mirror of
https://github.com/fastfloat/fast_float.git
synced 2025-12-06 16:56:57 +08:00
Compare commits
43 Commits
6d59929814
...
c553930104
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c553930104 | ||
|
|
7b21183a93 | ||
|
|
8ac72791a9 | ||
|
|
e77e2bca7e | ||
|
|
24fa687d45 | ||
|
|
88f6c5e367 | ||
|
|
83a4f696d7 | ||
|
|
1ea4d2563e | ||
|
|
7262d9454e | ||
|
|
23f16adad4 | ||
|
|
fd98fd6689 | ||
|
|
197c0ffca7 | ||
|
|
e9438e64ba | ||
|
|
7abb574ffc | ||
|
|
04e8e545d8 | ||
|
|
e4b949e55b | ||
|
|
01e505797b | ||
|
|
13345cab65 | ||
|
|
88b1e5321c | ||
|
|
2aa6d0ba72 | ||
|
|
0b6d911220 | ||
|
|
2d6574483d | ||
|
|
7a77227521 | ||
|
|
e20c952456 | ||
|
|
bb956b29db | ||
|
|
48fc5404d4 | ||
|
|
e5612e9f72 | ||
|
|
fb384a4205 | ||
|
|
9d81c71aef | ||
|
|
fec4082f01 | ||
|
|
e89e248bd7 | ||
|
|
96fc38fb5a | ||
|
|
6677924083 | ||
|
|
0a230326ab | ||
|
|
7ae62ee0d5 | ||
|
|
e12463583f | ||
|
|
6702cd4244 | ||
|
|
20a7383442 | ||
|
|
763558b9ac | ||
|
|
6be07d66a8 | ||
|
|
cc90f240ee | ||
|
|
a134561e4b | ||
|
|
7b8f04500a |
4
.github/workflows/cifuzz.yml
vendored
4
.github/workflows/cifuzz.yml
vendored
@ -20,14 +20,14 @@ jobs:
|
||||
fuzz-seconds: 300
|
||||
output-sarif: true
|
||||
- name: Upload Crash
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v5
|
||||
if: failure() && steps.build.outcome == 'success'
|
||||
with:
|
||||
name: artifacts
|
||||
path: ./out/artifacts
|
||||
- name: Upload Sarif
|
||||
if: always() && steps.build.outcome == 'success'
|
||||
uses: github/codeql-action/upload-sarif@v3
|
||||
uses: github/codeql-action/upload-sarif@v4
|
||||
with:
|
||||
# Path to SARIF file relative to the root of the repository
|
||||
sarif_file: cifuzz-sarif/results.sarif
|
||||
|
||||
2
.github/workflows/emscripten.yml
vendored
2
.github/workflows/emscripten.yml
vendored
@ -5,7 +5,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@ff7abcd0c3c05ccf6adc123a8cd1fd4fb30fb493 # v4.2.2
|
||||
- uses: actions/setup-node@49933ea5288caeca8642d1e84afbd3f7d6820020 # v4.4.0
|
||||
- uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0
|
||||
- uses: mymindstorm/setup-emsdk@6ab9eb1bda2574c4ddb79809fc9247783eaf9021 # v14
|
||||
- name: Verify
|
||||
run: emcc -v
|
||||
|
||||
23
.github/workflows/risc.yml
vendored
Normal file
23
.github/workflows/risc.yml
vendored
Normal file
@ -0,0 +1,23 @@
|
||||
name: Ubuntu RISC-V rvv VLEN=128 (clang 17)
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-24.04
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- name: Install packages
|
||||
run: |
|
||||
sudo apt-get update -q -y
|
||||
sudo apt-get install -y cmake make g++-riscv64-linux-gnu qemu-user-static clang-17
|
||||
- name: Build
|
||||
run: |
|
||||
CXX=clang++-17 CXXFLAGS="--target=riscv64-linux-gnu -march=rv64gcv" \
|
||||
cmake --toolchain=cmake/toolchains-ci/riscv64-linux-gnu.cmake -DCMAKE_BUILD_TYPE=Release -B build
|
||||
cmake --build build/ -j$(nproc)
|
||||
- name: Test VLEN=128
|
||||
run: |
|
||||
export QEMU_LD_PREFIX="/usr/riscv64-linux-gnu"
|
||||
export QEMU_CPU="rv64,v=on,vlen=128,rvv_ta_all_1s=on,rvv_ma_all_1s=on"
|
||||
