; + do { + z = *x++ * y + *xc + carry; + carry = z >> 16; + *xc++ = z & 0xffff; + } + while(x < xae); + *xc = carry; + } + } +#endif +#endif + for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; + c->wds = wc; + return c; + } + + static Bigint * +pow5mult(Bigint *b, int k MTd) +{ + Bigint *b1, *p5, *p51; +#ifdef MULTIPLE_THREADS + ThInfo *TI; +#endif + int i; + static int p05[3] = { 5, 25, 125 }; + + if ((i = k & 3)) + b = multadd(b, p05[i-1], 0 MTa); + + if (!(k >>= 2)) + return b; +#ifdef MULTIPLE_THREADS + if (!(TI = *PTI)) + *PTI = TI = get_TI(); +#endif + if (!(p5 = p5s)) { + /* first time */ +#ifdef MULTIPLE_THREADS + if (!(TI = *PTI)) + *PTI = TI = get_TI(); + if (TI == &TI0) + ACQUIRE_DTOA_LOCK(1); + if (!(p5 = p5s)) { + p5 = p5s = i2b(625 MTa); + p5->next = 0; + } + if (TI == &TI0) + FREE_DTOA_LOCK(1); +#else + p5 = p5s = i2b(625 MTa); + p5->next = 0; +#endif + } + for(;;) { + if (k & 1) { + b1 = mult(b, p5 MTa); + Bfree(b MTa); + b = b1; + } + if (!(k >>= 1)) + break; + if (!(p51 = p5->next)) { +#ifdef MULTIPLE_THREADS + if (!TI && !(TI = *PTI)) + *PTI = TI = get_TI(); + if (TI == &TI0) + ACQUIRE_DTOA_LOCK(1); + if (!(p51 = p5->next)) { + p51 = p5->next = mult(p5,p5 MTa); + p51->next = 0; + } + if (TI == &TI0) + FREE_DTOA_LOCK(1); +#else + p51 = p5->next = mult(p5,p5); + p51->next = 0; +#endif + } + p5 = p51; + } + return b; + } + + static Bigint * +lshift(Bigint *b, int k MTd) +{ + int i, k1, n, n1; + Bigint *b1; + ULong *x, *x1, *xe, z; + +#ifdef Pack_32 + n = k >> 5; +#else + n = k >> 4; +#endif + k1 = b->k; + n1 = n + b->wds + 1; + for(i = b->maxwds; n1 > i; i <<= 1) + k1++; + b1 = Balloc(k1 MTa); + x1 = b1->x; + for(i = 0; i < n; i++) + *x1++ = 0; + x = b->x; + xe = x + b->wds; +#ifdef Pack_32 + if (k &= 0x1f) { + k1 = 32 - k; + z = 0; + do { + *x1++ = *x << k | z; + z = *x++ >> k1; + } + while(x < xe); + if ((*x1 = z)) + ++n1; + } +#else + if (k &= 0xf) { + k1 = 16 - k; + z = 0; + do { + *x1++ = *x << k & 0xffff | z; + z = *x++ >> k1; + } + while(x < xe); + if (*x1 = z) + ++n1; + } +#endif + else do + *x1++ = *x++; + while(x < xe); + b1->wds = n1 - 1; + Bfree(b MTa); + return b1; + } + + static int +cmp(Bigint *a, Bigint *b) +{ + ULong *xa, *xa0, *xb, *xb0; + int i, j; + + i = a->wds; + j = b->wds; +#ifdef DEBUG + if (i > 1 && !a->x[i-1]) + Bug("cmp called with a->x[a->wds-1] == 0"); + if (j > 1 && !b->x[j-1]) + Bug("cmp called with b->x[b->wds-1] == 0"); +#endif + if (i -= j) + return i; + xa0 = a->x; + xa = xa0 + j; + xb0 = b->x; + xb = xb0 + j; + for(;;) { + if (*--xa != *--xb) + return *xa < *xb ? -1 : 1; + if (xa <= xa0) + break; + } + return 0; + } + + static Bigint * +diff(Bigint *a, Bigint *b MTd) +{ + Bigint *c; + int i, wa, wb; + ULong *xa, *xae, *xb, *xbe, *xc; +#ifdef ULLong + ULLong borrow, y; +#else + ULong borrow, y; +#ifdef Pack_32 + ULong z; +#endif +#endif + + i = cmp(a,b); + if (!i) { + c = Balloc(0 MTa); + c->wds = 1; + c->x[0] = 0; + return c; + } + if (i < 0) { + c = a; + a = b; + b = c; + i = 1; + } + else + i = 0; + c = Balloc(a->k MTa); + c->sign = i; + wa = a->wds; + xa = a->x; + xae = xa + wa; + wb = b->wds; + xb = b->x; + xbe = xb + wb; + xc = c->x; + borrow = 0; +#ifdef ULLong + do { + y = (ULLong)*xa++ - *xb++ - borrow; + borrow = y >> 32 & (ULong)1; + *xc++ = y & FFFFFFFF; + } + while(xb < xbe); + while(xa < xae) { + y = *xa++ - borrow; + borrow = y >> 32 & (ULong)1; + *xc++ = y & FFFFFFFF; + } +#else +#ifdef Pack_32 + do { + y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } + while(xb < xbe); + while(xa < xae) { + y = (*xa & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } +#else + do { + y = *xa++ - *xb++ - borrow; + borrow = (y & 0x10000) >> 16; + *xc++ = y & 0xffff; + } + while(xb < xbe); + while(xa < xae) { + y = *xa++ - borrow; + borrow = (y & 0x10000) >> 16; + *xc++ = y & 0xffff; + } +#endif +#endif + while(!*--xc) + wa--; + c->wds = wa; + return c; + } + + static double +ulp(U *x) +{ + Long L; + U u; + + L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; +#ifndef Avoid_Underflow +#ifndef Sudden_Underflow + if (L > 0) { +#endif +#endif +#ifdef IBM + L |= Exp_msk1 >> 4; +#endif + word0(&u) = L; + word1(&u) = 0; +#ifndef Avoid_Underflow +#ifndef Sudden_Underflow + } + else { + L = -L >> Exp_shift; + if (L < Exp_shift) { + word0(&u) = 0x80000 >> L; + word1(&u) = 0; + } + else { + word0(&u) = 0; + L -= Exp_shift; + word1(&u) = L >= 31 ? 1 : 1 << 31 - L; + } + } +#endif +#endif + return dval(&u); + } + + static double +b2d(Bigint *a, int *e) +{ + ULong *xa, *xa0, w, y, z; + int k; + U d; +#ifdef VAX + ULong d0, d1; +#else +#define d0 word0(&d) +#define d1 word1(&d) +#endif + + xa0 = a->x; + xa = xa0 + a->wds; + y = *--xa; +#ifdef DEBUG + if (!y) Bug("zero y in b2d"); +#endif + k = hi0bits(y); + *e = 32 - k; +#ifdef Pack_32 + if (k < Ebits) { + d0 = Exp_1 | y >> (Ebits - k); + w = xa > xa0 ? *--xa : 0; + d1 = y << ((32-Ebits) + k) | w >> (Ebits - k); + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + if (k -= Ebits) { + d0 = Exp_1 | y << k | z >> (32 - k); + y = xa > xa0 ? *--xa : 0; + d1 = z << k | y >> (32 - k); + } + else { + d0 = Exp_1 | y; + d1 = z; + } +#else + if (k < Ebits + 16) { + z = xa > xa0 ? *--xa : 0; + d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; + w = xa > xa0 ? *--xa : 0; + y = xa > xa0 ? *--xa : 0; + d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + w = xa > xa0 ? *--xa : 0; + k -= Ebits + 16; + d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; + y = xa > xa0 ? *--xa : 0; + d1 = w << k + 16 | y << k; +#endif + ret_d: +#ifdef VAX + word0(&d) = d0 >> 16 | d0 << 16; + word1(&d) = d1 >> 16 | d1 << 16; +#else +#undef d0 +#undef d1 +#endif + return dval(&d); + } + + static Bigint * +d2b(U *d, int *e, int *bits MTd) +{ + Bigint *b; + int de, k; + ULong *x, y, z; +#ifndef Sudden_Underflow + int i; +#endif +#ifdef VAX + ULong d0, d1; + d0 = word0(d) >> 16 | word0(d) << 16; + d1 = word1(d) >> 16 | word1(d) << 16; +#else +#define d0 word0(d) +#define d1 word1(d) +#endif + +#ifdef Pack_32 + b = Balloc(1 MTa); +#else + b = Balloc(2 MTa); +#endif + x = b->x; + + z = d0 & Frac_mask; + d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ +#ifdef Sudden_Underflow + de = (int)(d0 >> Exp_shift); +#ifndef IBM + z |= Exp_msk11; +#endif +#else + if ((de = (int)(d0 >> Exp_shift))) + z |= Exp_msk1; +#endif +#ifdef Pack_32 + if ((y = d1)) { + if ((k = lo0bits(&y))) { + x[0] = y | z << (32 - k); + z >>= k; + } + else + x[0] = y; +#ifndef Sudden_Underflow + i = +#endif + b->wds = (x[1] = z) ? 2 : 1; + } + else { + k = lo0bits(&z); + x[0] = z; +#ifndef Sudden_Underflow + i = +#endif + b->wds = 1; + k += 32; + } +#else + if (y = d1) { + if (k = lo0bits(&y)) + if (k >= 16) { + x[0] = y | z << 32 - k & 0xffff; + x[1] = z >> k - 16 & 0xffff; + x[2] = z >> k; + i = 2; + } + else { + x[0] = y & 0xffff; + x[1] = y >> 16 | z << 16 - k & 0xffff; + x[2] = z >> k & 0xffff; + x[3] = z >> k+16; + i = 3; + } + else { + x[0] = y & 0xffff; + x[1] = y >> 16; + x[2] = z & 0xffff; + x[3] = z >> 16; + i = 3; + } + } + else { +#ifdef DEBUG + if (!z) + Bug("Zero passed to d2b"); +#endif + k = lo0bits(&z); + if (k >= 16) { + x[0] = z; + i = 0; + } + else { + x[0] = z & 0xffff; + x[1] = z >> 16; + i = 1; + } + k += 32; + } + while(!x[i]) + --i; + b->wds = i + 1; +#endif +#ifndef Sudden_Underflow + if (de) { +#endif +#ifdef IBM + *e = (de - Bias - (P-1) << 2) + k; + *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); +#else + *e = de - Bias - (P-1) + k; + *bits = P - k; +#endif +#ifndef Sudden_Underflow + } + else { + *e = de - Bias - (P-1) + 1 + k; +#ifdef Pack_32 + *bits = 32*i - hi0bits(x[i-1]); +#else + *bits = (i+2)*16 - hi0bits(x[i]); +#endif + } +#endif + return b; + } +#undef d0 +#undef d1 + + static double +ratio(Bigint *a, Bigint *b) +{ + U da, db; + int k, ka, kb; + + dval(&da) = b2d(a, &ka); + dval(&db) = b2d(b, &kb); +#ifdef Pack_32 + k = ka - kb + 32*(a->wds - b->wds); +#else + k = ka - kb + 16*(a->wds - b->wds); +#endif +#ifdef IBM + if (k > 0) { + word0(&da) += (k >> 2)*Exp_msk1; + if (k &= 3) + dval(&da) *= 1 << k; + } + else { + k = -k; + word0(&db) += (k >> 2)*Exp_msk1; + if (k &= 3) + dval(&db) *= 1 << k; + } +#else + if (k > 0) + word0(&da) += k*Exp_msk1; + else { + k = -k; + word0(&db) += k*Exp_msk1; + } +#endif + return dval(&da) / dval(&db); + } + + static const double +tens[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 +#ifdef VAX + , 1e23, 1e24 +#endif + }; + + static const double +#ifdef IEEE_Arith +bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; +static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, +#ifdef Avoid_Underflow + 9007199254740992.*9007199254740992.e-256 + /* = 2^106 * 1e-256 */ +#else + 1e-256 +#endif + }; +/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ +/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ +#define Scale_Bit 0x10 +#define n_bigtens 5 +#else +#ifdef IBM +bigtens[] = { 1e16, 1e32, 1e64 }; +static const double tinytens[] = { 1e-16, 1e-32, 1e-64 }; +#define n_bigtens 3 +#else +bigtens[] = { 1e16, 1e32 }; +static const double tinytens[] = { 1e-16, 1e-32 }; +#define n_bigtens 2 +#endif +#endif + +#undef Need_Hexdig +#ifdef INFNAN_CHECK +#ifndef No_Hex_NaN +#define Need_Hexdig +#endif +#endif + +#ifndef Need_Hexdig +#ifndef NO_HEX_FP +#define Need_Hexdig +#endif +#endif + +#ifdef Need_Hexdig /*{*/ +#if 0 +static unsigned char hexdig[256]; + + static void +htinit(unsigned char *h, unsigned char *s, int inc) +{ + int i, j; + for(i = 0; (j = s[i]) !=0; i++) + h[j] = i + inc; + } + + static void +hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */ + /* race condition when multiple threads are used. */ +{ +#define USC (unsigned char *) + htinit(hexdig, USC "0123456789", 0x10); + htinit(hexdig, USC "abcdef", 0x10 + 10); + htinit(hexdig, USC "ABCDEF", 0x10 + 10); + } +#else +static unsigned char hexdig[256] = { + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0, + 0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 + }; +#endif +#endif /* } Need_Hexdig */ + +#ifdef INFNAN_CHECK + +#ifndef NAN_WORD0 +#define NAN_WORD0 0x7ff80000 +#endif + +#ifndef NAN_WORD1 +#define NAN_WORD1 0 +#endif + + static int +match(const char **sp, const char *t) +{ + int c, d; + const char *s = *sp; + + while((d = *t++)) { + if ((c = *++s) >= 'A' && c <= 'Z') + c += 'a' - 'A'; + if (c != d) + return 0; + } + *sp = s + 1; + return 1; + } + +#ifndef No_Hex_NaN + static void +hexnan(U *rvp, const char **sp) +{ + ULong c, x[2]; + const char *s; + int c1, havedig, udx0, xshift; + + /**** if (!hexdig['0']) hexdig_init(); ****/ + x[0] = x[1] = 0; + havedig = xshift = 0; + udx0 = 1; + s = *sp; + /* allow optional initial 0x or 0X */ + while((c = *(const unsigned char*)(s+1)) && c <= ' ') + ++s; + if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X')) + s += 2; + while((c = *(const unsigned char*)++s)) { + if ((c1 = hexdig[c])) + c = c1 & 0xf; + else if (c <= ' ') { + if (udx0 && havedig) { + udx0 = 0; + xshift = 1; + } + continue; + } +#ifdef GDTOA_NON_PEDANTIC_NANCHECK + else if (/*(*/ c == ')' && havedig) { + *sp = s + 1; + break; + } + else + return; /* invalid form: don't change *sp */ +#else + else { + do { + if (/*(*/ c == ')') { + *sp = s + 1; + break; + } + } while((c = *++s)); + break; + } +#endif + havedig = 1; + if (xshift) { + xshift = 0; + x[0] = x[1]; + x[1] = 0; + } + if (udx0) + x[0] = (x[0] << 4) | (x[1] >> 28); + x[1] = (x[1] << 4) | c; + } + if ((x[0] &= 0xfffff) || x[1]) { + word0(rvp) = Exp_mask | x[0]; + word1(rvp) = x[1]; + } + } +#endif /*No_Hex_NaN*/ +#endif /* INFNAN_CHECK */ + +#ifdef Pack_32 +#define ULbits 32 +#define kshift 5 +#define kmask 31 +#else +#define ULbits 16 +#define kshift 4 +#define kmask 15 +#endif + +#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/ + static Bigint * +increment(Bigint *b MTd) +{ + ULong *x, *xe; + Bigint *b1; + + x = b->x; + xe = x + b->wds; + do { + if (*x < (ULong)0xffffffffL) { + ++*x; + return b; + } + *x++ = 0; + } while(x < xe); + { + if (b->wds >= b->maxwds) { + b1 = Balloc(b->k+1 MTa); + Bcopy(b1,b); + Bfree(b MTa); + b = b1; + } + b->x[b->wds++] = 1; + } + return b; + } + +#endif /*}*/ + +#ifndef NO_HEX_FP /*{*/ + + static void +rshift(Bigint *b, int k) +{ + ULong *x, *x1, *xe, y; + int n; + + x = x1 = b->x; + n = k >> kshift; + if (n < b->wds) { + xe = x + b->wds; + x += n; + if (k &= kmask) { + n = 32 - k; + y = *x++ >> k; + while(x < xe) { + *x1++ = (y | (*x << n)) & 0xffffffff; + y = *x++ >> k; + } + if ((*x1 = y) !=0) + x1++; + } + else + while(x < xe) + *x1++ = *x++; + } + if ((b->wds = x1 - b->x) == 0) + b->x[0] = 0; + } + + static ULong +any_on(Bigint *b, int k) +{ + int n, nwds; + ULong *x, *x0, x1, x2; + + x = b->x; + nwds = b->wds; + n = k >> kshift; + if (n > nwds) + n = nwds; + else if (n < nwds && (k &= kmask)) { + x1 = x2 = x[n]; + x1 >>= k; + x1 <<= k; + if (x1 != x2) + return 1; + } + x0 = x; + x += n; + while(x > x0) + if (*--x) + return 1; + return 0; + } + +enum { /* rounding values: same as FLT_ROUNDS */ + Round_zero = 0, + Round_near = 1, + Round_up = 2, + Round_down = 3 + }; + + void +gethex( const char **sp, U *rvp, int rounding, int sign MTd) +{ + Bigint *b; + const unsigned char *decpt, *s0, *s, *s1; + Long e, e1; + ULong L, lostbits, *x; + int big, denorm, esign, havedig, k, n, nbits, up, zret; +#ifdef IBM + int j; +#endif + enum { +#ifdef IEEE_Arith /*{{*/ + emax = 0x7fe - Bias - P + 1, + emin = Emin - P + 1 +#else /*}{*/ + emin = Emin - P, +#ifdef VAX + emax = 0x7ff - Bias - P + 1 +#endif +#ifdef IBM + emax = 0x7f - Bias - P +#endif +#endif /*}}*/ + }; +#ifdef USE_LOCALE + int i; +#ifdef NO_LOCALE_CACHE + const unsigned char *decimalpoint = (unsigned char*) + localeconv()->decimal_point; +#else + const unsigned char *decimalpoint; + static unsigned char *decimalpoint_cache; + if (!(s0 = decimalpoint_cache)) { + s0 = (unsigned char*)localeconv()->decimal_point; + if ((decimalpoint_cache = (unsigned char*) + MALLOC(strlen((const char*)s0) + 1))) { + strcpy((char*)decimalpoint_cache, (const char*)s0); + s0 = decimalpoint_cache; + } + } + decimalpoint = s0; +#endif +#endif + + /**** if (!hexdig['0']) hexdig_init(); ****/ + havedig = 0; + s0 = *(const unsigned char **)sp + 2; + while(s0[havedig] == '0') + havedig++; + s0 += havedig; + s = s0; + decpt = 0; + zret = 0; + e = 0; + if (hexdig[*s]) + havedig++; + else { + zret = 1; +#ifdef USE_LOCALE + for(i = 0; decimalpoint[i]; ++i) { + if (s[i] != decimalpoint[i]) + goto pcheck; + } + decpt = s += i; +#else + if (*s != '.') + goto pcheck; + decpt = ++s; +#endif + if (!hexdig[*s]) + goto pcheck; + while(*s == '0') + s++; + if (hexdig[*s]) + zret = 0; + havedig = 1; + s0 = s; + } + while(hexdig[*s]) + s++; +#ifdef USE_LOCALE + if (*s == *decimalpoint && !decpt) { + for(i = 1; decimalpoint[i]; ++i) { + if (s[i] != decimalpoint[i]) + goto pcheck; + } + decpt = s += i; +#else + if (*s == '.' && !decpt) { + decpt = ++s; +#endif + while(hexdig[*s]) + s++; + }/*}*/ + if (decpt) + e = -(((Long)(s-decpt)) << 2); + pcheck: + s1 = s; + big = esign = 0; + switch(*s) { + case 'p': + case 'P': + switch(*++s) { + case '-': + esign = 1; + /* no break */ + case '+': + s++; + } + if ((n = hexdig[*s]) == 0 || n > 0x19) { + s = s1; + break; + } + e1 = n - 0x10; + while((n = hexdig[*++s]) !