Merge pull request #15 from lemire/dlemire/long_path

Implement a fast "slow path"
This commit is contained in:
Daniel Lemire 2020-10-27 21:18:11 -04:00 committed by GitHub
commit 5c50a4c5d5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 92 additions and 103 deletions

View File

@ -16,31 +16,36 @@ fastfloat_really_inline bool is_integer(char c) noexcept { return (c >= '0' &&
// credit: https://johnnylee-sde.github.io/Fast-numeric-string-to-int/
fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept {
uint64_t val;
memcpy(&val, chars, sizeof(uint64_t));
::memcpy(&val, chars, sizeof(uint64_t));
val = (val & 0x0F0F0F0F0F0F0F0F) * 2561 >> 8;
val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16;
return uint32_t((val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32);
}
fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept {
uint64_t val;
memcpy(&val, chars, 8);
fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept {
return (((val & 0xF0F0F0F0F0F0F0F0) |
(((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) ==
0x3333333333333333);
}
fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept {
uint64_t val;
::memcpy(&val, chars, 8);
return is_made_of_eight_digits_fast(val);
}
fastfloat_really_inline uint32_t parse_four_digits_unrolled(const char *chars) noexcept {
uint32_t val;
memcpy(&val, chars, sizeof(uint32_t));
::memcpy(&val, chars, sizeof(uint32_t));
val = (val & 0x0F0F0F0F) * 2561 >> 8;
return (val & 0x00FF00FF) * 6553601 >> 16;
}
fastfloat_really_inline bool is_made_of_four_digits_fast(const char *chars) noexcept {
uint32_t val;
memcpy(&val, chars, 4);
::memcpy(&val, chars, 4);
return (((val & 0xF0F0F0F0) |
(((val + 0x06060606) & 0xF0F0F0F0) >> 4)) ==
0x33333333);
@ -162,95 +167,20 @@ parsed_number_string parse_number_string(const char *p, const char *pend, chars_
return answer;
}
// This should always succeed since it follows a call to parse_number_string.
// It assumes that there are more than 19 mantissa digits to parse.
parsed_number_string parse_truncated_decimal(const char *&p, const char *pend) noexcept {
parsed_number_string answer;
answer.valid = true;
answer.negative = (*p == '-');
if ((*p == '-') || (*p == '+')) {
++p;
}
size_t number_of_digits{0};
uint64_t i = 0;
while ((p != pend) && is_integer(*p)) {
// a multiplication by 10 is cheaper than an arbitrary integer
// multiplication
if(number_of_digits < 19) {
uint8_t digit = uint8_t(*p - '0');
i = 10 * i + digit;
number_of_digits ++;
}
++p;
}
int64_t exponent = 0;
if ((p != pend) && (*p == '.')) {
++p;
const char *first_after_period = p;
while ((p != pend) && is_integer(*p)) {
if(number_of_digits < 19) {
uint8_t digit = uint8_t(*p - '0');
i = i * 10 + digit;
number_of_digits ++;
} else if (exponent == 0) {
exponent = first_after_period - p;
}
++p;
}
}
if ((p != pend) && (('e' == *p) || ('E' == *p))) {
int64_t exp_number = 0; // exponential part
++p;
bool neg_exp = false;
if ((p != pend) && ('-' == *p)) {
neg_exp = true;
++p;
} else if ((p != pend) && ('+' == *p)) {
++p;
}
if ((p == pend) || !is_integer(*p)) {
return answer;
}
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
if (exp_number < 0x10000) {
exp_number = 10 * exp_number + digit;
}
++p;
}
exponent += (neg_exp ? -exp_number : exp_number);
}
answer.lastmatch = p;
answer.valid = true;
answer.too_many_digits = true; // assumed
answer.exponent = exponent;
answer.mantissa = i;
return answer;
}
// This should always succeed since it follows a call to parse_number_string.
decimal parse_decimal(const char *&p, const char *pend) noexcept {
decimal parse_decimal(const char *p, const char *pend) noexcept {
decimal answer;
answer.num_digits = 0;
answer.decimal_point = 0;
answer.negative = false;
answer.truncated = false;
// skip leading whitespace
while (fast_float::is_space(*p)) {
p++;
}
// any whitespace has been skipped.
answer.negative = (*p == '-');
if ((*p == '-') || (*p == '+')) {
++p;
}
// skip leading zeroes
while ((p != pend) && (*p == '0')) {
++p;
}
@ -273,8 +203,17 @@ decimal parse_decimal(const char *&p, const char *pend) noexcept {
++p;
}
}
while ((p + 8 <= pend) && (answer.num_digits + 8 < max_digits)) {
uint64_t val;
::memcpy(&val, p, sizeof(uint64_t));
if(! is_made_of_eight_digits_fast(val)) break;
val -= 0x3030303030303030;
::memcpy(answer.digits + answer.num_digits, &val, sizeof(uint64_t));
answer.num_digits += 8;
p += 8;
}
while ((p != pend) && is_integer(*p)) {
if (answer.num_digits + 1 < max_digits) {
if (answer.num_digits < max_digits) {
answer.digits[answer.num_digits] = uint8_t(*p - '0');
} else {
answer.truncated = true;
@ -299,7 +238,7 @@ decimal parse_decimal(const char *&p, const char *pend) noexcept {
uint8_t digit = uint8_t(*p - '0');
if (exp_number < 0x10000) {
exp_number = 10 * exp_number + digit;
}
}
++p;
}
answer.decimal_point += (neg_exp ? -exp_number : exp_number);

View File

@ -160,6 +160,7 @@ adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
return answer;
}
} // namespace fast_float
#endif