ctest --timeout 1800 --output-on-failure --test-dir build -j $(nproc)
|
||||
@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.14)
|
||||
|
||||
|
||||
project(fast_float VERSION 8.0.2 LANGUAGES CXX)
|
||||
project(fast_float VERSION 8.1.0 LANGUAGES CXX)
|
||||
set(FASTFLOAT_CXX_STANDARD 11 CACHE STRING "the C++ standard to use for fastfloat")
|
||||
set(CMAKE_CXX_STANDARD ${FASTFLOAT_CXX_STANDARD})
|
||||
option(FASTFLOAT_TEST "Enable tests" OFF)
|
||||
|
||||
59
README.md
59
README.md
@ -381,6 +381,50 @@ int main() {
|
||||
}
|
||||
```
|
||||
|
||||
## Multiplication of an integer by a power of 10
|
||||
An integer `W` can be multiplied by a power of ten `10^Q` and
|
||||
converted to `double` with correctly rounded value
|
||||
(in "round to nearest, tie to even" fashion) using
|
||||
`fast_float::integer_times_pow10()`, e.g.:
|
||||
```C++
|
||||
const uint64_t W = 12345678901234567;
|
||||
const int Q = 23;
|
||||
const double result = fast_float::integer_times_pow10(W, Q);
|
||||
std::cout.precision(17);
|
||||
std::cout << W << " * 10^" << Q << " = " << result << " ("
|
||||
<< (result == 12345678901234567e23 ? "==" : "!=") << "expected)\n";
|
||||
```
|
||||
outputs
|
||||
```
|
||||
12345678901234567 * 10^23 = 1.2345678901234567e+39 (==expected)
|
||||
```
|
||||
`fast_float::integer_times_pow10()` gives the same result as
|
||||
using `fast_float::from_chars()` when parsing the string `"WeQ"`
|
||||
(in this example `"12345678901234567e23"`),
|
||||
except `fast_float::integer_times_pow10()` does not report out-of-range errors, and
|
||||
underflows to zero or overflows to infinity when the resulting value is
|
||||
out of range.
|
||||
|
||||
You can use template overloads to get the result converted to different
|
||||
supported floating-point types: `float`, `double`, etc.
|
||||
For example, to get result as `float` use
|
||||
`fast_float::integer_times_pow10<float>()` specialization:
|
||||
```C++
|
||||
const uint64_t W = 12345678;
|
||||
const int Q = 23;
|
||||
const float result = fast_float::integer_times_pow10<float>(W, Q);
|
||||
std::cout.precision(9);
|
||||
std::cout << "float: " << W << " * 10^" << Q << " = " << result << " ("
|
||||
<< (result == 12345678e23f ? "==" : "!=") << "expected)\n";
|
||||
```
|
||||
outputs
|
||||
```
|
||||
float: 12345678 * 10^23 = 1.23456782e+30 (==expected)
|
||||
```
|
||||
|
||||
Overloads of `fast_float::integer_times_pow10()` are provided for
|
||||
signed and unsigned integer types: `int64_t`, `uint64_t`, etc.
|
||||
|
||||
|
||||
## Users and Related Work
|
||||
|
||||
@ -389,6 +433,8 @@ The fast_float library is part of:
|
||||
* GCC (as of version 12): the `from_chars` function in GCC relies on fast_float,
|
||||
* [Chromium](https://github.com/Chromium/Chromium), the engine behind Google
|
||||
Chrome, Microsoft Edge, and Opera,
|
||||
* Boost JSON, MySQL, etc.
|
||||
* Blender
|
||||
* [WebKit](https://github.com/WebKit/WebKit), the engine behind Safari (Apple's
|
||||
web browser),
|
||||
* [DuckDB](https://duckdb.org),
|
||||
@ -418,7 +464,7 @@ framework](https://github.com/microsoft/LightGBM).