=0 && n <= 0x19) { + if (e1 & 0xf8000000) + big = 1; + e1 = 10*e1 + n - 0x10; + } + if (esign) + e1 = -e1; + e += e1; + } + *sp = (char*)s; + if (!havedig) + *sp = (char*)s0 - 1; + if (zret) + goto retz1; + if (big) { + if (esign) { +#ifdef IEEE_Arith + switch(rounding) { + case Round_up: + if (sign) + break; + goto ret_tiny; + case Round_down: + if (!sign) + break; + goto ret_tiny; + } +#endif + goto retz; +#ifdef IEEE_Arith + ret_tinyf: + Bfree(b MTa); + ret_tiny: + Set_errno(ERANGE); + word0(rvp) = 0; + word1(rvp) = 1; + return; +#endif /* IEEE_Arith */ + } + switch(rounding) { + case Round_near: + goto ovfl1; + case Round_up: + if (!sign) + goto ovfl1; + goto ret_big; + case Round_down: + if (sign) + goto ovfl1; + goto ret_big; + } + ret_big: + word0(rvp) = Big0; + word1(rvp) = Big1; + return; + } + n = s1 - s0 - 1; + for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1) + k++; + b = Balloc(k MTa); + x = b->x; + n = 0; + L = 0; +#ifdef USE_LOCALE + for(i = 0; decimalpoint[i+1]; ++i); +#endif + while(s1 > s0) { +#ifdef USE_LOCALE + if (*--s1 == decimalpoint[i]) { + s1 -= i; + continue; + } +#else + if (*--s1 == '.') + continue; +#endif + if (n == ULbits) { + *x++ = L; + L = 0; + n = 0; + } + L |= (hexdig[*s1] & 0x0f) << n; + n += 4; + } + *x++ = L; + b->wds = n = x - b->x; + n = ULbits*n - hi0bits(L); + nbits = Nbits; + lostbits = 0; + x = b->x; + if (n > nbits) { + n -= nbits; + if (any_on(b,n)) { + lostbits = 1; + k = n - 1; + if (x[k>>kshift] & 1 << (k & kmask)) { + lostbits = 2; + if (k > 0 && any_on(b,k)) + lostbits = 3; + } + } + rshift(b, n); + e += n; + } + else if (n < nbits) { + n = nbits - n; + b = lshift(b, n MTa); + e -= n; + x = b->x; + } + if (e > emax) { + ovfl: + Bfree(b MTa); + ovfl1: + Set_errno(ERANGE); +#ifdef Honor_FLT_ROUNDS + switch (rounding) { + case Round_zero: + goto ret_big; + case Round_down: + if (!sign) + goto ret_big; + break; + case Round_up: + if (sign) + goto ret_big; + } +#endif + word0(rvp) = Exp_mask; + word1(rvp) = 0; + return; + } + denorm = 0; + if (e < emin) { + denorm = 1; + n = emin - e; + if (n >= nbits) { +#ifdef IEEE_Arith /*{*/ + switch (rounding) { + case Round_near: + if (n == nbits && (n < 2 || lostbits || any_on(b,n-1))) + goto ret_tinyf; + break; + case Round_up: + if (!sign) + goto ret_tinyf; + break; + case Round_down: + if (sign) + goto ret_tinyf; + } +#endif /* } IEEE_Arith */ + Bfree(b MTa); + retz: + Set_errno(ERANGE); + retz1: + rvp->d = 0.; + return; + } + k = n - 1; + if (lostbits) + lostbits = 1; + else if (k > 0) + lostbits = any_on(b,k); + if (x[k>>kshift] & 1 << (k & kmask)) + lostbits |= 2; + nbits -= n; + rshift(b,n); + e = emin; + } + if (lostbits) { + up = 0; + switch(rounding) { + case Round_zero: + break; + case Round_near: + if (lostbits & 2 + && (lostbits & 1) | (x[0] & 1)) + up = 1; + break; + case Round_up: + up = 1 - sign; + break; + case Round_down: + up = sign; + } + if (up) { + k = b->wds; + b = increment(b MTa); + x = b->x; + if (denorm) { +#if 0 + if (nbits == Nbits - 1 + && x[nbits >> kshift] & 1 << (nbits & kmask)) + denorm = 0; /* not currently used */ +#endif + } + else if (b->wds > k + || ((n = nbits & kmask) !=0 + && hi0bits(x[k-1]) < 32-n)) { + rshift(b,1); + if (++e > Emax) + goto ovfl; + } + } + } +#ifdef IEEE_Arith + if (denorm) + word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0; + else + word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20); + word1(rvp) = b->x[0]; +#endif +#ifdef IBM + if ((j = e & 3)) { + k = b->x[0] & ((1 << j) - 1); + rshift(b,j); + if (k) { + switch(rounding) { + case Round_up: + if (!sign) + increment(b); + break; + case Round_down: + if (sign) + increment(b); + break; + case Round_near: + j = 1 << (j-1); + if (k & j && ((k & (j-1)) | lostbits)) + increment(b); + } + } + } + e >>= 2; + word0(rvp) = b->x[1] | ((e + 65 + 13) << 24); + word1(rvp) = b->x[0]; +#endif +#ifdef VAX + /* The next two lines ignore swap of low- and high-order 2 bytes. */ + /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */ + /* word1(rvp) = b->x[0]; */ + word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16); + word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16); +#endif + Bfree(b MTa); + } +#endif /*!NO_HEX_FP}*/ + + static int +dshift(Bigint *b, int p2) +{ + int rv = hi0bits(b->x[b->wds-1]) - 4; + if (p2 > 0) + rv -= p2; + return rv & kmask; + } + + static int +quorem(Bigint *b, Bigint *S) +{ + int n; + ULong *bx, *bxe, q, *sx, *sxe; +#ifdef ULLong + ULLong borrow, carry, y, ys; +#else + ULong borrow, carry, y, ys; +#ifdef Pack_32 + ULong si, z, zs; +#endif +#endif + + n = S->wds; +#ifdef DEBUG + /*debug*/ if (b->wds > n) + /*debug*/ Bug("oversize b in quorem"); +#endif + if (b->wds < n) + return 0; + sx = S->x; + sxe = sx + --n; + bx = b->x; + bxe = bx + n; + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ +#ifdef DEBUG +#ifdef NO_STRTOD_BIGCOMP + /*debug*/ if (q > 9) +#else + /* An oversized q is possible when quorem is called from bigcomp and */ + /* the input is near, e.g., twice the smallest denormalized number. */ + /*debug*/ if (q > 15) +#endif + /*debug*/ Bug("oversized quotient in quorem"); +#endif + if (q) { + borrow = 0; + carry = 0; + do { +#ifdef ULLong + ys = *sx++ * (ULLong)q + carry; + carry = ys >> 32; + y = *bx - (ys & FFFFFFFF) - borrow; + borrow = y >> 32 & (ULong)1; + *bx++ = y & FFFFFFFF; +#else +#ifdef Pack_32 + si = *sx++; + ys = (si & 0xffff) * q + carry; + zs = (si >> 16) * q + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); +#else + ys = *sx++ * q + carry; + carry = ys >> 16; + y = *bx - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + *bx++ = y & 0xffff; +#endif +#endif + } + while(sx <= sxe); + if (!*bxe) { + bx = b->x; + while(--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + if (cmp(b, S) >= 0) { + q++; + borrow = 0; + carry = 0; + bx = b->x; + sx = S->x; + do { +#ifdef ULLong + ys = *sx++ + carry; + carry = ys >> 32; + y = *bx - (ys & FFFFFFFF) - borrow; + borrow = y >> 32 & (ULong)1; + *bx++ = y & FFFFFFFF; +#else +#ifdef Pack_32 + si = *sx++; + ys = (si & 0xffff) + carry; + zs = (si >> 16) + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); +#else + ys = *sx++ + carry; + carry = ys >> 16; + y = *bx - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + *bx++ = y & 0xffff; +#endif +#endif + } + while(sx <= sxe); + bx = b->x; + bxe = bx + n; + if (!*bxe) { + while(--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + return q; + } + +#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/ + static double +sulp(U *x, BCinfo *bc) +{ + U u; + double rv; + int i; + + rv = ulp(x); + if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0) + return rv; /* Is there an example where i <= 0 ? */ + word0(&u) = Exp_1 + (i << Exp_shift); + word1(&u) = 0; + return rv * u.d; + } +#endif /*}*/ + +#ifndef NO_STRTOD_BIGCOMP + static void +bigcomp(U *rv, const char *s0, BCinfo *bc MTd) +{ + Bigint *b, *d; + int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase; + + dsign = bc->dsign; + nd = bc->nd; + nd0 = bc->nd0; + p5 = nd + bc->e0 - 1; + speccase = 0; +#ifndef Sudden_Underflow + if (rv->d == 0.) { /* special case: value near underflow-to-zero */ + /* threshold was rounded to zero */ + b = i2b(1 MTa); + p2 = Emin - P + 1; + bbits = 1; +#ifdef Avoid_Underflow + word0(rv) = (P+2) << Exp_shift; +#else + word1(rv) = 1; +#endif + i = 0; +#ifdef Honor_FLT_ROUNDS + if (bc->rounding == 1) +#endif + { + speccase = 1; + --p2; + dsign = 0; + goto have_i; + } + } + else +#endif + b = d2b(rv, &p2, &bbits MTa); +#ifdef Avoid_Underflow + p2 -= bc->scale; +#endif + /* floor(log2(rv)) == bbits - 1 + p2 */ + /* Check for denormal case. */ + i = P - bbits; + if (i > (j = P - Emin - 1 + p2)) { +#ifdef Sudden_Underflow + Bfree(b MTa); + b = i2b(1 MTa); + p2 = Emin; + i = P - 1; +#ifdef Avoid_Underflow + word0(rv) = (1 + bc->scale) << Exp_shift; +#else + word0(rv) = Exp_msk1; +#endif + word1(rv) = 0; +#else + i = j; +#endif + } +#ifdef Honor_FLT_ROUNDS + if (bc->rounding != 1) { + if (i > 0) + b = lshift(b, i MTa); + if (dsign) + b = increment(b MTa); + } + else +#endif + { + b = lshift(b, ++i MTa); + b->x[0] |= 1; + } +#ifndef Sudden_Underflow + have_i: +#endif + p2 -= p5 + i; + d = i2b(1 MTa); + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + */ + if (p5 > 0) + d = pow5mult(d, p5 MTa); + else if (p5 < 0) + b = pow5mult(b, -p5 MTa); + if (p2 > 0) { + b2 = p2; + d2 = 0; + } + else { + b2 = 0; + d2 = -p2; + } + i = dshift(d, d2); + if ((b2 += i) > 0) + b = lshift(b, b2 MTa); + if ((d2 += i) > 0) + d = lshift(d, d2 MTa); + + /* Now b/d = exactly half-way between the two floating-point values */ + /* on either side of the input string. Compute first digit of b/d. */ + + if (!(dig = quorem(b,d))) { + b = multadd(b, 10, 0 MTa); /* very unlikely */ + dig = quorem(b,d); + } + + /* Compare b/d with s0 */ + + for(i = 0; i < nd0; ) { + if ((dd = s0[i++] - '0' - dig)) + goto ret; + if (!b->x[0] && b->wds == 1) { + if (i < nd) + dd = 1; + goto ret; + } + b = multadd(b, 10, 0 MTa); + dig = quorem(b,d); + } + for(j = bc->dp1; i++ < nd;) { + if ((dd = s0[j++] - '0' - dig)) + goto ret; + if (!b->x[0] && b->wds == 1) { + if (i < nd) + dd = 1; + goto ret; + } + b = multadd(b, 10, 0 MTa); + dig = quorem(b,d); + } + if (dig > 0 || b->x[0] || b->wds > 1) + dd = -1; + ret: + Bfree(b MTa); + Bfree(d MTa); +#ifdef Honor_FLT_ROUNDS + if (bc->rounding != 1) { + if (dd < 0) { + if (bc->rounding == 0) { + if (!dsign) + goto retlow1; + } + else if (dsign) + goto rethi1; + } + else if (dd > 0) { + if (bc->rounding == 0) { + if (dsign) + goto rethi1; + goto ret1; + } + if (!dsign) + goto rethi1; + dval(rv) += 2.*sulp(rv,bc); + } + else { + bc->inexact = 0; + if (dsign) + goto rethi1; + } + } + else +#endif + if (speccase) { + if (dd <= 0) + rv->d = 0.; + } + else if (dd < 0) { + if (!dsign) /* does not happen for round-near */ +retlow1: + dval(rv) -= sulp(rv,bc); + } + else if (dd > 0) { + if (dsign) { + rethi1: + dval(rv) += sulp(rv,bc); + } + } + else { + /* Exact half-way case: apply round-even rule. */ + if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) { + i = 1 - j; + if (i <= 31) { + if (word1(rv) & (0x1 << i)) + goto odd; + } + else if (word0(rv) & (0x1 << (i-32))) + goto odd; + } + else if (word1(rv) & 1) { + odd: + if (dsign) + goto rethi1; + goto retlow1; + } + } + +#ifdef Honor_FLT_ROUNDS + ret1: +#endif + return; + } +#endif /* NO_STRTOD_BIGCOMP */ + + double +netlib_strtod(const char *s00, char **se) +{ + int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1; + int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign; + const char *s, *s0, *s1; + double aadj, aadj1; + Long L; + U aadj2, adj, rv, rv0; + ULong y, z; + BCinfo bc; + Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; +#ifdef USE_BF96 + ULLong bhi, blo, brv, t00, t01, t02, t10, t11, terv, tg, tlo, yz; + const BF96 *p10; + int bexact, erv; +#endif +#ifdef Avoid_Underflow + ULong Lsb, Lsb1; +#endif +#ifdef SET_INEXACT + int oldinexact; +#endif +#ifndef NO_STRTOD_BIGCOMP + int req_bigcomp = 0; +#endif +#ifdef MULTIPLE_THREADS + ThInfo *TI = 0; +#endif +#ifdef Honor_FLT_ROUNDS /*{*/ +#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ + bc.rounding = Flt_Rounds; +#else /*}{*/ + bc.rounding = 1; + switch(fegetround()) { + case FE_TOWARDZERO: bc.rounding = 0; break; + case FE_UPWARD: bc.rounding = 2; break; + case FE_DOWNWARD: bc.rounding = 3; + } +#endif /*}}*/ +#endif /*}*/ +#ifdef USE_LOCALE + const char *s2; +#endif + + sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0; + dval(&rv) = 0.; + for(s = s00;;s++) switch(*s) { + case '-': + sign = 1; + /* no break */ + case '+': + if (*++s) + goto break2; + /* no break */ + case 0: + goto ret0; + case '\t': + case '\n': + case '\v': + case '\f': + case '\r': + case ' ': + continue; + default: + goto break2; + } + break2: + if (*s == '0') { +#ifndef NO_HEX_FP /*{*/ + switch(s[1]) { + case 'x': + case 'X': +#ifdef Honor_FLT_ROUNDS + gethex(&s, &rv, bc.rounding, sign MTb); +#else + gethex(&s, &rv, 1, sign MTb); +#endif + goto ret; + } +#endif /*}*/ + nz0 = 1; + while(*++s == '0') ; + if (!*s) + goto ret; + } + s0 = s; + nd = nf = 0; +#ifdef USE_BF96 + yz = 0; + for(; (c = *s) >= '0' && c <= '9'; nd++, s++) + if (nd < 19) + yz = 10*yz + c - '0'; +#else + y = z = 0; + for(; (c = *s) >= '0' && c <= '9'; nd++, s++) + if (nd < 9) + y = 10*y + c - '0'; + else if (nd < DBL_DIG + 2) + z = 10*z + c - '0'; +#endif + nd0 = nd; + bc.dp0 = bc.dp1 = s - s0; + for(s1 = s; s1 > s0 && *--s1 == '0'; ) + ++nz1; +#ifdef USE_LOCALE + s1 = localeconv()->decimal_point; + if (c == *s1) { + c = '.'; + if (*++s1) { + s2 = s; + for(;;) { + if (*++s2 != *s1) { + c = 0; + break; + } + if (!