View File

@ -45,7 +45,7 @@ bool is_space(uint8_t c) {
namespace {
constexpr uint32_t max_digits = 768;
constexpr uint32_t max_digit_without_overflow = 19;
constexpr int32_t decimal_point_range = 2047;
} // namespace
@ -126,7 +126,11 @@ value128 full_multiplication(uint64_t value1, uint64_t value2) {
struct adjusted_mantissa {
uint64_t mantissa;
int power2;
adjusted_mantissa() : mantissa(0), power2(0) {}
adjusted_mantissa() = default;
//bool operator==(const adjusted_mantissa &o) const = default;
bool operator==(const adjusted_mantissa &o) const {
return mantissa == o.mantissa && power2 == o.power2;
}
};
struct decimal {
@ -135,6 +139,40 @@ struct decimal {
bool negative;
bool truncated;
uint8_t digits[max_digits];
decimal() = default;
// Copies are not allowed since this is a fat object.
decimal(const decimal &) = delete;
// Copies are not allowed since this is a fat object.
decimal & operator=(const decimal &) = delete;
// Moves are allowed:
decimal(decimal &&) = default;
decimal& operator=(decimal&& other) = default;
// Generates a mantissa by truncating to 19 digits; this function assumes
// that num_digits >= 19 (the caller is responsible for the check).
// This function should be reasonably fast.
inline uint64_t to_truncated_mantissa() {
uint64_t val;
// 8 first digits
::memcpy(&val, digits, sizeof(uint64_t));
val = val * 2561 >> 8;
val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16;
uint64_t mantissa = uint32_t((val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32);
// 8 more digits for a total of 16
::memcpy(&val, digits + sizeof(uint64_t), sizeof(uint64_t));
val = val * 2561 >> 8;
val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16;
uint32_t eight_digits_value = uint32_t((val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32);
mantissa = 100000000 * mantissa + eight_digits_value;
for(uint32_t i = 2*sizeof(uint64_t); i < max_digit_without_overflow; i++) {
mantissa = mantissa * 10 + digits[i]; // can be accelerated
}
return mantissa;
}
// Generate san exponent matching to_truncated_mantissa()
inline int32_t to_truncated_exponent() {
return decimal_point - max_digit_without_overflow;
}
};
constexpr static double powers_of_ten_double[] = {
@ -265,4 +303,13 @@ constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
} // namespace fast_float
// for convenience:
#include <ostream>
std::ostream& operator<<(std::ostream& out, const fast_float::decimal& d) {
out << "0.";
for(size_t i = 0; i < d.num_digits; i++) { out << int32_t(d.digits[i]); }
out << " * 10 ** " << d.decimal_point;
return out;
}
#endif

View File

@ -107,7 +107,7 @@ from_chars_result from_chars(const char *first, const char *last,
word |= uint64_t(am.power2) << binary_format<T>::mantissa_explicit_bits();
word = pns.negative
? word | (uint64_t(1) << binary_format<T>::sign_index()) : word;
memcpy(&value, &word, sizeof(T));
::memcpy(&value, &word, sizeof(T));
return answer;
}

View File

@ -28,20 +28,6 @@ inline void trim(decimal &h) {
}
}
/** If you ever want to see what is going on, the following function might prove handy:
* **/
void print(const decimal d, int32_t exp2 = 0) {
printf("0.");
for(size_t i = 0; i < d.num_digits; i++) {
printf("%d", int(d.digits[i]));
}
printf(" * 10 **%d ", d.decimal_point);
printf(" * 2 **%d ", exp2);
}
uint32_t number_of_digits_decimal_left_shift(decimal &h, uint32_t shift) {
@ -368,8 +354,23 @@ adjusted_mantissa compute_float(decimal &d) {
template <typename binary>
adjusted_mantissa parse_long_mantissa(const char *first, const char* last) {
decimal d = parse_decimal(first, last);
const uint64_t mantissa = d.to_truncated_mantissa();
const int64_t exponent = d.to_truncated_exponent();
// credit: Nigel Tao who first implemented this fast path (to my knowledge).
// It is rough, but it does the job of accelerating the slow path since most
// long streams of digits are determined after 19 digits.
adjusted_mantissa am1 = compute_float<binary>(exponent, mantissa);
adjusted_mantissa am2 = compute_float<binary>(exponent, mantissa+1);
if( am1 == am2 ) { return am1; }
return compute_float<binary>(d);
}
} // namespace fast_float
#endif
/*
uint32_t num_digits;
int32_t decimal_point;
bool negative;
bool truncated;
uint8_t digits[max_digits];*/

View File

@ -139,6 +139,7 @@ int main() {
std::cout << "======= 64 bits " << std::endl;
Assert(basic_test_64bit("2.22507385850720212418870147920222032907240528279439037814303133837435107319244194686754406432563881851382188218502438069999947733013005649884107791928741341929297200970481951993067993290969042784064731682041565926728632933630474670123316852983422152744517260835859654566319282835244787787799894310779783833699159288594555213714181128458251145584319223079897504395086859412457230891738946169368372321191373658977977723286698840356390251044443035457396733706583981055420456693824658413747607155981176573877626747665912387199931904006317334709003012790188175203447190250028061277777916798391090578584006464715943810511489154282775041174682194133952466682503431306181587829379004205392375072083366693241580002758391118854188641513168478436313080237596295773983001708984375e-308", 0x1.0000000000002p-1022));
Assert(basic_test_64bit("1.0000000000000006661338147750939242541790008544921875",1.0000000000000007));
Assert(basic_test_64bit("1090544144181609348835077142190",0x1.b8779f2474dfbp+99));
Assert(basic_test_64bit("2.2250738585072013e-308",2.2250738585072013e-308));