|
||||
Packages
|
||||
------
|
||||
|
||||
[](https://repology.org/project/fastfloat/versions)
|
||||
[](https://repology.org/project/fast-float/versions)
|
||||
|
||||
|
||||
## References
|
||||
@ -491,7 +537,7 @@ sufficiently recent version of CMake (3.11 or better at least):
|
||||
FetchContent_Declare(
|
||||
fast_float
|
||||
GIT_REPOSITORY https://github.com/fastfloat/fast_float.git
|
||||
GIT_TAG tags/v8.0.2
|
||||
GIT_TAG tags/v8.1.0
|
||||
GIT_SHALLOW TRUE)
|
||||
|
||||
FetchContent_MakeAvailable(fast_float)
|
||||
@ -507,7 +553,7 @@ You may also use [CPM](https://github.com/cpm-cmake/CPM.cmake), like so:
|
||||
CPMAddPackage(
|
||||
NAME fast_float
|
||||
GITHUB_REPOSITORY "fastfloat/fast_float"
|
||||
GIT_TAG v8.0.2)
|
||||
GIT_TAG v8.1.0)
|
||||
```
|
||||
|
||||
## Using as single header
|
||||
@ -519,7 +565,7 @@ if desired as described in the command line help.
|
||||
|
||||
You may directly download automatically generated single-header files:
|
||||
|
||||
<https://github.com/fastfloat/fast_float/releases/download/v8.0.2/fast_float.h>
|
||||
<https://github.com/fastfloat/fast_float/releases/download/v8.1.0/fast_float.h>
|
||||
|
||||
## Benchmarking
|
||||
|
||||
@ -573,6 +619,11 @@ long digits.
|
||||
The library includes code adapted from Google Wuffs (written by Nigel Tao) which
|
||||
was originally published under the Apache 2.0 license.
|
||||
|
||||
## Stars
|
||||
|
||||
|
||||
[](https://www.star-history.com/#fastfloat/fast_float&Date)
|
||||
|
||||
## License
|
||||
|
||||
<sup>
|
||||
|
||||
4
cmake/toolchains-ci/riscv64-linux-gnu.cmake
Normal file
4
cmake/toolchains-ci/riscv64-linux-gnu.cmake
Normal file
@ -0,0 +1,4 @@
|
||||
set(CMAKE_SYSTEM_NAME Linux)
|
||||
set(CMAKE_SYSTEM_PROCESSOR riscv64)
|
||||
|
||||
set(CMAKE_CROSSCOMPILING_EMULATOR "qemu-riscv64-static")
|
||||
@ -38,11 +38,8 @@ constexpr static uint64_t powers_of_ten_uint64[] = {1UL,
|
||||
// this algorithm is not even close to optimized, but it has no practical
|
||||
// effect on performance: in order to have a faster algorithm, we'd need
|
||||
// to slow down performance for faster algorithms, and this is still fast.
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t
|
||||
scientific_exponent(parsed_number_string_t<UC> &num) noexcept {
|
||||
uint64_t mantissa = num.mantissa;
|
||||
int32_t exponent = int32_t(num.exponent);
|
||||
scientific_exponent(uint64_t mantissa, int32_t exponent) noexcept {
|
||||
while (mantissa >= 10000) {
|
||||
mantissa /= 10000;
|
||||
exponent += 4;
|
||||
@ -398,7 +395,7 @@ inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
|
||||
FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
|
||||
}
|
||||
|
||||
// compare digits, and use it to director rounding
|
||||
// compare digits, and use it to direct rounding
|
||||
int ord = real_digits.compare(theor_digits);
|
||||
adjusted_mantissa answer = am;
|
||||
round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) {
|
||||
@ -419,7 +416,7 @@ inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
|
||||
return answer;
|
||||
}
|
||||
|
||||
// parse the significant digits as a big integer to unambiguously round the
|
||||
// parse the significant digits as a big integer to unambiguously round
|
||||
// the significant digits. here, we are trying to determine how to round
|
||||
// an extended float representation close to `b+h`, halfway between `b`
|
||||
// (the float rounded-down) and `b+u`, the next positive float. this
|
||||
@ -438,7 +435,8 @@ digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept {
|
||||
// remove the invalid exponent bias
|
||||
am.power2 -= invalid_am_bias;
|
||||
|
||||
int32_t sci_exp = scientific_exponent(num);
|
||||
int32_t sci_exp =
|
||||
scientific_exponent(num.mantissa, static_cast<int32_t>(num.exponent));
|
||||
size_t max_digits = binary_format<T>::max_digits();
|
||||
size_t digits = 0;
|
||||
bigint bigmant;
|
||||
|
||||
@ -45,6 +45,38 @@ FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars_advanced(UC const *first, UC const *last, T &value,
|
||||
parse_options_t<UC> options) noexcept;
|
||||
|
||||
/**
|
||||
* This function multiplies an integer number by a power of 10 and returns
|
||||
* the result as a double precision floating-point value that is correctly
|
||||
* rounded. The resulting floating-point value is the closest floating-point
|
||||
* value, using the "round to nearest, tie to even" convention for values that
|
||||
* would otherwise fall right in-between two values. That is, we provide exact
|
||||
* conversion according to the IEEE standard.