*++s1) { + s = s2; + break; + } + } + } + } +#endif + if (c == '.') { + c = *++s; + bc.dp1 = s - s0; + bc.dplen = bc.dp1 - bc.dp0; + if (!nd) { + for(; c == '0'; c = *++s) + nz++; + if (c > '0' && c <= '9') { + bc.dp0 = s0 - s; + bc.dp1 = bc.dp0 + bc.dplen; + s0 = s; + nf += nz; + nz = 0; + goto have_dig; + } + goto dig_done; + } + for(; c >= '0' && c <= '9'; c = *++s) { + have_dig: + nz++; + if (c -= '0') { + nf += nz; + i = 1; +#ifdef USE_BF96 + for(; i < nz; ++i) { + if (++nd <= 19) + yz *= 10; + } + if (++nd <= 19) + yz = 10*yz + c; +#else + for(; i < nz; ++i) { + if (nd++ < 9) + y *= 10; + else if (nd <= DBL_DIG + 2) + z *= 10; + } + if (nd++ < 9) + y = 10*y + c; + else if (nd <= DBL_DIG + 2) + z = 10*z + c; +#endif + nz = nz1 = 0; + } + } + } + dig_done: + e = 0; + if (c == 'e' || c == 'E') { + if (!nd && !nz && !nz0) { + goto ret0; + } + s00 = s; + esign = 0; + switch(c = *++s) { + case '-': + esign = 1; + case '+': + c = *++s; + } + if (c >= '0' && c <= '9') { + while(c == '0') + c = *++s; + if (c > '0' && c <= '9') { + L = c - '0'; + s1 = s; + while((c = *++s) >= '0' && c <= '9') + L = 10*L + c - '0'; + if (s - s1 > 8 || L > 19999) + /* Avoid confusion from exponents + * so large that e might overflow. + */ + e = 19999; /* safe for 16 bit ints */ + else + e = (int)L; + if (esign) + e = -e; + } + else + e = 0; + } + else + s = s00; + } + if (!nd) { + if (!nz && !nz0) { +#ifdef INFNAN_CHECK /*{*/ + /* Check for Nan and Infinity */ + if (!bc.dplen) + switch(c) { + case 'i': + case 'I': + if (match(&s,"nf")) { + --s; + if (!match(&s,"inity")) + ++s; + word0(&rv) = 0x7ff00000; + word1(&rv) = 0; + goto ret; + } + break; + case 'n': + case 'N': + if (match(&s, "an")) { + word0(&rv) = NAN_WORD0; + word1(&rv) = NAN_WORD1; +#ifndef No_Hex_NaN + if (*s == '(') /*)*/ + hexnan(&rv, &s); +#endif + goto ret; + } + } +#endif /*} INFNAN_CHECK */ + ret0: + s = s00; + sign = 0; + } + goto ret; + } + bc.e0 = e1 = e -= nf; + + /* Now we have nd0 digits, starting at s0, followed by a + * decimal point, followed by nd-nd0 digits. The number we're + * after is the integer represented by those digits times + * 10**e */ + + if (!nd0) + nd0 = nd; +#ifndef USE_BF96 + k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2; + dval(&rv) = y; + if (k > 9) { +#ifdef SET_INEXACT + if (k > DBL_DIG) + oldinexact = get_inexact(); +#endif + dval(&rv) = tens[k - 9] * dval(&rv) + z; + } +#endif + bd0 = 0; + if (nd <= DBL_DIG +#ifndef RND_PRODQUOT +#ifndef Honor_FLT_ROUNDS + && Flt_Rounds == 1 +#endif +#endif + ) { +#ifdef USE_BF96 + dval(&rv) = yz; +#endif + if (!e) + goto ret; +#ifndef ROUND_BIASED_without_Round_Up + if (e > 0) { + if (e <= Ten_pmax) { +#ifdef SET_INEXACT + bc.inexact = 0; + oldinexact = 1; +#endif +#ifdef VAX + goto vax_ovfl_check; +#else +#ifdef Honor_FLT_ROUNDS + /* round correctly FLT_ROUNDS = 2 or 3 */ + if (sign) { + rv.d = -rv.d; + sign = 0; + } +#endif + /* rv = */ rounded_product(dval(&rv), tens[e]); + goto ret; +#endif + } + i = DBL_DIG - nd; + if (e <= Ten_pmax + i) { + /* A fancier test would sometimes let us do + * this for larger i values. + */ +#ifdef SET_INEXACT + bc.inexact = 0; + oldinexact = 1; +#endif +#ifdef Honor_FLT_ROUNDS + /* round correctly FLT_ROUNDS = 2 or 3 */ + if (sign) { + rv.d = -rv.d; + sign = 0; + } +#endif + e -= i; + dval(&rv) *= tens[i]; +#ifdef VAX + /* VAX exponent range is so narrow we must + * worry about overflow here... + */ + vax_ovfl_check: + word0(&rv) -= P*Exp_msk1; + /* rv = */ rounded_product(dval(&rv), tens[e]); + if ((word0(&rv) & Exp_mask) + > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) + goto ovfl; + word0(&rv) += P*Exp_msk1; +#else + /* rv = */ rounded_product(dval(&rv), tens[e]); +#endif + goto ret; + } + } +#ifndef Inaccurate_Divide + else if (e >= -Ten_pmax) { +#ifdef SET_INEXACT + bc.inexact = 0; + oldinexact = 1; +#endif +#ifdef Honor_FLT_ROUNDS + /* round correctly FLT_ROUNDS = 2 or 3 */ + if (sign) { + rv.d = -rv.d; + sign = 0; + } +#endif + /* rv = */ rounded_quotient(dval(&rv), tens[-e]); + goto ret; + } +#endif +#endif /* ROUND_BIASED_without_Round_Up */ + } +#ifdef USE_BF96 + k = nd < 19 ? nd : 19; +#endif + e1 += nd - k; /* scale factor = 10^e1 */ + +#ifdef IEEE_Arith +#ifdef SET_INEXACT + bc.inexact = 1; +#ifndef USE_BF96 + if (k <= DBL_DIG) +#endif + oldinexact = get_inexact(); +#endif +#ifdef Honor_FLT_ROUNDS + if (bc.rounding >= 2) { + if (sign) + bc.rounding = bc.rounding == 2 ? 0 : 2; + else + if (bc.rounding != 2) + bc.rounding = 0; + } +#endif +#endif /*IEEE_Arith*/ + +#ifdef USE_BF96 /*{*/ + Debug(++dtoa_stats[0]); + i = e1 + 342; + if (i < 0) + goto undfl; + if (i > 650) + goto ovfl; + p10 = &pten[i]; + brv = yz; + /* shift brv left, with i = number of bits shifted */ + i = 0; + if (!(brv & 0xffffffff00000000ull)) { + i = 32; + brv <<= 32; + } + if (!(brv & 0xffff000000000000ull)) { + i += 16; + brv <<= 16; + } + if (!(brv & 0xff00000000000000ull)) { + i += 8; + brv <<= 8; + } + if (!(brv & 0xf000000000000000ull)) { + i += 4; + brv <<= 4; + } + if (!(brv & 0xc000000000000000ull)) { + i += 2; + brv <<= 2; + } + if (!(brv & 0x8000000000000000ull)) { + i += 1; + brv <<= 1; + } + erv = (64 + 0x3fe) + p10->e - i; + if (erv <= 0 && nd > 19) + goto many_digits; /* denormal: may need to look at all digits */ + bhi = brv >> 32; + blo = brv & 0xffffffffull; + /* Unsigned 32-bit ints lie in [0,2^32-1] and */ + /* unsigned 64-bit ints lie in [0, 2^64-1]. The product of two unsigned */ + /* 32-bit ints is <= 2^64 - 2*2^32-1 + 1 = 2^64 - 1 - 2*(2^32 - 1), so */ + /* we can add two unsigned 32-bit ints to the product of two such ints, */ + /* and 64 bits suffice to contain the result. */ + t01 = bhi * p10->b1; + t10 = blo * p10->b0 + (t01 & 0xffffffffull); + t00 = bhi * p10->b0 + (t01 >> 32) + (t10 >> 32); + if (t00 & 0x8000000000000000ull) { + if ((t00 & 0x3ff) && (~t00 & 0x3fe)) { /* unambiguous result? */ + if (nd > 19 && ((t00 + (1< 19 && ((t00 + (1<b2; + t11 = blo * p10->b1 + (t02 & 0xffffffffull); + bexact = 1; + if (e1 < 0 || e1 > 41 || (t10 | t11) & 0xffffffffull || nd > 19) + bexact = 0; + tlo = (t10 & 0xffffffffull) + (t02 >> 32) + (t11 >> 32); + if (!bexact && (tlo + 0x10) >> 32 > tlo >> 32) + goto many_digits; + t00 += tlo >> 32; + if (t00 & 0x8000000000000000ull) { + if (erv <= 0) { /* denormal result */ + if (nd >= 20 || !((tlo & 0xfffffff0) | (t00 & 0x3ff))) + goto many_digits; + denormal: + if (erv <= -52) { +#ifdef Honor_FLT_ROUNDS + switch(bc.rounding) { + case 0: goto undfl; + case 2: goto tiniest; + } +#endif + if (erv < -52 || !(t00 & 0x7fffffffffffffffull)) + goto undfl; + goto tiniest; + } + tg = 1ull << (11 - erv); + t00 &= ~(tg - 1); /* clear low bits */ +#ifdef Honor_FLT_ROUNDS + switch(bc.rounding) { + case 0: goto noround_den; + case 2: goto roundup_den; + } +#endif + if (t00 & tg) { +#ifdef Honor_FLT_ROUNDS + roundup_den: +#endif + t00 += tg << 1; + if (!(t00 & 0x8000000000000000ull)) { + if (++erv > 0) + goto smallest_normal; + t00 = 0x8000000000000000ull; + } + } +#ifdef Honor_FLT_ROUNDS + noround_den: +#endif + LLval(&rv) = t00 >> (12 - erv); + Set_errno(ERANGE); + goto ret; + } + if (bexact) { +#ifdef SET_INEXACT + if (!(t00 & 0x7ff) && !(tlo & 0xffffffffull)) { + bc.inexact = 0; + goto noround; + } +#endif +#ifdef Honor_FLT_ROUNDS + switch(bc.rounding) { + case 2: + if (t00 & 0x7ff) + goto roundup; + case 0: goto noround; + } +#endif + if (t00 & 0x400 && (tlo & 0xffffffff) | (t00 & 0xbff)) + goto roundup; + goto noround; + } + if ((tlo & 0xfffffff0) | (t00 & 0x3ff) + && (nd <= 19 || ((t00 + (1ull << i)) & 0xfffffffffffffc00ull) + == (t00 & 0xfffffffffffffc00ull))) { + /* Unambiguous result. */ + /* If nd > 19, then incrementing the 19th digit */ + /* does not affect rv. */ +#ifdef Honor_FLT_ROUNDS + switch(bc.rounding) { + case 0: goto noround; + case 2: goto roundup; + } +#endif + if (t00 & 0x400) { /* round up */ + roundup: + t00 += 0x800; + if (!(t00 & 0x8000000000000000ull)) { + /* rounded up to a power of 2 */ + if (erv >= 0x7fe) + goto ovfl; + terv = erv + 1; + LLval(&rv) = terv << 52; + goto ret; + } + } + noround: + if (erv >= 0x7ff) + goto ovfl; + terv = erv; + LLval(&rv) = (terv << 52) | ((t00 & 0x7ffffffffffff800ull) >> 11); + goto ret; + } + } + else { + if (erv <= 1) { /* denormal result */ + if (nd >= 20 || !((tlo & 0xfffffff0) | (t00 & 0x1ff))) + goto many_digits; + denormal1: + if (erv <= -51) { +#ifdef Honor_FLT_ROUNDS + switch(bc.rounding) { + case 0: goto undfl; + case 2: goto tiniest; + } +#endif + if (erv < -51 || !(t00 & 0x3fffffffffffffffull)) + goto undfl; + tiniest: + LLval(&rv) = 1; + Set_errno(ERANGE); + goto ret; + } + tg = 1ull << (11 - erv); +#ifdef Honor_FLT_ROUNDS + switch(bc.rounding) { + case 0: goto noround1_den; + case 2: goto roundup1_den; + } +#endif + if (t00 & tg) { +#ifdef Honor_FLT_ROUNDS + roundup1_den: +#endif + if (0x8000000000000000ull & (t00 += (tg<<1)) && erv == 1) { + + smallest_normal: + LLval(&rv) = 0x0010000000000000ull; + goto ret; + } + } +#ifdef Honor_FLT_ROUNDS + noround1_den: +#endif + if (erv <= -52) + goto undfl; + LLval(&rv) = t00 >> (12 - erv); + Set_errno(ERANGE); + goto ret; + } + if (bexact) { +#ifdef SET_INEXACT + if (!(t00 & 0x3ff) && !(tlo & 0xffffffffull)) { + bc.inexact = 0; + goto noround1; + } +#endif +#ifdef Honor_FLT_ROUNDS + switch(bc.rounding) { + case 2: + if (t00 & 0x3ff) + goto roundup1; + case 0: goto noround1; + } +#endif + if (t00 & 0x200 && (t00 & 0x5ff || tlo)) + goto roundup1; + goto noround1; + } + if ((tlo & 0xfffffff0) | (t00 & 0x1ff) + && (nd <= 19 || ((t00 + (1ull << i)) & 0x7ffffffffffffe00ull) + == (t00 & 0x7ffffffffffffe00ull))) { + /* Unambiguous result. */ +#ifdef Honor_FLT_ROUNDS + switch(bc.rounding) { + case 0: goto noround1; + case 2: goto roundup1; + } +#endif + if (t00 & 0x200) { /* round up */ + roundup1: + t00 += 0x400; + if (!(t00 & 0x4000000000000000ull)) { + /* rounded up to a power of 2 */ + if (erv >= 0x7ff) + goto ovfl; + terv = erv; + LLval(&rv) = terv << 52; + goto ret; + } + } + noround1: + if (erv >= 0x800) + goto ovfl; + terv = erv - 1; + LLval(&rv) = (terv << 52) | ((t00 & 0x3ffffffffffffc00ull) >> 10); + goto ret; + } + } + many_digits: + Debug(++dtoa_stats[2]); + if (nd > 17) { + if (nd > 18) { + yz /= 100; + e1 += 2; + } + else { + yz /= 10; + e1 += 1; + } + y = yz / 100000000; + } + else if (nd > 9) { + i = nd - 9; + y = (yz >> i) / pfive[i-1]; + } + else + y = yz; + dval(&rv) = yz; +#endif /*}*/ + +#ifdef IEEE_Arith +#ifdef Avoid_Underflow + bc.scale = 0; +#endif +#endif /*IEEE_Arith*/ + + /* Get starting approximation = rv * 10**e1 */ + + if (e1 > 0) { + if ((i = e1 & 15)) + dval(&rv) *= tens[i]; + if (e1 &= ~15) { + if (e1 > DBL_MAX_10_EXP) { + ovfl: + /* Can't trust HUGE_VAL */ +#ifdef IEEE_Arith +#ifdef Honor_FLT_ROUNDS + switch(bc.rounding) { + case 0: /* toward 0 */ + case 3: /* toward -infinity */ + word0(&rv) = Big0; + word1(&rv) = Big1; + break; + default: + word0(&rv) = Exp_mask; + word1(&rv) = 0; + } +#else /*Honor_FLT_ROUNDS*/ + word0(&rv) = Exp_mask; + word1(&rv) = 0; +#endif /*Honor_FLT_ROUNDS*/ +#ifdef SET_INEXACT + /* set overflow bit */ + dval(&rv0) = 1e300; + dval(&rv0) *= dval(&rv0); +#endif +#else /*IEEE_Arith*/ + word0(&rv) = Big0; + word1(&rv) = Big1; +#endif /*IEEE_Arith*/ + range_err: + if (bd0) { + Bfree(bb MTb); + Bfree(bd MTb); + Bfree(bs MTb); + Bfree(bd0 MTb); + Bfree(delta MTb); + } + Set_errno(ERANGE); + goto ret; + } + e1 >>= 4; + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + dval(&rv) *= bigtens[j]; + /* The last multiplication could overflow. */ + word0(&rv) -= P*Exp_msk1; + dval(&rv) *= bigtens[j]; + if ((z = word0(&rv) & Exp_mask) + > Exp_msk1*(DBL_MAX_EXP+Bias-P)) + goto ovfl; + if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { + /* set to largest number */ + /* (Can't trust DBL_MAX) */ + word0(&rv) = Big0; + word1(&rv) = Big1; + } + else + word0(&rv) += P*Exp_msk1; + } + } + else if (e1 < 0) { + e1 = -e1; + if ((i = e1 & 15)) + dval(&rv) /= tens[i]; + if (e1 >>= 4) { + if (e1 >= 1 << n_bigtens) + goto undfl; +#ifdef Avoid_Underflow + if (e1 & Scale_Bit) + bc.scale = 2*P; + for(j = 0; e1 > 0; j++, e1 >>= 1) + if (e1 & 1) + dval(&rv) *= tinytens[j]; + if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) + >> Exp_shift)) > 0) { + /* scaled rv is denormal; clear j low bits */ + if (j >= 32) { + if (j > 54) + goto undfl; + word1(&rv) = 0; + if (j >= 53) + word0(&rv) = (P+2)*Exp_msk1; + else + word0(&rv) &= 0xffffffff << (j-32); + } + else + word1(&rv) &= 0xffffffff << j; + } +#else + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + dval(&rv) *= tinytens[j]; + /* The last multiplication could underflow. */ + dval(&rv0) = dval(&rv); + dval(&rv) *= tinytens[j]; + if (!dval(&rv)) { + dval(&rv) = 2.*dval(&rv0); + dval(&rv) *= tinytens[j]; +#endif + if (!dval(&rv)) { + undfl: + dval(&rv) = 0.; +#ifdef Honor_FLT_ROUNDS + if (bc.rounding == 2) + word1(&rv) = 1; +#endif + goto range_err; + } +#ifndef Avoid_Underflow + word0(&rv) = Tiny0; + word1(&rv) = Tiny1; + /* The refinement below will clean + * this approximation up. + */ + } +#endif + } + } + + /* Now the hard part -- adjusting rv to the correct value.*/ + + /* Put digits into bd: true value = bd * 10^e */ + + bc.nd = nd - nz1; +#ifndef NO_STRTOD_BIGCOMP + bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */ + /* to silence an erroneous warning about bc.nd0 */ + /* possibly not being initialized. */ + if (nd > strtod_diglim) { + /* ASSERT(strtod_diglim >= 18); 18 == one more than the */ + /* minimum number of decimal digits to distinguish double values */ + /* in IEEE arithmetic. */ + i = j = 18; + if (i > nd0) + j += bc.dplen; + for(;;) { + if (--j < bc.dp1 && j >= bc.dp0) + j = bc.dp0 - 1; + if (s0[j] != '0') + break; + --i; + } + e += nd - i; + nd = i; + if (nd0 > nd) + nd0 = nd; + if (nd < 9) { /* must recompute y */ + y = 0; + for(i = 0; i < nd0; ++i) + y = 10*y + s0[i] - '0'; + for(j = bc.dp1; i < nd; ++i) + y = 10*y + s0[j++] - '0'; + } + } +#endif + bd0 = s2b(s0, nd0, nd, y, bc.dplen MTb); + + for(;;) { + bd = Balloc(bd0->k MTb); + Bcopy(bd, bd0); + bb = d2b(&rv, &bbe, &bbbits MTb); /* rv = bb * 2^bbe */ + bs = i2b(1 MTb); + + if (e >= 0) { + bb2 = bb5 = 0; + bd2 = bd5 = e; + } + else { + bb2 = bb5 = -e; + bd2 = bd5 = 0; + } + if (bbe >= 0) + bb2 += bbe; + else + bd2 -= bbe; + bs2 = bb2; +#ifdef Honor_FLT_ROUNDS + if (bc.rounding != 1) + bs2++; +#endif +#ifdef Avoid_Underflow + Lsb = LSB; + Lsb1 = 0; + j = bbe - bc.scale; + i = j + bbbits - 1; /* logb(rv) */ + j = P + 1 - bbbits; + if (i < Emin) { /* denormal */ + i = Emin - i; + j -= i; + if (i < 32) + Lsb <<= i; + else if (i < 52) + Lsb1 = Lsb << (i-32); + else + Lsb1 = Exp_mask; + } +#else /*Avoid_Underflow*/ +#ifdef Sudden_Underflow +#ifdef IBM + j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); +#else + j = P + 1 - bbbits; +#endif +#else /*Sudden_Underflow*/ + j = bbe; + i = j + bbbits - 1; /* logb(rv) */ + if (i < Emin) /* denormal */ + j += P - Emin; + else + j = P + 1 - bbbits; +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow*/ + bb2 += j; + bd2 += j; +#ifdef Avoid_Underflow + bd2 += bc.scale; +#endif + i = bb2 < bd2 ? bb2 : bd2; + if (i > bs2) + i = bs2; + if (i > 0) { + bb2 -= i; + bd2 -= i; + bs2 -= i; + } + if (bb5 > 0) { + bs = pow5mult(bs, bb5 MTb); + bb1 = mult(bs, bb MTb); + Bfree(bb MTb); + bb = bb1; + } + if (bb2 > 0) + bb = lshift(bb, bb2 MTb); + if (bd5 > 0) + bd = pow5mult(bd, bd5 MTb); + if (bd2 > 0) + bd = lshift(bd, bd2 MTb); + if (bs2 > 0) + bs = lshift(bs, bs2 MTb); + delta = diff(bb, bd MTb); + bc.dsign = delta->sign; + delta->sign = 0; + i = cmp(delta, bs); +#ifndef NO_STRTOD_BIGCOMP /*{*/ + if (bc.nd > nd && i <= 0) { + if (bc.dsign) { + /* Must use bigcomp(). */ + req_bigcomp = 1; + break; + } +#ifdef Honor_FLT_ROUNDS + if (bc.rounding != 1) { + if (i < 0) { + req_bigcomp = 1; + break; + } + } + else +#endif + i = -1; /* Discarded digits make delta smaller. */ + } +#endif /*}*/ +#ifdef Honor_FLT_ROUNDS /*{*/ + if (bc.rounding != 1) { + if (i < 0) { + /* Error is less than an ulp */ + if (!delta->x[0] && delta->wds <= 1) { + /* exact */ +#ifdef SET_INEXACT + bc.inexact = 0; +#endif + break; + } + if (bc.rounding) { + if (bc.dsign) { + adj.d = 1.; + goto apply_adj; + } + } + else if (!bc.dsign) { + adj.d = -1.; + if (!word1(&rv) + && !(word0(&rv) & Frac_mask)) { + y = word0(&rv) & Exp_mask; +#ifdef Avoid_Underflow + if (!bc.scale || y > 2*P*Exp_msk1) +#else + if (y) +#endif + { + delta = lshift(delta,Log2P MTb); + if (cmp(delta, bs) <= 0) + adj.d = -0.5; + } + } + apply_adj: +#ifdef Avoid_Underflow /*{*/ + if (bc.scale && (y = word0(&rv) & Exp_mask) + <= 2*P*Exp_msk1) + word0(&adj) += (2*P+1)*Exp_msk1 - y; +#else +#ifdef Sudden_Underflow + if ((word0(&rv) & Exp_mask) <= + P*Exp_msk1) { + word0(&rv) += P*Exp_msk1; + dval(&rv) += adj.d*ulp(dval(&rv)); + word0(&rv) -= P*Exp_msk1; + } + else +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow}*/ + dval(&rv) += adj.d*ulp(&rv); + } + break; + } + adj.d = ratio(delta, bs); + if (adj.d < 1.) + adj.d = 1.; + if (adj.d <= 0x7ffffffe) { + /* adj = rounding ? ceil(adj) : floor(adj); */ + y = adj.d; + if (y != adj.d) { + if (!