|
||||
*
|
||||
* On overflow infinity is returned, on underflow 0 is returned.
|
||||
*
|
||||
* The implementation does not throw and does not allocate memory (e.g., with
|
||||
* `new` or `malloc`).
|
||||
*/
|
||||
FASTFLOAT_CONSTEXPR20 inline double
|
||||
integer_times_pow10(uint64_t mantissa, int decimal_exponent) noexcept;
|
||||
FASTFLOAT_CONSTEXPR20 inline double
|
||||
integer_times_pow10(int64_t mantissa, int decimal_exponent) noexcept;
|
||||
|
||||
/**
|
||||
* This function is a template overload of `integer_times_pow10()`
|
||||
* that returns a floating-point value of type `T` that is one of
|
||||
* supported floating-point types (e.g. `double`, `float`).
|
||||
*/
|
||||
template <typename T>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
typename std::enable_if<is_supported_float_type<T>::value, T>::type
|
||||
integer_times_pow10(uint64_t mantissa, int decimal_exponent) noexcept;
|
||||
template <typename T>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
typename std::enable_if<is_supported_float_type<T>::value, T>::type
|
||||
integer_times_pow10(int64_t mantissa, int decimal_exponent) noexcept;
|
||||
|
||||
/**
|
||||
* from_chars for integer types.
|
||||
*/
|
||||
|
||||
@ -16,8 +16,8 @@
|
||||
#include "constexpr_feature_detect.h"
|
||||
|
||||
#define FASTFLOAT_VERSION_MAJOR 8
|
||||
#define FASTFLOAT_VERSION_MINOR 0
|
||||
#define FASTFLOAT_VERSION_PATCH 2
|
||||
#define FASTFLOAT_VERSION_MINOR 1
|
||||
#define FASTFLOAT_VERSION_PATCH 0
|
||||
|
||||
#define FASTFLOAT_STRINGIZE_IMPL(x) #x
|
||||
#define FASTFLOAT_STRINGIZE(x) FASTFLOAT_STRINGIZE_IMPL(x)
|
||||
@ -93,11 +93,12 @@ using parse_options = parse_options_t<char>;
|
||||
defined(__MINGW64__) || defined(__s390x__) || \
|
||||
(defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \
|
||||
defined(__PPC64LE__)) || \
|
||||
defined(__loongarch64))
|
||||
defined(__loongarch64) || (defined(__riscv) && __riscv_xlen == 64))
|
||||
#define FASTFLOAT_64BIT 1
|
||||
#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
|
||||
defined(__arm__) || defined(_M_ARM) || defined(__ppc__) || \
|
||||
defined(__MINGW32__) || defined(__EMSCRIPTEN__))
|
||||
defined(__MINGW32__) || defined(__EMSCRIPTEN__) || \
|
||||
(defined(__riscv) && __riscv_xlen == 32))
|
||||
#define FASTFLOAT_32BIT 1
|
||||
#else
|
||||
// Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
|
||||
@ -1131,7 +1132,12 @@ template <typename T> constexpr uint64_t int_luts<T>::min_safe_u64[];
|
||||
|
||||
template <typename UC>
|
||||
fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) {
|
||||
return int_luts<>::chdigit[static_cast<unsigned char>(c)];
|
||||
// wchar_t and char can be signed, so we need to be careful.
|
||||
using UnsignedUC = typename std::make_unsigned<UC>::type;
|
||||
return int_luts<>::chdigit[static_cast<unsigned char>(
|
||||
static_cast<UnsignedUC>(c) &
|
||||
static_cast<UnsignedUC>(
|
||||
-((static_cast<UnsignedUC>(c) & ~0xFFull) == 0)))];
|
||||
}
|
||||
|
||||
fastfloat_really_inline constexpr size_t max_digits_u64(int base) {
|
||||
@ -1160,6 +1166,9 @@ static_assert(std::is_same<equiv_uint_t<std::float64_t>, uint64_t>::value,
|
||||
static_assert(
|
||||
std::numeric_limits<std::float64_t>::is_iec559,
|
||||
"std::float64_t must fulfill the requirements of IEC 559 (IEEE 754)");
|
||||
|
||||
template <>
|
||||
struct binary_format<std::float64_t> : public binary_format<double> {};
|
||||
#endif // __STDCPP_FLOAT64_T__
|
||||
|
||||
#ifdef __STDCPP_FLOAT32_T__
|
||||
@ -1168,6 +1177,9 @@ static_assert(std::is_same<equiv_uint_t<std::float32_t>, uint32_t>::value,
|
||||
static_assert(
|
||||
std::numeric_limits<std::float32_t>::is_iec559,
|
||||
"std::float32_t must fulfill the requirements of IEC 559 (IEEE 754)");
|
||||
|
||||
template <>
|
||||
struct binary_format<std::float32_t> : public binary_format<float> {};
|
||||
#endif // __STDCPP_FLOAT32_T__
|
||||
|
||||
#ifdef __STDCPP_FLOAT16_T__
|
||||
@ -1239,7 +1251,6 @@ constexpr chars_format adjust_for_feature_macros(chars_format fmt) {
|
||||
;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
#endif
|
||||
|
||||
@ -188,32 +188,17 @@ from_chars(UC const *first, UC const *last, T &value,
|
||||
parse_options_t<UC>(fmt));
|
||||
}
|
||||
|
||||
/**
|
||||
* This function overload takes parsed_number_string_t structure that is created
|
||||
* and populated either by from_chars_advanced function taking chars range and
|
||||
* parsing options or other parsing custom function implemented by user.
|
||||
*/
|
||||
template <typename T, typename UC>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {
|
||||
|
||||
static_assert(is_supported_float_type<T>::value,
|
||||
"only some floating-point types are supported");
|
||||
static_assert(is_supported_char_type<UC>::value,
|
||||
"only char, wchar_t, char16_t and char32_t are supported");
|
||||
|
||||
from_chars_result_t<UC> answer;
|
||||
|
||||
answer.ec = std::errc(); // be optimistic
|
||||
answer.ptr = pns.lastmatch;
|
||||
template <typename T>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
|
||||
clinger_fast_path_impl(uint64_t mantissa, int64_t exponent, bool is_negative,
|
||||
T &value) noexcept {
|
||||
// The implementation of the Clinger's fast path is convoluted because
|
||||
// we want round-to-nearest in all cases, irrespective of the rounding mode
|
||||
// selected on the thread.
|
||||
// We proceed optimistically, assuming that detail::rounds_to_nearest()
|
||||
// returns true.
|
||||
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent &&
|
||||
pns.exponent <= binary_format<T>::max_exponent_fast_path() &&
|
||||
!pns.too_many_digits) {
|
||||
if (binary_format<T>::min_exponent_fast_path() <= exponent &&
|
||||
exponent <= binary_format<T>::max_exponent_fast_path()) {
|
||||
// Unfortunately, the conventional Clinger's fast path is only possible
|
||||
// when the system rounds to the nearest float.
|
||||
//
|
||||
@ -224,41 +209,64 @@ from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {
|
||||
if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
|
||||
// We have that fegetround() == FE_TONEAREST.
|
||||
// Next is Clinger's fast path.