((bc.rounding>>1) ^ bc.dsign)) + y++; + adj.d = y; + } + } +#ifdef Avoid_Underflow /*{*/ + if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) + word0(&adj) += (2*P+1)*Exp_msk1 - y; +#else +#ifdef Sudden_Underflow + if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) { + word0(&rv) += P*Exp_msk1; + adj.d *= ulp(dval(&rv)); + if (bc.dsign) + dval(&rv) += adj.d; + else + dval(&rv) -= adj.d; + word0(&rv) -= P*Exp_msk1; + goto cont; + } +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow}*/ + adj.d *= ulp(&rv); + if (bc.dsign) { + if (word0(&rv) == Big0 && word1(&rv) == Big1) + goto ovfl; + dval(&rv) += adj.d; + } + else + dval(&rv) -= adj.d; + goto cont; + } +#endif /*}Honor_FLT_ROUNDS*/ + + if (i < 0) { + /* Error is less than half an ulp -- check for + * special case of mantissa a power of two. + */ + if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask +#ifdef IEEE_Arith /*{*/ +#ifdef Avoid_Underflow + || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 +#else + || (word0(&rv) & Exp_mask) <= Exp_msk1 +#endif +#endif /*}*/ + ) { +#ifdef SET_INEXACT + if (!delta->x[0] && delta->wds <= 1) + bc.inexact = 0; +#endif + break; + } + if (!delta->x[0] && delta->wds <= 1) { + /* exact result */ +#ifdef SET_INEXACT + bc.inexact = 0; +#endif + break; + } + delta = lshift(delta,Log2P MTb); + if (cmp(delta, bs) > 0) + goto drop_down; + break; + } + if (i == 0) { + /* exactly half-way between */ + if (bc.dsign) { + if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 + && word1(&rv) == ( +#ifdef Avoid_Underflow + (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) + ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : +#endif + 0xffffffff)) { + /*boundary case -- increment exponent*/ + if (word0(&rv) == Big0 && word1(&rv) == Big1) + goto ovfl; + word0(&rv) = (word0(&rv) & Exp_mask) + + Exp_msk1 +#ifdef IBM + | Exp_msk1 >> 4 +#endif + ; + word1(&rv) = 0; +#ifdef Avoid_Underflow + bc.dsign = 0; +#endif + break; + } + } + else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { + drop_down: + /* boundary case -- decrement exponent */ +#ifdef Sudden_Underflow /*{{*/ + L = word0(&rv) & Exp_mask; +#ifdef IBM + if (L < Exp_msk1) +#else +#ifdef Avoid_Underflow + if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1)) +#else + if (L <= Exp_msk1) +#endif /*Avoid_Underflow*/ +#endif /*IBM*/ + { + if (bc.nd >nd) { + bc.uflchk = 1; + break; + } + goto undfl; + } + L -= Exp_msk1; +#else /*Sudden_Underflow}{*/ +#ifdef Avoid_Underflow + if (bc.scale) { + L = word0(&rv) & Exp_mask; + if (L <= (2*P+1)*Exp_msk1) { + if (L > (P+2)*Exp_msk1) + /* round even ==> */ + /* accept rv */ + break; + /* rv = smallest denormal */ + if (bc.nd >nd) { + bc.uflchk = 1; + break; + } + goto undfl; + } + } +#endif /*Avoid_Underflow*/ + L = (word0(&rv) & Exp_mask) - Exp_msk1; +#endif /*Sudden_Underflow}}*/ + word0(&rv) = L | Bndry_mask1; + word1(&rv) = 0xffffffff; +#ifdef IBM + goto cont; +#else +#ifndef NO_STRTOD_BIGCOMP + if (bc.nd > nd) + goto cont; +#endif + break; +#endif + } +#ifndef ROUND_BIASED +#ifdef Avoid_Underflow + if (Lsb1) { + if (!(word0(&rv) & Lsb1)) + break; + } + else if (!(word1(&rv) & Lsb)) + break; +#else + if (!(word1(&rv) & LSB)) + break; +#endif +#endif + if (bc.dsign) +#ifdef Avoid_Underflow + dval(&rv) += sulp(&rv, &bc); +#else + dval(&rv) += ulp(&rv); +#endif +#ifndef ROUND_BIASED + else { +#ifdef Avoid_Underflow + dval(&rv) -= sulp(&rv, &bc); +#else + dval(&rv) -= ulp(&rv); +#endif +#ifndef Sudden_Underflow + if (!dval(&rv)) { + if (bc.nd >nd) { + bc.uflchk = 1; + break; + } + goto undfl; + } +#endif + } +#ifdef Avoid_Underflow + bc.dsign = 1 - bc.dsign; +#endif +#endif + break; + } + if ((aadj = ratio(delta, bs)) <= 2.) { + if (bc.dsign) + aadj = aadj1 = 1.; + else if (word1(&rv) || word0(&rv) & Bndry_mask) { +#ifndef Sudden_Underflow + if (word1(&rv) == Tiny1 && !word0(&rv)) { + if (bc.nd >nd) { + bc.uflchk = 1; + break; + } + goto undfl; + } +#endif + aadj = 1.; + aadj1 = -1.; + } + else { + /* special case -- power of FLT_RADIX to be */ + /* rounded down... */ + + if (aadj < 2./FLT_RADIX) + aadj = 1./FLT_RADIX; + else + aadj *= 0.5; + aadj1 = -aadj; + } + } + else { + aadj *= 0.5; + aadj1 = bc.dsign ? aadj : -aadj; +#ifdef Check_FLT_ROUNDS + switch(bc.rounding) { + case 2: /* towards +infinity */ + aadj1 -= 0.5; + break; + case 0: /* towards 0 */ + case 3: /* towards -infinity */ + aadj1 += 0.5; + } +#else + if (Flt_Rounds == 0) + aadj1 += 0.5; +#endif /*Check_FLT_ROUNDS*/ + } + y = word0(&rv) & Exp_mask; + + /* Check for overflow */ + + if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { + dval(&rv0) = dval(&rv); + word0(&rv) -= P*Exp_msk1; + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; + if ((word0(&rv) & Exp_mask) >= + Exp_msk1*(DBL_MAX_EXP+Bias-P)) { + if (word0(&rv0) == Big0 && word1(&rv0) == Big1) + goto ovfl; + word0(&rv) = Big0; + word1(&rv) = Big1; + goto cont; + } + else + word0(&rv) += P*Exp_msk1; + } + else { +#ifdef Avoid_Underflow + if (bc.scale && y <= 2*P*Exp_msk1) { + if (aadj <= 0x7fffffff) { + if ((z = aadj) <= 0) + z = 1; + aadj = z; + aadj1 = bc.dsign ? aadj : -aadj; + } + dval(&aadj2) = aadj1; + word0(&aadj2) += (2*P+1)*Exp_msk1 - y; + aadj1 = dval(&aadj2); + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; + if (rv.d == 0.) +#ifdef NO_STRTOD_BIGCOMP + goto undfl; +#else + { + req_bigcomp = 1; + break; + } +#endif + } + else { + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; + } +#else +#ifdef Sudden_Underflow + if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) { + dval(&rv0) = dval(&rv); + word0(&rv) += P*Exp_msk1; + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; +#ifdef IBM + if ((word0(&rv) & Exp_mask) < P*Exp_msk1) +#else + if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) +#endif + { + if (word0(&rv0) == Tiny0 + && word1(&rv0) == Tiny1) { + if (bc.nd >nd) { + bc.uflchk = 1; + break; + } + goto undfl; + } + word0(&rv) = Tiny0; + word1(&rv) = Tiny1; + goto cont; + } + else + word0(&rv) -= P*Exp_msk1; + } + else { + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; + } +#else /*Sudden_Underflow*/ + /* Compute adj so that the IEEE rounding rules will + * correctly round rv + adj in some half-way cases. + * If rv * ulp(rv) is denormalized (i.e., + * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid + * trouble from bits lost to denormalization; + * example: 1.2e-307 . + */ + if (y <= (P-1)*Exp_msk1 && aadj > 1.) { + aadj1 = (double)(int)(aadj + 0.5); + if (!bc.dsign) + aadj1 = -aadj1; + } + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow*/ + } + z = word0(&rv) & Exp_mask; +#ifndef SET_INEXACT + if (bc.nd == nd) { +#ifdef Avoid_Underflow + if (!bc.scale) +#endif + if (y == z) { + /* Can we stop now? */ + L = (Long)aadj; + aadj -= L; + /* The tolerances below are conservative. */ + if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) { + if (aadj < .4999999 || aadj > .5000001) + break; + } + else if (aadj < .4999999/FLT_RADIX) + break; + } + } +#endif + cont: + Bfree(bb MTb); + Bfree(bd MTb); + Bfree(bs MTb); + Bfree(delta MTb); + } + Bfree(bb MTb); + Bfree(bd MTb); + Bfree(bs MTb); + Bfree(bd0 MTb); + Bfree(delta MTb); +#ifndef NO_STRTOD_BIGCOMP + if (req_bigcomp) { + bd0 = 0; + bc.e0 += nz1; + bigcomp(&rv, s0, &bc MTb); + y = word0(&rv) & Exp_mask; + if (y == Exp_mask) + goto ovfl; + if (y == 0 && rv.d == 0.) + goto undfl; + } +#endif +#ifdef Avoid_Underflow + if (bc.scale) { + word0(&rv0) = Exp_1 - 2*P*Exp_msk1; + word1(&rv0) = 0; + dval(&rv) *= dval(&rv0); +#ifndef NO_ERRNO + /* try to avoid the bug of testing an 8087 register value */ +#ifdef IEEE_Arith + if (!(word0(&rv) & Exp_mask)) +#else + if (word0(&rv) == 0 && word1(&rv) == 0) +#endif + Set_errno(ERANGE); +#endif + } +#endif /* Avoid_Underflow */ + ret: +#ifdef SET_INEXACT + if (bc.inexact) { + if (!(word0(&rv) & Exp_mask)) { + /* set underflow and inexact bits */ + dval(&rv0) = 1e-300; + dval(&rv0) *= dval(&rv0); + } + else if (!oldinexact) { + word0(&rv0) = Exp_1 + (70 << Exp_shift); + word1(&rv0) = 0; + dval(&rv0) += 1.; + } + } + else if (!oldinexact) + clear_inexact(); +#endif + if (se) + *se = (char *)s; + return sign ? -dval(&rv) : dval(&rv); + } + +#ifndef MULTIPLE_THREADS + static char *dtoa_result; +#endif + + static char * +rv_alloc(int i MTd) +{ + int j, k, *r; + + j = sizeof(ULong); + for(k = 0; + sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i; + j <<= 1) + k++; + r = (int*)Balloc(k MTa); + *r = k; + return +#ifndef MULTIPLE_THREADS + dtoa_result = +#endif + (char *)(r+1); + } + + static char * +nrv_alloc(const char *s, char *s0, size_t s0len, char **rve, int n MTd) +{ + char *rv, *t; + + if (!s0) + s0 = rv_alloc(n MTa); + else if (s0len <= n) { + rv = 0; + t = rv + n; + goto rve_chk; + } + t = rv = s0; + while((*t = *s++)) + ++t; + rve_chk: + if (rve) + *rve = t; + return rv; + } + +/* freedtoa(s) must be used to free values s returned by dtoa + * when MULTIPLE_THREADS is #defined. It should be used in all cases, + * but for consistency with earlier versions of dtoa, it is optional + * when MULTIPLE_THREADS is not defined. + */ + + void +freedtoa(char *s) +{ +#ifdef MULTIPLE_THREADS + ThInfo *TI = 0; +#endif + Bigint *b = (Bigint *)((int *)s - 1); + b->maxwds = 1 << (b->k = *(int*)b); + Bfree(b MTb); +#ifndef MULTIPLE_THREADS + if (s == dtoa_result) + dtoa_result = 0; +#endif + } + +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. + * + * Inspired by "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. + * + * Modifications: + * 1. Rather than iterating, we use a simple numeric overestimate + * to determine k = floor(log10(d)). We scale relevant + * quantities using O(log2(k)) rather than O(k) multiplications. + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + * try to generate digits strictly left to right. Instead, we + * compute with fewer bits and propagate the carry if necessary + * when rounding the final digit up. This is often faster. + * 3. Under the assumption that input will be rounded nearest, + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + * That is, we allow equality in stopping tests when the + * round-nearest rule will give the same floating-point value + * as would satisfaction of the stopping test with strict + * inequality. + * 4. We remove common factors of powers of 2 from relevant + * quantities. + * 5. When converting floating-point integers less than 1e16, + * we use floating-point arithmetic rather than resorting + * to multiple-precision integers. + * 6. When asked to produce fewer than 15 digits, we first try + * to get by with floating-point arithmetic; we resort to + * multiple-precision integer arithmetic only if we cannot + * guarantee that the floating-point calculation has given + * the correctly rounded result. For k requested digits and + * "uniformly" distributed input, the probability is + * something like 10^(k-15) that we must resort to the Long + * calculation. + */ + + char * +dtoa_r(double dd, int mode, int ndigits, int *decpt, int *sign, char **rve, char *buf, size_t blen) +{ + /* Arguments ndigits, decpt, sign are similar to those + of ecvt and fcvt; trailing zeros are suppressed from + the returned string. If not null, *rve is set to point + to the end of the return value. If d is +-Infinity or NaN, + then *decpt is set to 9999. + + mode: + 0 ==> shortest string that yields d when read in + and rounded to nearest. + 1 ==> like 0, but with Steele & White stopping rule; + e.g. with IEEE P754 arithmetic , mode 0 gives + 1e23 whereas mode 1 gives 9.999999999999999e22. + 2 ==> max(1,ndigits) significant digits. This gives a + return value similar to that of ecvt, except + that trailing zeros are suppressed. + 3 ==> through ndigits past the decimal point. This + gives a return value similar to that from fcvt, + except that trailing zeros are suppressed, and + ndigits can be negative. + 4,5 ==> similar to 2 and 3, respectively, but (in + round-nearest mode) with the tests of mode 0 to + possibly return a shorter string that rounds to d. + With IEEE arithmetic and compilation with + -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same + as modes 2 and 3 when FLT_ROUNDS != 1. + 6-9 ==> Debugging modes similar to mode - 4: don't try + fast floating-point estimate (if applicable). + + Values of mode other than 0-9 are treated as mode 0. + + When not NULL, buf is an output buffer of length blen, which must + be large enough to accommodate suppressed trailing zeros and a trailing + null byte. If blen is too small, rv = NULL is returned, in which case + if rve is not NULL, a subsequent call with blen >= (*rve - rv) + 1 + should succeed in returning buf. + + When buf is NULL, sufficient space is allocated for the return value, + which, when done using, the caller should pass to freedtoa(). + + USE_BF is automatically defined when neither NO_LONG_LONG nor NO_BF96 + is defined. + */ + +#ifdef MULTIPLE_THREADS + ThInfo *TI = 0; +#endif + int bbits, b2, b5, be, dig, i, ilim, ilim1, + j, j1, k, leftright, m2, m5, s2, s5, spec_case; +#if !defined(Sudden_Underflow) || defined(USE_BF96) + int denorm; +#endif + Bigint *b, *b1, *delta, *mlo, *mhi, *S; + U u; + char *s; +#ifdef SET_INEXACT + int inexact, oldinexact; +#endif +#ifdef USE_BF96 /*{{*/ + BF96 *p10; + ULLong dbhi, dbits, dblo, den, hb, rb, rblo, res, res0, res3, reslo, sres, + sulp, tv0, tv1, tv2, tv3, ulp, ulplo, ulpmask, ures, ureslo, zb; + int eulp, k1, n2, ulpadj, ulpshift; +#else /*}{*/ +#ifndef Sudden_Underflow + ULong x; +#endif + Long L; + U d2, eps; + double ds; + int ieps, ilim0, k0, k_check, try_quick; +#ifndef No_leftright +#ifdef IEEE_Arith + U eps1; +#endif +#endif +#endif /*}}*/ +#ifdef Honor_FLT_ROUNDS /*{*/ + int Rounding; +#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ + Rounding = Flt_Rounds; +#else /*}{*/ + Rounding = 1; + switch(fegetround()) { + case FE_TOWARDZERO: Rounding = 0; break; + case FE_UPWARD: Rounding = 2; break; + case FE_DOWNWARD: Rounding = 3; + } +#endif /*}}*/ +#endif /*}*/ + + u.d = dd; + if (word0(&u) & Sign_bit) { + /* set sign for everything, including 0's and NaNs */ + *sign = 1; + word0(&u) &= ~Sign_bit; /* clear sign bit */ + } + else + *sign = 0; + +#if defined(IEEE_Arith) + defined(VAX) +#ifdef IEEE_Arith + if ((word0(&u) & Exp_mask) == Exp_mask) +#else + if (word0(&u) == 0x8000) +#endif + { + /* Infinity or NaN */ + *decpt = 9999; +#ifdef IEEE_Arith + if (!word1(&u) && !(word0(&u) & 0xfffff)) + return nrv_alloc("Infinity", buf, blen, rve, 8 MTb); +#endif + return nrv_alloc("NaN", buf, blen, rve, 3 MTb); + } +#endif +#ifdef IBM + dval(&u) += 0; /* normalize */ +#endif + if (!dval(&u)) { + *decpt = 1; + return nrv_alloc("0", buf, blen, rve, 1 MTb); + } + +#ifdef SET_INEXACT +#ifndef USE_BF96 + try_quick = +#endif + oldinexact = get_inexact(); + inexact = 1; +#endif +#ifdef Honor_FLT_ROUNDS + if (Rounding >= 2) { + if (*sign) + Rounding = Rounding == 2 ? 