|
||||
if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) {
|
||||
value = T(pns.mantissa);
|
||||
if (pns.exponent < 0) {
|
||||
value = value / binary_format<T>::exact_power_of_ten(-pns.exponent);
|
||||
if (mantissa <= binary_format<T>::max_mantissa_fast_path()) {
|
||||
value = T(mantissa);
|
||||
if (exponent < 0) {
|
||||
value = value / binary_format<T>::exact_power_of_ten(-exponent);
|
||||
} else {
|
||||
value = value * binary_format<T>::exact_power_of_ten(pns.exponent);
|
||||
value = value * binary_format<T>::exact_power_of_ten(exponent);
|
||||
}
|
||||
if (pns.negative) {
|
||||
if (is_negative) {
|
||||
value = -value;
|
||||
}
|
||||
return answer;
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
// We do not have that fegetround() == FE_TONEAREST.
|
||||
// Next is a modified Clinger's fast path, inspired by Jakub Jelínek's
|
||||
// proposal
|
||||
if (pns.exponent >= 0 &&
|
||||
pns.mantissa <=
|
||||
binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
|
||||
if (exponent >= 0 &&
|
||||
mantissa <= binary_format<T>::max_mantissa_fast_path(exponent)) {
|
||||
#if defined(__clang__) || defined(FASTFLOAT_32BIT)
|
||||
// Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
|
||||
if (pns.mantissa == 0) {
|
||||
value = pns.negative ? T(-0.) : T(0.);
|
||||
return answer;
|
||||
if (mantissa == 0) {
|
||||
value = is_negative ? T(-0.) : T(0.);
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
value = T(pns.mantissa) *
|
||||
binary_format<T>::exact_power_of_ten(pns.exponent);
|
||||
if (pns.negative) {
|
||||
value = T(mantissa) * binary_format<T>::exact_power_of_ten(exponent);
|
||||
if (is_negative) {
|
||||
value = -value;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* This function overload takes parsed_number_string_t structure that is created
|
||||
* and populated either by from_chars_advanced function taking chars range and
|
||||
* parsing options or other parsing custom function implemented by user.
|
||||
*/
|
||||
template <typename T, typename UC>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {
|
||||
static_assert(is_supported_float_type<T>::value,
|
||||
"only some floating-point types are supported");
|
||||
static_assert(is_supported_char_type<UC>::value,
|
||||
"only char, wchar_t, char16_t and char32_t are supported");
|
||||
|
||||
from_chars_result_t<UC> answer;
|
||||
|
||||
answer.ec = std::errc(); // be optimistic
|
||||
answer.ptr = pns.lastmatch;
|
||||
|
||||
if (!pns.too_many_digits &&
|
||||
clinger_fast_path_impl(pns.mantissa, pns.exponent, pns.negative, value))
|
||||
return answer;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
adjusted_mantissa am =
|
||||
compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
|
||||
if (pns.too_many_digits && am.power2 >= 0) {
|
||||
@ -336,6 +344,84 @@ from_chars(UC const *first, UC const *last, T &value, int base) noexcept {
|
||||
return from_chars_advanced(first, last, value, options);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
typename std::enable_if<is_supported_float_type<T>::value, T>::type
|
||||
integer_times_pow10(uint64_t mantissa, int decimal_exponent) noexcept {
|
||||
T value;
|
||||
if (clinger_fast_path_impl(mantissa, decimal_exponent, false, value))
|
||||
return value;
|
||||
|
||||
adjusted_mantissa am =
|
||||
compute_float<binary_format<T>>(decimal_exponent, mantissa);
|
||||
to_float(false, am, value);
|
||||
return value;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
typename std::enable_if<is_supported_float_type<T>::value, T>::type
|
||||
integer_times_pow10(int64_t mantissa, int decimal_exponent) noexcept {
|
||||
const bool is_negative = mantissa < 0;
|
||||
const uint64_t m = static_cast<uint64_t>(is_negative ? -mantissa : mantissa);
|
||||
|
||||
T value;
|
||||
if (clinger_fast_path_impl(m, decimal_exponent, is_negative, value))
|
||||
return value;
|
||||
|
||||
adjusted_mantissa am = compute_float<binary_format<T>>(decimal_exponent, m);
|
||||
to_float(is_negative, am, value);
|
||||
return value;
|
||||
}
|
||||
|
||||
FASTFLOAT_CONSTEXPR20 inline double
|
||||
integer_times_pow10(uint64_t mantissa, int decimal_exponent) noexcept {
|
||||
return integer_times_pow10<double>(mantissa, decimal_exponent);
|
||||
}
|
||||
|
||||
FASTFLOAT_CONSTEXPR20 inline double
|
||||
integer_times_pow10(int64_t mantissa, int decimal_exponent) noexcept {
|
||||
return integer_times_pow10<double>(mantissa, decimal_exponent);
|
||||
}
|
||||
|
||||
// the following overloads are here to avoid surprising ambiguity for int,
|
||||
// unsigned, etc.