0 : 2; + else + if (Rounding != 2) + Rounding = 0; + } +#endif +#ifdef USE_BF96 /*{{*/ + dbits = (u.LL & 0xfffffffffffffull) << 11; /* fraction bits */ + if ((be = u.LL >> 52)) /* biased exponent; nonzero ==> normal */ { + dbits |= 0x8000000000000000ull; + denorm = ulpadj = 0; + } + else { + denorm = 1; + ulpadj = be + 1; + dbits <<= 1; + if (!(dbits & 0xffffffff00000000ull)) { + dbits <<= 32; + be -= 32; + } + if (!(dbits & 0xffff000000000000ull)) { + dbits <<= 16; + be -= 16; + } + if (!(dbits & 0xff00000000000000ull)) { + dbits <<= 8; + be -= 8; + } + if (!(dbits & 0xf000000000000000ull)) { + dbits <<= 4; + be -= 4; + } + if (!(dbits & 0xc000000000000000ull)) { + dbits <<= 2; + be -= 2; + } + if (!(dbits & 0x8000000000000000ull)) { + dbits <<= 1; + be -= 1; + } + assert(be >= -51); + ulpadj -= be; + } + j = Lhint[be + 51]; + p10 = &pten[j]; + dbhi = dbits >> 32; + dblo = dbits & 0xffffffffull; + i = be - 0x3fe; + if (i < p10->e + || (i == p10->e && (dbhi < p10->b0 || (dbhi == p10->b0 && dblo < p10->b1)))) + --j; + k = j - 342; + + /* now 10^k <= dd < 10^(k+1) */ + +#else /*}{*/ + + b = d2b(&u, &be, &bbits MTb); +#ifdef Sudden_Underflow + i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); +#else + if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { +#endif + dval(&d2) = dval(&u); + word0(&d2) &= Frac_mask1; + word0(&d2) |= Exp_11; +#ifdef IBM + if (j = 11 - hi0bits(word0(&d2) & Frac_mask)) + dval(&d2) /= 1 << j; +#endif + + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 + * log10(x) = log(x) / log(10) + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) + * + * This suggests computing an approximation k to log10(d) by + * + * k = (i - Bias)*0.301029995663981 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); + * + * We want k to be too large rather than too small. + * The error in the first-order Taylor series approximation + * is in our favor, so we just round up the constant enough + * to compensate for any error in the multiplication of + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, + * adding 1e-13 to the constant term more than suffices. + * Hence we adjust the constant term to 0.1760912590558. + * (We could get a more accurate k by invoking log10, + * but this is probably not worthwhile.) + */ + + i -= Bias; +#ifdef IBM + i <<= 2; + i += j; +#endif +#ifndef Sudden_Underflow + denorm = 0; + } + else { + /* d is denormalized */ + + i = bbits + be + (Bias + (P-1) - 1); + x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) + : word1(&u) << (32 - i); + dval(&d2) = x; + word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ + i -= (Bias + (P-1) - 1) + 1; + denorm = 1; + } +#endif + ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; + k = (int)ds; + if (ds < 0. && ds != k) + k--; /* want k = floor(ds) */ + k_check = 1; + if (k >= 0 && k <= Ten_pmax) { + if (dval(&u) < tens[k]) + k--; + k_check = 0; + } + j = bbits - i - 1; + if (j >= 0) { + b2 = 0; + s2 = j; + } + else { + b2 = -j; + s2 = 0; + } + if (k >= 0) { + b5 = 0; + s5 = k; + s2 += k; + } + else { + b2 -= k; + b5 = -k; + s5 = 0; + } +#endif /*}}*/ + if (mode < 0 || mode > 9) + mode = 0; + +#ifndef USE_BF96 +#ifndef SET_INEXACT +#ifdef Check_FLT_ROUNDS + try_quick = Rounding == 1; +#endif +#endif /*SET_INEXACT*/ +#endif + + if (mode > 5) { + mode -= 4; +#ifndef USE_BF96 + try_quick = 0; +#endif + } + leftright = 1; + ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ + /* silence erroneous "gcc -Wall" warning. */ + switch(mode) { + case 0: + case 1: + i = 18; + ndigits = 0; + break; + case 2: + leftright = 0; + /* no break */ + case 4: + if (ndigits <= 0) + ndigits = 1; + ilim = ilim1 = i = ndigits; + break; + case 3: + leftright = 0; + /* no break */ + case 5: + i = ndigits + k + 1; + ilim = i; + ilim1 = i - 1; + if (i <= 0) + i = 1; + } + if (!buf) { + buf = rv_alloc(i MTb); + blen = sizeof(Bigint) + ((1 << ((int*)buf)[-1]) - 1)*sizeof(ULong) - sizeof(int); + } + else if (blen <= i) { + buf = 0; + if (rve) + *rve = buf + i; + return buf; + } + s = buf; + + /* Check for special case that d is a normalized power of 2. */ + + spec_case = 0; + if (mode < 2 || (leftright +#ifdef Honor_FLT_ROUNDS + && Rounding == 1 +#endif + )) { + if (!word1(&u) && !(word0(&u) & Bndry_mask) +#ifndef Sudden_Underflow + && word0(&u) & (Exp_mask & ~Exp_msk1) +#endif + ) { + /* The special case */ + spec_case = 1; + } + } + +#ifdef USE_BF96 /*{*/ + b = 0; + if (ilim < 0 && (mode == 3 || mode == 5)) { + S = mhi = 0; + goto no_digits; + } + i = 1; + j = 52 + 0x3ff - be; + ulpshift = 0; + ulplo = 0; + /* Can we do an exact computation with 64-bit integer arithmetic? */ + if (k < 0) { + if (k < -25) + goto toobig; + res = dbits >> 11; + n2 = pfivebits[k1 = -(k + 1)] + 53; + j1 = j; + if (n2 > 61) { + ulpshift = n2 - 61; + if (res & (ulpmask = (1ull << ulpshift) - 1)) + goto toobig; + j -= ulpshift; + res >>= ulpshift; + } + /* Yes. */ + res *= ulp = pfive[k1]; + if (ulpshift) { + ulplo = ulp; + ulp >>= ulpshift; + } + j += k; + if (ilim == 0) { + S = mhi = 0; + if (res > (5ull << j)) + goto one_digit; + goto no_digits; + } + goto no_div; + } + if (ilim == 0 && j + k >= 0) { + S = mhi = 0; + if ((dbits >> 11) > (pfive[k-1] << j)) + goto one_digit; + goto no_digits; + } + if (k <= dtoa_divmax && j + k >= 0) { + /* Another "yes" case -- we will use exact integer arithmetic. */ + use_exact: + Debug(++dtoa_stats[3]); + res = dbits >> 11; /* residual */ + ulp = 1; + if (k <= 0) + goto no_div; + j1 = j + k + 1; + den = pfive[k-i] << (j1 - i); + for(;;) { + dig = res / den; + *s++ = '0' + dig; + if (!(res -= dig*den)) { +#ifdef SET_INEXACT + inexact = 0; + oldinexact = 1; +#endif + goto retc; + } + if (ilim < 0) { + ures = den - res; + if (2*res <= ulp + && (spec_case ? 4*res <= ulp : (2*res < ulp || dig & 1))) + goto ulp_reached; + if (2*ures < ulp) + goto Roundup; + } + else if (i == ilim) { + switch(Rounding) { + case 0: goto retc; + case 2: goto Roundup; + } + ures = 2*res; + if (ures > den + || (ures == den && dig & 1) + || (spec_case && res <= ulp && 2*res >= ulp)) + goto Roundup; + goto retc; + } + if (j1 < ++i) { + res *= 10; + ulp *= 10; + } + else { + if (i > k) + break; + den = pfive[k-i] << (j1 - i); + } + } + no_div: + for(;;) { + dig = den = res >> j; + *s++ = '0' + dig; + if (!(res -= den << j)) { +#ifdef SET_INEXACT + inexact = 0; + oldinexact = 1; +#endif + goto retc; + } + if (ilim < 0) { + ures = (1ull << j) - res; + if (2*res <= ulp + && (spec_case ? 4*res <= ulp : (2*res < ulp || dig & 1))) { + ulp_reached: + if (ures < res + || (ures == res && dig & 1)) + goto Roundup; + goto retc; + } + if (2*ures < ulp) + goto Roundup; + } + --j; + if (i == ilim) { +#ifdef Honor_FLT_ROUNDS + switch(Rounding) { + case 0: goto retc; + case 2: goto Roundup; + } +#endif + hb = 1ull << j; + if (res & hb && (dig & 1 || res & (hb-1))) + goto Roundup; + if (spec_case && res <= ulp && 2*res >= ulp) { + Roundup: + while(*--s == '9') + if (s == buf) { + ++k; + *s++ = '1'; + goto ret1; + } + ++*s++; + goto ret1; + } + goto retc; + } + ++i; + res *= 5; + if (ulpshift) { + ulplo = 5*(ulplo & ulpmask); + ulp = 5*ulp + (ulplo >> ulpshift); + } + else + ulp *= 5; + } + } + toobig: + if (ilim > 28) + goto Fast_failed1; + /* Scale by 10^-k */ + p10 = &pten[342-k]; + tv0 = p10->b2 * dblo; /* rarely matters, but does, e.g., for 9.862818194192001e18 */ + tv1 = p10->b1 * dblo + (tv0 >> 32); + tv2 = p10->b2 * dbhi + (tv1 & 0xffffffffull); + tv3 = p10->b0 * dblo + (tv1>>32) + (tv2>>32); + res3 = p10->b1 * dbhi + (tv3 & 0xffffffffull); + res = p10->b0 * dbhi + (tv3>>32) + (res3>>32); + be += p10->e - 0x3fe; + eulp = j1 = be - 54 + ulpadj; + if (!(res & 0x8000000000000000ull)) { + --be; + res3 <<= 1; + res = (res << 1) | ((res3 & 0x100000000ull) >> 32); + } + res0 = res; /* save for Fast_failed */ +#if !defined(SET_INEXACT) && !defined(NO_DTOA_64) /*{*/ + if (ilim > 19) + goto Fast_failed; + Debug(++dtoa_stats[4]); + assert(be >= 0 && be <= 4); /* be = 0 is rare, but possible, e.g., for 1e20 */ + res >>= 4 - be; + ulp = p10->b0; /* ulp */ + ulp = (ulp << 29) | (p10->b1 >> 3); + /* scaled ulp = ulp * 2^(eulp - 60) */ + /* We maintain 61 bits of the scaled ulp. */ + if (ilim == 0) { + if (!(res & 0x7fffffffffffffeull) + || !((~res) & 0x7fffffffffffffeull)) + goto Fast_failed1; + S = mhi = 0; + if (res >= 0x5000000000000000ull) + goto one_digit; + goto no_digits; + } + rb = 1; /* upper bound on rounding error */ + for(;;++i) { + dig = res >> 60; + *s++ = '0' + dig; + res &= 0xfffffffffffffffull; + if (ilim < 0) { + ures = 0x1000000000000000ull - res; + if (eulp > 0) { + assert(eulp <= 4); + sulp = ulp << (eulp - 1); + if (res <= ures) { + if (res + rb > ures - rb) + goto Fast_failed; + if (res < sulp) + goto retc; + } + else { + if (res - rb <= ures + rb) + goto Fast_failed; + if (ures < sulp) + goto Roundup; + } + } + else { + zb = -(1ull << (eulp + 63)); + if (!(zb & res)) { + sres = res << (1 - eulp); + if (sres < ulp && (!spec_case || 2*sres < ulp)) { + if ((res+rb) << (1 - eulp) >= ulp) + goto Fast_failed; + if (ures < res) { + if (ures + rb >= res - rb) + goto Fast_failed; + goto Roundup; + } + if (ures - rb < res + rb) + goto Fast_failed; + goto retc; + } + } + if (!(zb & ures) && ures << -eulp < ulp) { + if (ures << (1 - eulp) < ulp) + goto Roundup; + goto Fast_failed; + } + } + } + else if (i == ilim) { + ures = 0x1000000000000000ull - res; + if (ures < res) { + if (ures <= rb || res - rb <= ures + rb) { + if (j + k >= 0 && k >= 0 && k <= 27) + goto use_exact1; + goto Fast_failed; + } +#ifdef Honor_FLT_ROUNDS + if (Rounding == 0) + goto retc; +#endif + goto Roundup; + } + if (res <= rb || ures - rb <= res + rb) { + if (j + k >= 0 && k >= 0 && k <= 27) { + use_exact1: + s = buf; + i = 1; + goto use_exact; + } + goto Fast_failed; + } +#ifdef Honor_FLT_ROUNDS + if (Rounding == 2) + goto Roundup; +#endif + goto retc; + } + rb *= 10; + if (rb >= 0x1000000000000000ull) + goto Fast_failed; + res *= 10; + ulp *= 5; + if (ulp & 0x8000000000000000ull) { + eulp += 4; + ulp >>= 3; + } + else { + eulp += 3; + ulp >>= 2; + } + } +#endif /*}*/ +#ifndef NO_BF96 + Fast_failed: +#endif + Debug(++dtoa_stats[5]); + s = buf; + i = 4 - be; + res = res0 >> i; + reslo = 0xffffffffull & res3; + if (i) + reslo = (res0 << (64 - i)) >> 32 | (reslo >> i); + rb = 0; + rblo = 4; /* roundoff bound */ + ulp = p10->b0; /* ulp */ + ulp = (ulp << 29) | (p10->b1 >> 3); + eulp = j1; + for(i = 1;;++i) { + dig = res >> 60; + *s++ = '0' + dig; + res &= 0xfffffffffffffffull; +#ifdef SET_INEXACT + if (!res && !reslo) { + if (!(res3 & 0xffffffffull)) { + inexact = 0; + oldinexact = 1; + } + goto retc; + } +#endif + if (ilim < 0) { + ures = 0x1000000000000000ull - res; + ureslo = 0; + if (reslo) { + ureslo = 0x100000000ull - reslo; + --ures; + } + if (eulp > 0) { + assert(eulp <= 4); + sulp = (ulp << (eulp - 1)) - rb; + if (res <= ures) { + if (res < sulp) { + if (res+rb < ures-rb) + goto retc; + } + } + else if (ures < sulp) { + if (res-rb > ures+rb) + goto Roundup; + } + goto Fast_failed1; + } + else { + zb = -(1ull << (eulp + 60)); + if (!(zb & (res + rb))) { + sres = (res - rb) << (1 - eulp); + if (sres < ulp && (!spec_case || 2*sres < ulp)) { + sres = res << (1 - eulp); + if ((j = eulp + 31) > 0) + sres += (rblo + reslo) >> j; + else + sres += (rblo + reslo) << -j; + if (sres + (rb << (1 - eulp)) >= ulp) + goto Fast_failed1; + if (sres >= ulp) + goto more96; + if (ures < res + || (ures == res && ureslo < reslo)) { + if (ures + rb >= res - rb) + goto Fast_failed1; + goto Roundup; + } + if (ures - rb <= res + rb) + goto Fast_failed1; + goto retc; + } + } + if (!(zb & ures) && (ures-rb) << (1 - eulp) < ulp) { + if ((ures + rb) << (1 - eulp) < ulp) + goto Roundup; + goto Fast_failed1; + } + } + } + else if (i == ilim) { + ures = 0x1000000000000000ull - res; + sres = ureslo = 0; + if (reslo) { + ureslo = 0x100000000ull - reslo; + --ures; + sres = (reslo + rblo) >> 31; + } + sres += 2*rb; + if (ures <= res) { + if (ures <=sres || res - ures <= sres) + goto Fast_failed1; +#ifdef Honor_FLT_ROUNDS + if (Rounding == 0) + goto retc; +#endif + goto Roundup; + } + if (res <= sres || ures - res <= sres) + goto Fast_failed1; +#ifdef Honor_FLT_ROUNDS + if (Rounding == 2) + goto Roundup; +#endif + goto retc; + } + more96: + rblo *= 10; + rb = 10*rb + (rblo >> 32); + rblo &= 0xffffffffull; + if (rb >= 0x1000000000000000ull) + goto Fast_failed1; + reslo *= 10; + res = 10*res + (reslo >> 32); + reslo &= 0xffffffffull; + ulp *= 5; + if (ulp & 0x8000000000000000ull) { + eulp += 4; + ulp >>= 3; + } + else { + eulp += 3; + ulp >>= 2; + } + } + Fast_failed1: + Debug(++dtoa_stats[6]); + S = mhi = mlo = 0; +#ifdef USE_BF96 + b = d2b(&u, &be, &bbits MTb); +#endif + s = buf; + i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); + i -= Bias; + if (ulpadj) + i -= ulpadj - 1; + j = bbits - i - 1; + if (j >= 0) { + b2 = 0; + s2 = j; + } + else { + b2 = -j; + s2 = 0; + } + if (k >= 0) { + b5 = 0; + s5 = k; + s2 += k; + } + else { + b2 -= k; + b5 = -k; + s5 = 0; + } +#endif /*}*/ + +#ifdef Honor_FLT_ROUNDS + if (mode > 1 && Rounding != 1) + leftright = 0; +#endif + +#ifndef USE_BF96 /*{*/ + if (ilim >= 0 && ilim <= Quick_max && try_quick) { + + /* Try to get by with floating-point arithmetic. */ + + i = 0; + dval(&d2) = dval(&u); + j1 = -(k0 = k); + ilim0 = ilim; + ieps = 2; /* conservative */ + if (k > 0) { + ds = tens[k&0xf]; + j = k >> 4; + if (j & Bletch) { + /* prevent overflows */ + j &= Bletch - 1; + dval(&u) /= bigtens[n_bigtens-1]; + ieps++; + } + for(; j; j >>= 1, i++) + if (j & 1) { + ieps++; + ds *= bigtens[i]; + } + dval(&u) /= ds; + } + else if (j1 > 0) { + dval(&u) *= tens[j1 & 0xf]; + for(j = j1 >> 4; j; j >>= 1, i++) + if (j & 1) { + ieps++; + dval(&u) *= bigtens[i]; + } + } + if (k_check && dval(&u) < 1. && ilim > 0) { + if (ilim1 <= 0) + goto fast_failed; + ilim = ilim1; + k--; + dval(&u) *= 10.; + ieps++; + } + dval(&eps) = ieps*dval(&u) + 7.; + word0(&eps) -= (P-1)*Exp_msk1; + if (ilim == 0) { + S = mhi = 0; + dval(&u) -= 5.; + if (dval(&u) > dval(&eps)) + goto one_digit; + if (dval(&u) < -dval(&eps)) + goto no_digits; + goto fast_failed; + } +#ifndef No_leftright + if (leftright) { + /* Use Steele & White method of only + * generating digits needed. + */ + dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); +#ifdef IEEE_Arith + if (j1 >= 307) { + eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */ + word0(&eps1) -= Exp_msk1 * (Bias+P-1); + dval(&eps1) *= tens[j1 & 0xf]; + for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++) + if (j & 1) + dval(&eps1) *= bigtens[i]; + if (eps.d < eps1.d) + eps.d = eps1.d; + if (10. - u.d < 10.*eps.d && eps.d < 1.) { + /* eps.d < 1. excludes trouble with the tiniest denormal */ + *s++ = '1'; + ++k; + goto ret1; + } + } +#endif + for(i = 0;;) { + L = dval(&u); + dval(&u) -= L; + *s++ = '0' + (int)L; + if (1. - dval(&u) < dval(&eps)) + goto bump_up; + if (dval(&u) < dval(&eps)) + goto retc; + if (++i >= ilim) + break; + dval(&eps) *= 10.; + dval(&u) *= 10.; + } + } + else { +#endif + /* Generate ilim digits, then fix them up. */ + dval(&eps) *= tens[ilim-1]; + for(i = 1;; i++, dval(&u) *= 10.) { + L = (Long)(dval(&u)); + if (!(dval(&u) -= L)) + ilim = i; + *s++ = '0' + (int)L; + if (i == ilim) { + if (dval(&u) > 0.5 + dval(&eps)) + goto bump_up; + else if (dval(&u) < 0.5 - dval(&eps)) + goto retc; + break; + } + } +#ifndef No_leftright + } +#endif + fast_failed: + s = buf; + dval(&u) = dval(&d2); + k = k0; + ilim = ilim0; + } + + /* Do we have a "small" integer? */ + + if (be >= 0 && k <= Int_max) { + /* Yes. */ + ds = tens[k]; + if (ndigits < 0 && ilim <= 0) { + S = mhi = 0; + if (ilim < 0 || dval(&u) <= 5*ds) + goto no_digits; + goto one_digit; + } + for(i = 1;; i++, dval(&u) *= 10.) { + L = (Long)(dval(&u) / ds); + dval(&u) -= L*ds; +#ifdef Check_FLT_ROUNDS + /* If FLT_ROUNDS == 2, L will usually be high by 1 */ + if (dval(&u) < 0) { + L--; + dval(&u) += ds; + } +#endif + *s++ = '0' + (int)L; + if (!dval(&u)) { +#ifdef SET_INEXACT + inexact = 0; +#endif + break; + } + if (i == ilim) { +#ifdef Honor_FLT_ROUNDS + if (mode > 1) + switch(Rounding) { + case 0: goto retc; + case 2: goto bump_up; + } +#endif + dval(&u) += dval(&u); +#ifdef ROUND_BIASED + if (dval(&u) >= ds) +#else + if (dval(&u) > ds || (dval(&u) == ds && L & 1)) +#endif + { + bump_up: + while(*--s == '9') + if (s == buf) { + k++; + *s = '0'; + break; + } + ++*s++; + } + break; + } + } + goto retc; + } + +#endif /*}*/ + m2 = b2; + m5 = b5; + mhi = mlo = 0; + if (leftright) { + i = +#ifndef Sudden_Underflow + denorm ? be + (Bias + (P-1) - 1 + 1) : +#endif +#ifdef IBM + 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); +#else + 1 + P - bbits; +#endif + b2 += i; + s2 += i; + mhi = i2b(1 MTb); + } + if (m2 > 0 && s2 > 0) { + i = m2 < s2 ? m2 : s2; + b2 -= i; + m2 -= i; + s2 -= i; + } + if (b5 > 0) { + if (leftright) { + if (m5 > 0) { + mhi = pow5mult(mhi, m5 MTb); + b1 = mult(mhi, b MTb); + Bfree(b MTb); + b = b1; + } + if ((j = b5 - m5)) + b = pow5mult(b, j MTb); + } + else + b = pow5mult(b, b5 MTb); + } + S = i2b(1 MTb); + if (s5 > 0) + S = pow5mult(S, s5 MTb); + + if (spec_case) { + b2 += Log2P; + s2 += Log2P; + } + + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + * + * Perhaps we should just compute leading 28 bits of S once + * and for all and pass them and a shift to quorem, so it + * can do shifts and ors to compute the numerator for q. + */ + i = dshift(S, s2); + b2 += i; + m2 += i; + s2 += i; + if (b2 > 0) + b = lshift(b, b2 MTb); + if (s2 > 0) + S = lshift(S, s2 MTb); +#ifndef USE_BF96 + if (k_check) { + if (cmp(b,S) < 0) { + k--; + b = multadd(b, 10, 0 MTb); /* we botched the k estimate */ + if (leftright) + mhi = multadd(mhi, 10, 0 MTb); + ilim = ilim1; + } + } +#endif + if (ilim <= 0 && (mode == 3 || mode == 5)) { + if (ilim < 0 || cmp(b,S = multadd(S,5,0 MTb)) <= 0) { + /* no digits, fcvt style */ + no_digits: + k = -1 - ndigits; + goto ret; + } + one_digit: + *s++ = '1'; + ++k; + goto ret; + } + if (leftright) { + if (m2 > 0) + mhi = lshift(mhi, m2 MTb); + + /* Compute mlo -- check for special case + * that d is a normalized power of 2. + */ + + mlo = mhi; + if (spec_case) { + mhi = Balloc(mhi->k MTb); + Bcopy(mhi, mlo); + mhi = lshift(mhi, Log2P MTb); + } + + for(i = 1;;i++) { + dig = quorem(b,S) + '0'; + /* Do we yet have the shortest decimal string + * that will round to d? + */ + j = cmp(b, mlo); + delta = diff(S, mhi MTb); + j1 = delta->sign ? 1 : cmp(b, delta); + Bfree(delta MTb); +#ifndef ROUND_BIASED + if (j1 == 0 && mode != 1 && !(word1(&u) & 1) +#ifdef Honor_FLT_ROUNDS + && (mode <= 1 || Rounding >= 1) +#endif + ) { + if (dig == '9') + goto round_9_up; + if (j > 0) + dig++; +#ifdef SET_INEXACT + else if (!b->x[0] && b->wds <= 1) + inexact = 0; +#endif + *s++ = dig; + goto ret; + } +#endif + if (j < 0 || (j == 0 && mode != 1 +#ifndef ROUND_BIASED + && !(word1(&u) & 1) +#endif + )) { + if (!b->x[0] && b->wds <= 1) { +#ifdef SET_INEXACT + inexact = 0; +#endif + goto accept_dig; + } +#ifdef Honor_FLT_ROUNDS + if (mode > 1) + switch(Rounding) { + case 0: goto accept_dig; + case 2: goto keep_dig; + } +#endif /*Honor_FLT_ROUNDS*/ + if (j1 > 0) { + b = lshift(b, 1 MTb); + j1 = cmp(b, S); +#ifdef ROUND_BIASED + if (j1 >= 0 /*)*/ +#else + if ((j1 > 0 || (j1 == 0 && dig & 1)) +#endif + && dig++ == '9') + goto round_9_up; + } + accept_dig: + *s++ = dig; + goto ret; + } + if (j1 > 0) { +#ifdef Honor_FLT_ROUNDS + if (!Rounding && mode > 1) + goto accept_dig; +#endif + if (dig == '9') { /* possible if i == 1 */ + round_9_up: + *s++ = '9'; + goto roundoff; + } + *s++ = dig + 1; + goto ret; + } +#ifdef Honor_FLT_ROUNDS + keep_dig: +#endif + *s++ = dig; + if (i == ilim) + break; + b = multadd(b, 10, 0 MTb); + if (mlo == mhi) + mlo = mhi = multadd(mhi, 10, 0 MTb); + else { + mlo = multadd(mlo, 10, 0 MTb); + mhi = multadd(mhi, 10, 0 MTb); + } + } + } + else + for(i = 1;; i++) { + dig = quorem(b,S) + '0'; + *s++ = dig; + if (!b->x[0] && b->wds <= 1) { +#ifdef SET_INEXACT + inexact = 0; +#endif + goto ret; + } + if (i >= ilim) + break; + b = multadd(b, 10, 0 MTb); + } + + /* Round off last digit */ + +#ifdef Honor_FLT_ROUNDS + if (mode > 1) + switch(Rounding) { + case 0: goto ret; + case 2: goto roundoff; + } +#endif + b = lshift(b, 1 MTb); + j = cmp(b, S); +#ifdef ROUND_BIASED + if (j >= 0) +#else + if (j > 0 || (j == 0 && dig & 1)) +#endif + { + roundoff: + while(*--s == '9') + if (s == buf) { + k++; + *s++ = '1'; + goto ret; + } + ++*s++; + } + ret: + Bfree(S MTb); + if (mhi) { + if (mlo && mlo != mhi) + Bfree(mlo MTb); + Bfree(mhi MTb); + } + retc: + while(s > buf && s[-1] == '0') + --s; + ret1: + if (b) + Bfree(b MTb); + *s = 0; + *decpt = k + 1; + if (rve) + *rve = s; +#ifdef SET_INEXACT + if (inexact) { + if (!oldinexact) { + word0(&u) = Exp_1 + (70 << Exp_shift); + word1(&u) = 0; + dval(&u) += 1.; + } + } + else if (!oldinexact) + clear_inexact(); +#endif + return buf; + } + + char * +netlib_dtoa(double dd, int mode, int ndigits, int *decpt, int *sign, char **rve) +{ + /* Sufficient space is allocated to the return value + to hold the suppressed trailing zeros. + See dtoa_r() above for details on the other arguments. + */ +#ifndef MULTIPLE_THREADS + if (dtoa_result) + freedtoa(dtoa_result); +#endif + return dtoa_r(dd, mode, ndigits, decpt, sign, rve, 0, 0); + } + +#ifdef __cplusplus +} +#endif diff --git a/tests/example_test.cpp b/tests/example_test.cpp new file mode 100644 index 0000000..e2c1332 --- /dev/null +++ b/tests/example_test.cpp @@ -0,0 +1,11 @@ + +#include "fast_float/fast_float.h" +#include + +int main() { + const std::string input = "3.1416 xyz "; + double result; + auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result); + if(answer.ec != std::errc()) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; } + std::cout << "parsed the number " << result << std::endl; +} diff --git a/tests/exhaustive32.cpp b/tests/exhaustive32.cpp new file mode 100644 index 0000000..d5c2624 --- /dev/null +++ b/tests/exhaustive32.cpp @@ -0,0 +1,55 @@ + +#include "fast_float/fast_float.h" + + +#include +#include + +template char *to_string(T d, char *buffer) { + auto written = std::snprintf(buffer, 64, "%.*e", + std::numeric_limits::max_digits10 - 1, d); + return buffer + written; +} + +void allvalues() { + char buffer[64]; + for (uint64_t w = 0; w <= 0xFFFFFFFF; w++) { + float v; + if ((w % 1048576) == 0) { + std::cout << "."; + std::cout.flush(); + } + uint32_t word = w; + memcpy(&v, &word, sizeof(v)); + + { + const char *string_end = to_string(v, buffer); + float result_value; + auto result = fast_float::from_chars(buffer, string_end, result_value); + if (result.ec != std::errc()) { + std::cerr << "parsing error ? " << buffer << std::endl; + abort(); + } + if (std::isnan(v)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << buffer << std::endl; + abort(); + } + } else if (result_value != v) { + std::cerr << "no match ? " << buffer << std::endl; + std::cout << "started with " << std::hexfloat << v << std::endl; + std::cout << "got back " << std::hexfloat << result_value << std::endl; + std::cout << std::dec; + abort(); + } + } + } + std::cout << std::endl; +} + +int main() { + allvalues(); + std::cout << std::endl; + std::cout << "all ok" << std::endl; + return EXIT_SUCCESS; +} \ No newline at end of file diff --git a/tests/exhaustive32_64.cpp b/tests/exhaustive32_64.cpp new file mode 100644 index 0000000..f666c72 --- /dev/null +++ b/tests/exhaustive32_64.cpp @@ -0,0 +1,56 @@ + +#include "fast_float/fast_float.h" + + +#include +#include + +template char *to_string(T d, char *buffer) { + auto written = std::snprintf(buffer, 64, "%.*e", + std::numeric_limits::max_digits10 - 1, d); + return buffer + written; +} + +void all_32bit_values() { + char buffer[64]; + for (uint64_t w = 0; w <= 0xFFFFFFFF; w++) { + float v32; + if ((w % 1048576) == 0) { + std::cout << "."; + std::cout.flush(); + } + uint32_t word = uint32_t(w); + memcpy(&v32, &word, sizeof(v32)); + double v = v32; + + { + const char *string_end = to_string(v, buffer); + double result_value; + auto result = fast_float::from_chars(buffer, string_end, result_value); + if (result.ec != std::errc()) { + std::cerr << "parsing error ? " << buffer << std::endl; + abort(); + } + if (std::isnan(v)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << buffer << std::endl; + abort(); + } + } else if (result_value != v) { + std::cerr << "no match ? " << buffer << std::endl; + std::cout << "started with " << std::hexfloat << v << std::endl; + std::cout << "got back " << std::hexfloat << result_value << std::endl; + std::cout << std::dec; + abort(); + } + } + } + std::cout << std::endl; +} + +int main() { + all_32bit_values(); + std::cout << std::endl; + std::cout << "all ok" << std::endl; + return EXIT_SUCCESS; +} \ No newline at end of file diff --git a/tests/exhaustive32_midpoint.cpp b/tests/exhaustive32_midpoint.cpp new file mode 100644 index 0000000..42afff3 --- /dev/null +++ b/tests/exhaustive32_midpoint.cpp @@ -0,0 +1,80 @@ +#include "fast_float/fast_float.h" + + +#include +#include + +template char *to_string(T d, char *buffer) { + auto written = std::snprintf(buffer, 64, "%.*e", + std::numeric_limits::max_digits10 - 1, d); + return buffer + written; +} + +void strtod_from_string(const char * st, float& d) { + char *pr = (char *)st; +#ifdef _WIN32 + static _locale_t c_locale = _create_locale(LC_ALL, "C"); + d = _strtof_l(st, &pr, c_locale); +#else + static locale_t c_locale = newlocale(LC_ALL_MASK, "C", NULL); + d = strtof_l(st, &pr, c_locale); +#endif + if (pr == st) { + throw std::runtime_error("bug in strtod_from_string"); + } +} + +void allvalues() { + char buffer[64]; + for (uint64_t w = 0; w <= 0xFFFFFFFF; w++) { + float v; + if ((w % 1048576) == 0) { + std::cout << "."; + std::cout.flush(); + } + uint32_t word = w; + memcpy(&v, &word, sizeof(v)); + if(std::isfinite(v)) { + float nextf = std::nextafterf(v, INFINITY); + if(!std::isfinite(nextf)) { continue; } + double v1{v}; + assert(float(v1) == v); + double v2{nextf}; + assert(float(v2) == nextf); + double midv{v1 + (v2 - v1) / 2}; + float expected_midv(midv); + + const char *string_end = to_string(midv, buffer); + float str_answer; + strtod_from_string(buffer, str_answer); + + float result_value; + auto result = fast_float::from_chars(buffer, string_end, result_value); + if (result.ec != std::errc()) { + std::cerr << "parsing error ? " << buffer << std::endl; + abort(); + } + if (std::isnan(v)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << buffer << std::endl; + abort(); + } + } else if (result_value != str_answer) { + std::cerr << "no match ? " << buffer << std::endl; + std::cout << "started with " << std::hexfloat << midv << std::endl; + std::cout << "round down to " << std::hexfloat << str_answer << std::endl; + std::cout << "got back " << std::hexfloat << result_value << std::endl; + std::cout << std::dec; + abort(); + } + } + } + std::cout << std::endl; +} + +int main() { + allvalues(); + std::cout << std::endl; + std::cout << "all ok" << std::endl; + return EXIT_SUCCESS; +} \ No newline at end of file diff --git a/tests/long_exhaustive32.cpp b/tests/long_exhaustive32.cpp new file mode 100644 index 0000000..4923eff --- /dev/null +++ b/tests/long_exhaustive32.cpp @@ -0,0 +1,55 @@ + +#include "fast_float/fast_float.h" + + +#include +#include + +template char *to_string(T d, char *buffer) { + auto written = std::snprintf(buffer, 128, "%.*e", + 64, d); + return buffer + written; +} + +void allvalues() { + char buffer[128]; + for (uint64_t w = 0; w <= 0xFFFFFFFF; w++) { + float v; + if ((w % 1048576) == 0) { + std::cout << "."; + std::cout.flush(); + } + uint32_t word = uint32_t(w); + memcpy(&v, &word, sizeof(v)); + + { + const char *string_end = to_string(v, buffer); + float result_value; + auto result = fast_float::from_chars(buffer, string_end, result_value); + if (result.ec != std::errc()) { + std::cerr << "parsing error ? " << buffer << std::endl; + abort(); + } + if (std::isnan(v)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << buffer << std::endl; + abort(); + } + } else if (result_value != v) { + std::cerr << "no match ? " << buffer << " got " << result_value << " expected " << v << std::endl; + std::cout << "started with " << std::hexfloat << v << std::endl; + std::cout << "got back " << std::hexfloat << result_value << std::endl; + std::cout << std::dec; + abort(); + } + } + } + std::cout << std::endl; +} + +int main() { + allvalues(); + std::cout << std::endl; + std::cout << "all ok" << std::endl; + return EXIT_SUCCESS; +} \ No newline at end of file diff --git a/tests/long_exhaustive32_64.cpp b/tests/long_exhaustive32_64.cpp new file mode 100644 index 0000000..c6e9331 --- /dev/null +++ b/tests/long_exhaustive32_64.cpp @@ -0,0 +1,55 @@ +#include "fast_float/fast_float.h" + + +#include +#include + +template char *to_string(T d, char *buffer) { + auto written = std::snprintf(buffer, 128, "%.*e", + 64, d); + return buffer + written; +} + +void all_32bit_values() { + char buffer[128]; + for (uint64_t w = 0; w <= 0xFFFFFFFF; w++) { + float v32; + if ((w % 1048576) == 0) { + std::cout << "."; + std::cout.flush(); + } + uint32_t word = uint32_t(w); + memcpy(&v32, &word, sizeof(v32)); + double v = v32; + + { + const char *string_end = to_string(v, buffer); + double result_value; + auto result = fast_float::from_chars(buffer, string_end, result_value); + if (result.ec != std::errc()) { + std::cerr << "parsing error ? " << buffer << std::endl; + abort(); + } + if (std::isnan(v)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << buffer << std::endl; + abort(); + } + } else if (result_value != v) { + std::cerr << "no match ? " << buffer << std::endl; + std::cout << "started with " << std::hexfloat << v << std::endl; + std::cout << "got back " << std::hexfloat << result_value << std::endl; + std::cout << std::dec; + abort(); + } + } + } + std::cout << std::endl; +} + +int main() { + all_32bit_values(); + std::cout << std::endl; + std::cout << "all ok" << std::endl; + return EXIT_SUCCESS; +} \ No newline at end of file diff --git a/tests/long_random64.cpp b/tests/long_random64.cpp new file mode 100644 index 0000000..10149dd --- /dev/null +++ b/tests/long_random64.cpp @@ -0,0 +1,93 @@ +#include "fast_float/fast_float.h" + + +#include +#include + +template char *to_string(T d, char *buffer) { + auto written = std::snprintf(buffer, 128, "%.