|
||||
template <typename T, typename Int>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
typename std::enable_if<is_supported_float_type<T>::value &&
|
||||
std::is_integral<Int>::value &&
|
||||
!std::is_signed<Int>::value,
|
||||
T>::type
|
||||
integer_times_pow10(Int mantissa, int decimal_exponent) noexcept {
|
||||
return integer_times_pow10<T>(static_cast<uint64_t>(mantissa),
|
||||
decimal_exponent);
|
||||
}
|
||||
|
||||
template <typename T, typename Int>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
typename std::enable_if<is_supported_float_type<T>::value &&
|
||||
std::is_integral<Int>::value &&
|
||||
std::is_signed<Int>::value,
|
||||
T>::type
|
||||
integer_times_pow10(Int mantissa, int decimal_exponent) noexcept {
|
||||
return integer_times_pow10<T>(static_cast<int64_t>(mantissa),
|
||||
decimal_exponent);
|
||||
}
|
||||
|
||||
template <typename Int>
|
||||
FASTFLOAT_CONSTEXPR20 typename std::enable_if<
|
||||
std::is_integral<Int>::value && !std::is_signed<Int>::value, double>::type
|
||||
integer_times_pow10(Int mantissa, int decimal_exponent) noexcept {
|
||||
return integer_times_pow10(static_cast<uint64_t>(mantissa), decimal_exponent);
|
||||
}
|
||||
|
||||
template <typename Int>
|
||||
FASTFLOAT_CONSTEXPR20 typename std::enable_if<
|
||||
std::is_integral<Int>::value && std::is_signed<Int>::value, double>::type
|
||||
integer_times_pow10(Int mantissa, int decimal_exponent) noexcept {
|
||||
return integer_times_pow10(static_cast<int64_t>(mantissa), decimal_exponent);
|
||||
}
|
||||
|
||||
template <typename T, typename UC>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars_int_advanced(UC const *first, UC const *last, T &value,
|
||||
|
||||
@ -61,6 +61,7 @@ fast_float_add_cpp_test(wide_char_test)
|
||||
fast_float_add_cpp_test(supported_chars_test)
|
||||
fast_float_add_cpp_test(example_test)
|
||||
fast_float_add_cpp_test(example_comma_test)
|
||||
fast_float_add_cpp_test(example_integer_times_pow10)
|
||||
fast_float_add_cpp_test(basictest)
|
||||
option(FASTFLOAT_CONSTEXPR_TESTS "Require constexpr tests (build will fail if the compiler won't support it)" OFF)
|
||||
if (FASTFLOAT_CONSTEXPR_TESTS)
|
||||
|
||||
@ -1134,6 +1134,23 @@ TEST_CASE("double.inf") {
|
||||
std::errc::result_out_of_range);
|
||||
verify("1.9e308", std::numeric_limits<double>::infinity(),
|
||||
std::errc::result_out_of_range);
|
||||
|
||||
// DBL_MAX + 0.00000000000000001e308
|
||||
verify("1.79769313486231581e308", std::numeric_limits<double>::infinity(),
|
||||
std::errc::result_out_of_range);
|
||||
|
||||
// DBL_MAX + 0.0000000000000001e308
|
||||
verify("1.7976931348623159e308", std::numeric_limits<double>::infinity(),
|
||||
std::errc::result_out_of_range);
|
||||
|
||||
// ( (2 - 0.5*2^(−52)) * 2^1023 ) smallest number that overflows to infinity
|
||||
verify("179769313486231580793728971405303415079934132710037826936173778980444"
|
||||
"968292764750946649017977587207096330286416692887910946555547851940402"
|
||||
"630657488671505820681908902000708383676273854845817711531764475730270"