*e", + 64, d); + return buffer + written; +} + +static __uint128_t g_lehmer64_state; + +/** + * D. H. Lehmer, Mathematical methods in large-scale computing units. + * Proceedings of a Second Symposium on Large Scale Digital Calculating + * Machinery; + * Annals of the Computation Laboratory, Harvard Univ. 26 (1951), pp. 141-146. + * + * P L'Ecuyer, Tables of linear congruential generators of different sizes and + * good lattice structure. Mathematics of Computation of the American + * Mathematical + * Society 68.225 (1999): 249-260. + */ + +static inline void lehmer64_seed(uint64_t seed) { g_lehmer64_state = seed; } + +static inline uint64_t lehmer64() { + g_lehmer64_state *= UINT64_C(0xda942042e4dd58b5); + return uint64_t(g_lehmer64_state >> 64); +} + +size_t errors; + +void random_values(size_t N) { + char buffer[128]; + lehmer64_seed(N); + for (size_t t = 0; t < N; t++) { + if ((t % 1048576) == 0) { + std::cout << "."; + std::cout.flush(); + } + uint64_t word = lehmer64(); + double v; + memcpy(&v, &word, sizeof(v)); + { + const char *string_end = to_string(v, buffer); + double result_value; + auto result = fast_float::from_chars(buffer, string_end, result_value); + if (result.ec != std::errc()) { + std::cerr << "parsing error ? " << buffer << std::endl; + errors++; + if (errors > 10) { + abort(); + } + } + if (std::isnan(v)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << buffer << std::endl; + errors++; + if (errors > 10) { + abort(); + } + } + } else if (result_value != v) { + std::cerr << "no match ? '" << buffer << "'" << std::endl; + std::cout << "started with " << std::hexfloat << v << std::endl; + std::cout << "got back " << std::hexfloat << result_value << std::endl; + std::cout << std::dec; + errors++; + if (errors > 10) { + abort(); + } + } + } + } + std::cout << std::endl; +} + +int main() { + errors = 0; + size_t N = size_t(1) << 32; + random_values(N); + if (errors == 0) { + std::cout << std::endl; + std::cout << "all ok" << std::endl; + return EXIT_SUCCESS; + } + std::cerr << std::endl; + std::cerr << "errors were encountered" << std::endl; + return EXIT_FAILURE; +} diff --git a/tests/long_test.cpp b/tests/long_test.cpp new file mode 100644 index 0000000..301c606 --- /dev/null +++ b/tests/long_test.cpp @@ -0,0 +1,53 @@ +#include "fast_float/fast_float.h" + +#include + +inline void Assert(bool Assertion) { + if (!Assertion) + throw std::runtime_error("bug"); +} + +template +bool test() { + std::string input = "0.156250000000000000000000000000000000000000 3.14159265358979323846264338327950288419716939937510 2.71828182845904523536028747135266249775724709369995"; + std::vector answers = {T(0.15625), T(3.141592653589793), T(2.718281828459045)}; + const char * begin = input.data(); + const char * end = input.data() + input.size(); + for(size_t i = 0; i < answers.size(); i++) { + T result_value; + auto result = fast_float::from_chars(begin, end, + result_value); + if (result.ec != std::errc()) { + printf("parsing %.*s\n", int(end - begin), begin); + std::cerr << " I could not parse " << std::endl; + return false; + } + if(result_value != answers[i]) { + printf("parsing %.*s\n", int(end - begin), begin); + std::cerr << " Mismatch " << std::endl; + std::cerr << " Expected " << answers[i] << std::endl; + std::cerr << " Got " << result_value << std::endl; + + return false; + + } + begin = result.ptr; + } + if(begin != end) { + std::cerr << " bad ending " << std::endl; + return false; + } + return true; +} + +int main() { + + std::cout << "32 bits checks" << std::endl; + Assert(test()); + + std::cout << "64 bits checks" << std::endl; + Assert(test()); + + std::cout << "All ok" << std::endl; + return EXIT_SUCCESS; +} diff --git a/tests/random64.cpp b/tests/random64.cpp new file mode 100644 index 0000000..c6489b9 --- /dev/null +++ b/tests/random64.cpp @@ -0,0 +1,94 @@ +#include "fast_float/fast_float.h" + + +#include +#include + +template char *to_string(T d, char *buffer) { + auto written = std::snprintf(buffer, 64, "%.*e", + std::numeric_limits::max_digits10 - 1, d); + return buffer + written; +} + +static __uint128_t g_lehmer64_state; + +/** + * D. H. Lehmer, Mathematical methods in large-scale computing units. + * Proceedings of a Second Symposium on Large Scale Digital Calculating + * Machinery; + * Annals of the Computation Laboratory, Harvard Univ. 26 (1951), pp. 141-146. + * + * P L'Ecuyer, Tables of linear congruential generators of different sizes and + * good lattice structure. Mathematics of Computation of the American + * Mathematical + * Society 68.225 (1999): 249-260. + */ + +static inline void lehmer64_seed(uint64_t seed) { g_lehmer64_state = seed; } + +static inline uint64_t lehmer64() { + g_lehmer64_state *= UINT64_C(0xda942042e4dd58b5); + return uint64_t(g_lehmer64_state >> 64); +} + +size_t errors; + +void random_values(size_t N) { + char buffer[64]; + lehmer64_seed(N); + for (size_t t = 0; t < N; t++) { + if ((t % 1048576) == 0) { + std::cout << "."; + std::cout.flush(); + } + uint64_t word = lehmer64(); + double v; + memcpy(&v, &word, sizeof(v)); + // if (!std::isnormal(v)) + { + const char *string_end = to_string(v, buffer); + double result_value; + auto result = fast_float::from_chars(buffer, string_end, result_value); + if (result.ec != std::errc()) { + std::cerr << "parsing error ? " << buffer << std::endl; + errors++; + if (errors > 10) { + abort(); + } + } + if (std::isnan(v)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << buffer << std::endl; + errors++; + if (errors > 10) { + abort(); + } + } + } else if (result_value != v) { + std::cerr << "no match ? " << buffer << std::endl; + std::cout << "started with " << std::hexfloat << v << std::endl; + std::cout << "got back " << std::hexfloat << result_value << std::endl; + std::cout << std::dec; + errors++; + if (errors > 10) { + abort(); + } + } + } + } + std::cout << std::endl; +} + +int main() { + errors = 0; + size_t N = size_t(1) << 32; + random_values(N); + if (errors == 0) { + std::cout << std::endl; + std::cout << "all ok" << std::endl; + return EXIT_SUCCESS; + } + std::cerr << std::endl; + std::cerr << "errors were encountered" << std::endl; + return EXIT_FAILURE; +} diff --git a/tests/random_string.cpp b/tests/random_string.cpp new file mode 100644 index 0000000..c0ba992 --- /dev/null +++ b/tests/random_string.cpp @@ -0,0 +1,188 @@ +#include "fast_float/fast_float.h" +#include +#include + +class RandomEngine { +public: + RandomEngine() = delete; + RandomEngine(int new_seed) { wyhash64_x_ = new_seed; }; + uint64_t next() { + // Adapted from https://github.com/wangyi-fudan/wyhash/blob/master/wyhash.h + // Inspired from + // https://github.com/lemire/testingRNG/blob/master/source/wyhash.h + wyhash64_x_ += UINT64_C(0x60bee2bee120fc15); + __uint128_t tmp; + tmp = (__uint128_t)wyhash64_x_ * UINT64_C(0xa3b195354a39b70d); + uint64_t m1 = (tmp >> 64) ^ tmp; + tmp = (__uint128_t)m1 * UINT64_C(0x1b03738712fad5c9); + uint64_t m2 = (tmp >> 64) ^ tmp; + return m2; + } + bool next_bool() { return (next() & 1) == 1; } + int next_int() { return static_cast(next()); } + char next_char() { return static_cast(next()); } + double next_double() { return static_cast(next()); } + + int next_ranged_int(int min, int max) { // min and max are include + // Adapted from + // https://lemire.me/blog/2019/06/06/nearly-divisionless-random-integer-generation-on-various-systems/ + /* if (min == max) { + return min; + }*/ + int s = max - min + 1; + uint64_t x = next(); + __uint128_t m = (__uint128_t)x * (__uint128_t)s; + uint64_t l = (uint64_t)m; + if (l < s) { + uint64_t t = -s % s; + while (l < t) { + x = next(); + m = (__uint128_t)x * (__uint128_t)s; + l = (uint64_t)m; + } + } + return (m >> 64) + min; + } + int next_digit() { return next_ranged_int(0, 9); } + +private: + uint64_t wyhash64_x_; +}; + +size_t build_random_string(RandomEngine &rand, char *buffer) { + size_t pos{0}; + if (rand.next_bool()) { + buffer[pos++] = '-'; + } + int number_of_digits = rand.next_ranged_int(1, 100); + int location_of_decimal_separator = rand.next_ranged_int(1, number_of_digits); + for (size_t i = 0; i < number_of_digits; i++) { + if (i == location_of_decimal_separator) { + buffer[pos++] = '.'; + } + buffer[pos++] = char(rand.next_digit() + '0'); + } + if (rand.next_bool()) { + if (rand.next_bool()) { + buffer[pos++] = 'e'; + } else { + buffer[pos++] = 'E'; + } + if (rand.next_bool()) { + buffer[pos++] = '-'; + } else { + if (rand.next_bool()) { + buffer[pos++] = '+'; + } + } + number_of_digits = rand.next_ranged_int(1, 3); + for (size_t i = 0; i < number_of_digits; i++) { + buffer[pos++] = char(rand.next_digit() + '0'); + } + } + buffer[pos] = '\0'; // null termination + return pos; +} + +std::pair strtod_from_string(char *st) { + double d; + char *pr; +#ifdef _WIN32 + static _locale_t c_locale = _create_locale(LC_ALL, "C"); + d = _strtod_l(st, &pr, c_locale); +#else + static locale_t c_locale = newlocale(LC_ALL_MASK, "C", NULL); + d = strtod_l(st, &pr, c_locale); +#endif + if (st == pr) { + std::cerr << "strtod_l could not parse '" << st << std::endl; + return std::make_pair(0, false); + } + return std::make_pair(d, true); +} + +std::pair strtof_from_string(char *st) { + float d; + char *pr; +#ifdef _WIN32 + static _locale_t c_locale = _create_locale(LC_ALL, "C"); + d = _strtof_l(st, &pr, c_locale); +#else + static locale_t c_locale = newlocale(LC_ALL_MASK, "C", NULL); + d = strtof_l(st, &pr, c_locale); +#endif + if (st == pr) { + std::cerr << "strtof_l could not parse '" << st << std::endl; + return std::make_pair(0, false); + } + return std::make_pair(d, true); +} + +/** + * We generate random strings and we try to parse them with both strtod/strtof, + * and we verify that we get the same answer with with fast_float::from_chars. + */ +bool tester(int seed, size_t volume) { + char buffer[1024]; // large buffer (can't overflow) + RandomEngine rand(seed); + for (size_t i = 0; i < volume; i++) { + if((i%100000) == 0) { std::cout << "."; std::cout.flush(); } + size_t length = build_random_string(rand, buffer); + std::pair expected_double = strtod_from_string(buffer); + if (expected_double.second) { + double result_value; + auto result = + fast_float::from_chars(buffer, buffer + length, result_value); + if (result.ec != std::errc()) { + printf("parsing %.*s\n", int(length), buffer); + std::cerr << " I could not parse " << std::endl; + return false; + } + if (result.ptr != buffer + length) { + printf("parsing %.*s\n", int(length), buffer); + std::cerr << " Did not get to the end " << std::endl; + return false; + } + if (result_value != expected_double.first) { + printf("parsing %.*s\n", int(length), buffer); + std::cerr << std::hexfloat << result_value << std::endl; + std::cerr << std::hexfloat << expected_double.first << std::endl; + std::cerr << " Mismatch " << std::endl; + return false; + } + } + std::pair expected_float = strtof_from_string(buffer); + if (expected_float.second) { + float result_value; + auto result = + fast_float::from_chars(buffer, buffer + length, result_value); + if (result.ec != std::errc()) { + printf("parsing %.*s\n", int(length), buffer); + std::cerr << " I could not parse " << std::endl; + return false; + } + if (result.ptr != buffer + length) { + printf("parsing %.*s\n", int(length), buffer); + std::cerr << " Did not get to the end " << std::endl; + return false; + } + if (result_value != expected_float.first) { + printf("parsing %.*s\n", int(length), buffer); + std::cerr << std::hexfloat << result_value << std::endl; + std::cerr << std::hexfloat << expected_float.first << std::endl; + std::cerr << " Mismatch " << std::endl; + return false; + } + } + } + return true; +} + +int main() { + if (tester(1234344, 100000000)) { + std::cout << "All tests ok." << std::endl; + return EXIT_SUCCESS; + } + std::cout << "Failure." << std::endl; + return EXIT_FAILURE; +} \ No newline at end of file diff --git a/tests/string_test.cpp b/tests/string_test.cpp new file mode 100644 index 0000000..a7f9c54 --- /dev/null +++ b/tests/string_test.cpp @@ -0,0 +1,229 @@ +#include "fast_float/fast_float.h" + +#include + +inline void Assert(bool Assertion) { + if (!Assertion) + throw std::runtime_error("bug"); +} + +template std::string to_string(T d) { + std::string s(64, '\0'); + auto written = std::snprintf(&s[0], s.size(), "%.*e", + std::numeric_limits::max_digits10 - 1, d); + s.resize(written); + return s; +} + +template +bool test() { + std::string input = "0.1 1e1000 100000 3.14159265359 -1e-500 001 1e01 1e0000001 -inf"; + std::vector answers = {T(0.1), std::numeric_limits::infinity(), 100000, T(3.14159265359), -0.0, 1, 10, 10, -std::numeric_limits::infinity()}; + const char * begin = input.data(); + const char * end = input.data() + input.size(); + for(size_t i = 0; i < answers.size(); i++) { + T result_value; + auto result = fast_float::from_chars(begin, end, + result_value); + if (result.ec != std::errc()) { + printf("parsing %.*s\n", int(end - begin), begin); + std::cerr << " I could not parse " << std::endl; + return false; + } + if(result_value != answers[i]) { + printf("parsing %.*s\n", int(end - begin), begin); + std::cerr << " Mismatch " << std::endl; + return false; + + } + begin = result.ptr; + } + if(begin != end) { + std::cerr << " bad ending " << std::endl; + return false; + } + return true; +} + +template +void strtod_from_string(const std::string &st, T& d); + +template <> +void strtod_from_string(const std::string &st, double& d) { + char *pr = (char *)st.data(); +#ifdef _WIN32 + static _locale_t c_locale = _create_locale(LC_ALL, "C"); + d = _strtod_l(st.data(), &pr, c_locale); +#else + static locale_t c_locale = newlocale(LC_ALL_MASK, "C", NULL); + d = strtod_l(st.data(), &pr, c_locale); +#endif + if (pr == st.data()) { + throw std::runtime_error("bug in strtod_from_string"); + } +} + +template <> +void strtod_from_string(const std::string &st, float& d) { + char *pr = (char *)st.data(); +#ifdef _WIN32 + static _locale_t c_locale = _create_locale(LC_ALL, "C"); + d = _strtof_l(st.data(), &pr, c_locale); +#else + static locale_t c_locale = newlocale(LC_ALL_MASK, "C", NULL); + d = strtof_l(st.data(), &pr, c_locale); +#endif + if (pr == st.data()) { + throw std::runtime_error("bug in strtod_from_string"); + } +} + +template +bool partow_test() { + // credit: https://github.com/ArashPartow/strtk/blob/master/strtk_tokenizer_cmp.cpp#L568 + // MIT license + const std::string strint_list[] = { "9007199254740993", "9007199254740994", "9007199254740995" , + "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", + "917049", "4931205", "6768064", "6884243", "5647132", "7371203", "-8629878", "4941840", "4543268", "1075600", + "+290", "823", "+111", "715", "-866", "+367", "666", "-706", "850", "-161", + "9922547", "6960207", "1883152", "2300759", "-279294", "4187292", "3699841", "+8386395", "-1441129", "-887892", + "-635422", "9742573", "2326186", "-5903851", "5648486", "3057647", "2980079", "2957468", "7929158", "1925615", + "879", "+130", "292", "+705", "817", "446", "576", "750", "523", "-527", + "4365041", "5624958", "8990205", "2652177", "3993588", "-298316", "+2901599", "3887387", "-5202979", "1196268", + "5968501", "7619928", "3565643", "1885272", "-749485", "2961381", "2982579", "2387454", "4250081", "5958205", + "00000", "00001", "00002", "+00003", "00004", "00005", "00006", "00007", "00008", "+00009", + "4907034", "2592882", "3269234", "549815", "6256292", "9721039", "-595225", "+5587491", "4596297", "-3885009", + "673", "-899", "174", "354", "870", "147", "898", "-510", "369", "+859", + "6518423", "5149762", "8834164", "-8085586", "3233120", "8166948", "4172345", "6735549", "-934295", "9481935", + "-430406", "6932717", "4087292", "4047263", "3236400", "-3863050", "4312079", "6956261", "5689446", "3871332", + "+535", "691", "+326", "-409", "704", "-568", "+301", "951", "121", "384", + "4969414", "9378599", "7971781", "5380630", "5001363", "1715827", "6044615", "9118925", "9956168", "-8865496", + "5962464", "7408980", "6646513", "-634564", "4188330", "9805948", "5625691", "+7641113", "-4212929", "7802447", + "+0", "+1", "+2", "+3", "+4", "+5", "+6", "+7", "+8", "+9", + "2174248", "7449361", "9896659", "-25961", "1706598", "2412368", "-4617035", "6314554", "2225957", "7521434", + "-9530566", "3914164", "2394759", "7157744", "9919392", "6406949", "-744004", "9899789", "8380325", "-1416284", + "3402833", "2150043", "5191009", "8979538", "9565778", "3750211", "7304823", "2829359", "6544236", "-615740", + "363", "-627", "129", "+656", "135", "113", "381", "+646", "198", "38", + "8060564", "-176752", "1184717", "-666343", "-1273292", "-485827", "6241066", "6579411", "8093119", "7481306", + "-4924485", "7467889", "9813178", "7927100", "+3614859", "7293354", "9232973", "4323115", "1133911", "+9511638", + "4443188", "2289448", "5639726", "9073898", "8540394", "5389992", "1397726", "-589230", "1017086", "1852330", + "-840", "267", "201", "533", "-675", "494", "315", "706", "-920", "784", + "9097353", "6002251", "-308780", "-3830169", "4340467", "2235284", "3314444", "1085967", "4152107", "+5431117", + "-0000", "-0001", "-0002", "-0003", "-0004", "-0005", "-0006", "-0007", "-0008", "-0009", + "-444999", "2136400", "6925907", "6990614", "3588271", "8422028", "-4034772", "5804039", "-6740545", "9381873", + "-924923", "1652367", "2302616", "6776663", "2567821", "-248935", "2587688", "7076742", "-6461467", "1562896", + "-768116", "2338768", "9887307", "9992184", "2045182", "2797589", "9784597", "9696554", "5113329", "1067216", + "-76247763", "58169007", "29408062", "85342511", "42092201", "-95817703", "-1912517", "-26275135", "54656606", "-58188878", + "+473", "74", "374", "-64", "266", "+715", "937", "-249", "249", "780", + "3907360", "-23063423", "59062754", "83711047", "-95221044", "34894840", "-38562139", "-82018330", "14226223", "-10799717", + "8529722", "88961903", "25608618", "-39988247", "33228241", "+38598533", "21161480", "-33723784", "8873948", "96505557", + "-47385048", "-79413272", "-85904404", "87791158", "49194195", "13051222", "57773302", "31904423", "3142966", "27846156", + "7420011", "-72376922", "-68873971", "23765361", "4040725", "-22359806", "85777219", "10099223", "-90364256", "-40158172", + "-7948696", "-64344821", "34404238", "84037448", "-85084788", "-42078409", "-56550310", "96898389", "-595829", "-73166703", + "-0", "-1", "-2", "-3", "-4", "-5", "-6", "-7", "-8", "-9", + "2147483647", "31", "2147483610", "33", "2147483573", "37", "2147483536", + "-82838342", "64441808", "43641062", "-64419642", "-44421934", "75232413", "-75773725", "-89139509", "12812089", "-97633526", + "36090916", "-57706234", "17804655", "4189936", "-4100124", "38803710", "-39735126", "-62397437", "75801648", "51302332", + "73433906", "13015224", "-12624818", "91360377", "11576319", "-54467535", "8892431", "36319780", "38832042", "50172572", + "-317", "109", "-888", "302", "-463", "716", "+916", "665", "826", "513", + "42423473", "41078812", "40445652", "-76722281", "95092224", "12075234", "-4045888", "-74396490", "-57304222", "-21726885", + "92038121", "-31899682", "21589254", "-30260046", "56000244", "69686659", "+93327838", "96882881", "-91419389", "77529147", + "+43288506", "1192435", "-74095920", "76756590", "-31184683", "-35716724", "9451980", "-63168350", "62864002", "26283194", + "37188395", "29151634", "99343471", "-69450330", "-55680090", "-64957599", "47577948", "47107924", "2490477", "+48633003", + "-82740809", "-24122215", "67301713", "-63649610", "75499016", "82746620", "17052193", "4602244", "-32721165", "20837836", + "674", "+467", "+706", "889", "172", "+282", "-795", "188", "+87", "153", + "64501793", "53146328", "5152287", "-9674493", "68105580", "57245637", "39740229", "-74071854", "86777268", "86484437", + "-86962508", "12644427", "-62944073", "59539680", "43340539", "30661534", "20143968", "-68183731", "-48250926", "42669063", + "+000", "+001", "+002", "+003", "+004", "+005", "+006", "+007", "+008", "+009", + "2147483499", "71", "2147483462", "73", "2147483425", "77", "2147483388", + "87736852", "-4444906", "-48094147", "54774735", "54571890", "-22473078", "95053418", "393654", "-33229960", "32276798", + "-48361110", "44295939", "-79813406", "11630865", "38544571", "70972830", "-9821748", "-60965384", "-13096675", "-24569041", + "708", "-467", "-794", "610", "+929", "766", "152", "482", "397", "-191", + "97233152", "51028396", "-13796948", "95437272", "71352512", "-83233730", "-68517318", "61832742", "-42667174", "-18002395", + "-92239407", "12701336", "-63830875", "41514172", "-5726049", "18668677", "69555144", "-13737009", "-22626233", "-55078143", + "00", "11", "22", "33", "44", "-00", "-11", "-22", "-33", "-44", + "000", "111", "222", "333", "444", "-000", "-111", "-222", "-333", "-444", + "0000", "1111", "2222", "3333", "4444", "-0000", "-1111", "-2222", "-3333", "-4444", + "00000", "11111", "22222", "33333", "44444", "-00000", "-11111", "-22222", "-33333", "-44444", + "000000", "111111", "222222", "333333", "444444", "-000000", "-111111", "-222222", "-333333", "-444444", + "0000000", "1111111", "2222222", "3333333", "4444444", "-0000000", "-1111111", "-2222222", "-3333333", "-4444444", + "00000000", "11111111", "22222222", "33333333", "44444444", "-00000000", "-11111111", "-22222222", "-33333333", "-44444444", + "000000000", "111111111", "222222222", "333333333", "444444444","-000000000","-111111111","-222222222","-333333333","-444444444", + "2147483351", "51", "2147483314", "53", "-2147483648", "57", "-2147483611", + "55", "66", "77", "88", "99", "-55", "-66", "-77", "-88", "-99", + "555", "666", "777", "888", "999", "-555", "-666", "-777", "-888", "-999", + "5555", "6666", "7777", "8888", "9999", "-5555", "-6666", "-7777", "-8888", "-9999", + "55555", "66666", "77777", "88888", "99999", "-55555", "-66666", "-77777", "-88888", "-99999", + "555555", "666666", "777777", "888888", "999999", "-555555", "-666666", "-777777", "-888888", "-999999", + "5555555", "6666666", "7777777", "8888888", "9999999", "-5555555", "-6666666", "-7777777", "-8888888", "-9999999", + "55555555", "66666666", "77777777", "88888888", "99999999", "-55555555", "-66666666", "-77777777", "-88888888", "-99999999", + "555555555", "666666666", "777777777", "888888888", "999999999","-555555555","-666666666","-777777777","-888888888","-999999999", + "-2147483574", "91", "-2147483537", "93", "-2147483500", "97", "-2147483463", + "0000000011", "0000000022", "0000000033", "0000000044", "-000000011", "-000000022", "-000000033", "-000000044", "-000000088", + "0000000111", "0000000222", "0000000333", "0000000444", "-000000111", "-000000222", "-000000333", "-000000444", "-000000888", + "0000001111", "0000002222", "0000003333", "0000004444", "-000001111", "-000002222", "-000003333", "-000004444", "-000008888", + "0000011111", "0000022222", "0000033333", "0000044444", "-000011111", "-000022222", "-000033333", "-000044444", "-000088888", + "0000111111", "0000222222", "0000333333", "0000444444", "-000111111", "-000222222", "-000333333", "-000444444", "-000888888", + "0001111111", "0002222222", "0003333333", "0004444444", "-001111111", "-002222222", "-003333333", "-004444444", "-008888888", + "0011111111", "0022222222", "0033333333", "0044444444", "-011111111", "-022222222", "-033333333", "-044444444", "-088888888", + "0111111111", "0222222222", "0333333333", "0444444444", "-111111111", "-222222222", "-333333333", "-444444444", "-888888888", + "0000000055", "0000000066", "0000000077", "0000000088", "0000000099", "-000000055", "-000000066", "-000000077", "-000000099", + "0000000555", "0000000666", "0000000777", "0000000888", "0000000999", "-000000555", "-000000666", "-000000777", "-000000999", + "0000005555", "0000006666", "0000007777", "0000008888", "0000009999", "-000005555", "-000006666", "-000007777", "-000009999", + "0000055555", "0000066666", "0000077777", "0000088888", "0000099999", "-000055555", "-000066666", "-000077777", "-000099999", + "0000555555", "0000666666", "0000777777", "0000888888", "0000999999", "-000555555", "-000666666", "-000777777", "-000999999", + "0005555555", "0006666666", "0007777777", "0008888888", "0009999999", "-005555555", "-006666666", "-007777777", "-009999999", + "0055555555", "0066666666", "0077777777", "0088888888", "0099999999", "-055555555", "-066666666", "-077777777", "-099999999", + "0555555555", "0666666666", "0777777777", "0888888888", "0999999999", "-555555555", "-666666666", "-777777777", "-999999999", + "-2147483426", "101", "-2147483389", "103", "-2147483352", "105", "-2147483315", + "0000001234567890", "+0000001234567890", "-0000001234567890", + "000001234567890", "+000001234567890", "-000001234567890", + "00001234567890", "+00001234567890", "-00001234567890", + "0001234567890", "+0001234567890", "-0001234567890", + "001234567890", "+001234567890", "-001234567890", + "01234567890", "+01234567890", "-01234567890", + "1234567890", "+1234567890", "-1234567890", + }; + for(const std::string& st : strint_list) { + T expected_value; + strtod_from_string(st, expected_value); + T result_value; + auto result = fast_float::from_chars(st.data(), st.data() + st.size(), + result_value); + if (result.ec != std::errc()) { + printf("parsing %.*s\n", int(st.size()), st.data()); + std::cerr << " I could not parse " << std::endl; + return false; + } + if(result.ptr != st.data() + st.size()) { + printf("parsing %.*s\n", int(st.size()), st.data()); + std::cerr << " Did not get to the end " << std::endl; + return false; + } + if(result_value != expected_value) { + printf("parsing %.*s\n", int(st.size()), st.data()); + std::cerr << "expected value : " << to_string(expected_value) << std::endl; + std::cerr << "result value : " << to_string(result_value) << std::endl; + std::cerr << " Mismatch " << std::endl; + return false; + } + + } + return true; + +} + + +int main() { + + std::cout << "32 bits checks" << std::endl; + Assert(partow_test()); + Assert(test()); + + std::cout << "64 bits checks" << std::endl; + Assert(partow_test()); + Assert(test()); + + std::cout << "All ok" << std::endl; + return EXIT_SUCCESS; +} diff --git a/tests/test.cpp b/tests/test.cpp new file mode 100644 index 0000000..93bc670 --- /dev/null +++ b/tests/test.cpp @@ -0,0 +1,122 @@ +#include "fast_float/fast_float.h" + +#include + +inline void Assert(bool Assertion) { + if (!Assertion) + throw std::runtime_error("bug"); +} + +template std::string to_string(T d) { + std::string s(64, '\0'); + auto written = std::snprintf(&s[0], s.size(), "%.*e", + std::numeric_limits::max_digits10 - 1, d); + s.resize(written); + return s; +} + +bool demo32(std::string vals) { + float result_value; + auto result = fast_float::from_chars(vals.data(), vals.data() + vals.size(), + result_value); + if (result.ec != std::errc()) { + std::cerr << " I could not parse " << vals << std::endl; + return false; + } + + std::cout << result_value << std::endl; + return true; +} + +bool demo32(std::string vals, float val) { + float result_value; + auto result = fast_float::from_chars(vals.data(), vals.data() + vals.size(), + result_value); + if (result.ec != std::errc()) { + std::cerr << " I could not parse " << vals << std::endl; + return false; + } + if (std::isnan(val)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << result_value << std::endl; + return false; + } + } else if (result_value != val) { + std::cerr << "I got " << std::setprecision(15) << result_value << " but I was expecting " << val + << std::endl; + uint32_t word; + memcpy(&word, &result_value, sizeof(word)); + std::cout << "got mantissa = " << (word & ((1<<23)-1)) << std::endl; + memcpy(&word, &val, sizeof(word)); + std::cout << "wanted mantissa = " << (word & ((1<<23)-1)) << std::endl; + std::cerr << "string: " << vals << std::endl; + return false; + } + std::cout << result_value << " == " << val << std::endl; + return true; +} + +bool demo32(float val) { + std::string vals = to_string(val); + return demo32(vals, val); +} + +bool demo64(std::string vals, double val) { + double result_value; + auto result = fast_float::from_chars(vals.data(), vals.data() + vals.size(), + result_value); + if (result.ec != std::errc()) { + std::cerr << " I could not parse " << vals << std::endl; + return false; + } + if (std::isnan(val)) { + if (!std::isnan(result_value)) { + std::cerr << "not nan" << result_value << std::endl; + return false; + } + } else if (result_value != val) { + std::cerr << "I got " << std::setprecision(15) << result_value << " but I was expecting " << val + << std::endl; + std::cerr << "string: " << vals << std::endl; + return false; + } + std::cout << result_value << " == " << val << std::endl; + + return true; +} +bool demo64(double val) { + std::string vals = to_string(val); + return demo64(vals, val); +} + +int main() { + std::cout << "32 bits " << std::endl; + Assert(demo64("+1", 1)); + Assert(demo64("2e3000", std::numeric_limits::infinity())); + Assert(demo32("3.5028234666e38", std::numeric_limits::infinity())); + Assert(demo32("7.0060e-46", 0)); + Assert(demo32(1.00000006e+09f)); + Assert(demo32(1.4012984643e-45f)); + Assert(demo32(1.1754942107e-38f)); + Assert(demo32(1.1754943508e-45f)); + Assert(demo32(3.4028234664e38f)); + Assert(demo32(3.4028234665e38f)); + Assert(demo32(3.4028234666e38f)); + std::cout << std::endl; + + std::cout << "64 bits " << std::endl; + Assert(demo64("+1", 1)); + Assert(demo64("2e3000", std::numeric_limits::infinity())); + Assert(demo64("1.9e308", std::numeric_limits::infinity())); + Assert(demo64(3e-324)); + Assert(demo32(1.00000006e+09f)); + Assert(demo64(4.9406564584124653e-324)); + Assert(demo64(4.9406564584124654e-324)); + Assert(demo64(2.2250738585072009e-308)); + Assert(demo64(2.2250738585072014e-308)); + Assert(demo64(1.7976931348623157e308)); + Assert(demo64(1.7976931348623158e308)); + std::cout << std::endl; + std::cout << "All ok" << std::endl; + return EXIT_SUCCESS; +}