|
||||
"069855571366959622842914819860834936475292719074168444365510704342711"
|
||||
"559699508093042880177904174497792",
|
||||
std::numeric_limits<double>::infinity(),
|
||||
std::errc::result_out_of_range);
|
||||
}
|
||||
|
||||
TEST_CASE("double.general") {
|
||||
@ -1143,6 +1160,13 @@ TEST_CASE("double.general") {
|
||||
verify("-22250738585072012e-324",
|
||||
-0x1p-1022); /* limit between normal and subnormal*/
|
||||
verify("-1e-999", -0.0, std::errc::result_out_of_range);
|
||||
|
||||
// DBL_TRUE_MIN / 2
|
||||
verify("2.4703282292062327e-324", 0.0, std::errc::result_out_of_range);
|
||||
|
||||
// DBL_TRUE_MIN / 2 + 0.0000000000000001e-324
|
||||
verify("2.4703282292062328e-324", 0x0.0000000000001p-1022);
|
||||
|
||||
verify("-2.2222222222223e-322", -0x1.68p-1069);
|
||||
verify("9007199254740993.0", 0x1p+53);
|
||||
verify("860228122.6654514319E+90", 0x1.92bb20990715fp+328);
|
||||
@ -1318,6 +1342,15 @@ TEST_CASE("double.general") {
|
||||
std::numeric_limits<double>::infinity(), std::errc::result_out_of_range);
|
||||
verify("-2240084132271013504.131248280843119943687942846658579428",
|
||||
-0x1.f1660a65b00bfp+60);
|
||||
|
||||
// ( (2 - 0.5*2^(−52)) * 2^1023 - 1 ) largest 309 decimal digit number
|
||||
// that rounds to DBL_MAX
|
||||
verify("179769313486231580793728971405303415079934132710037826936173778980444"
|
||||
"968292764750946649017977587207096330286416692887910946555547851940402"
|
||||
"630657488671505820681908902000708383676273854845817711531764475730270"
|
||||
"069855571366959622842914819860834936475292719074168444365510704342711"
|
||||
"559699508093042880177904174497791",
|
||||
std::numeric_limits<double>::max());
|
||||
}
|
||||
|
||||
TEST_CASE("double.decimal_point") {
|
||||
@ -1492,14 +1525,35 @@ TEST_CASE("float.inf") {
|
||||
std::errc::result_out_of_range);
|
||||
verify("3.5028234666e38", std::numeric_limits<float>::infinity(),
|
||||
std::errc::result_out_of_range);
|
||||
// FLT_MAX + 0.00000007e38
|
||||
verify("3.40282357e38", std::numeric_limits<float>::infinity(),
|
||||
std::errc::result_out_of_range);
|
||||
// FLT_MAX + 0.0000001e38
|
||||
verify("3.4028236e38", std::numeric_limits<float>::infinity(),
|
||||
std::errc::result_out_of_range);
|
||||
|
||||
// ( (2 - 0.5*2^(-23)) * 2^127 ) smallest number that overflows to infinity
|
||||
verify("340282356779733661637539395458142568448",
|
||||
std::numeric_limits<float>::infinity(),
|
||||
std::errc::result_out_of_range);
|
||||
}
|
||||
|
||||
TEST_CASE("float.general") {
|
||||
// FLT_TRUE_MIN / 2
|
||||
verify("0.7006492e-45", 0.f, std::errc::result_out_of_range);
|
||||
// FLT_TRUE_MIN / 2 + 0.0000001e-45
|
||||
verify("0.7006493e-45", 0x1p-149f);
|
||||
|
||||
// max
|
||||
verify("340282346638528859811704183484516925440", 0x1.fffffep+127f);
|
||||
// -max
|
||||
verify("-340282346638528859811704183484516925440", -0x1.fffffep+127f);
|
||||
|
||||
// ( (2 - 0.5*2^(-23)) * 2^127 - 1 ) largest 39 decimal digits number
|
||||
// that rounds to FLT_MAX
|
||||
verify("340282356779733661637539395458142568447",
|
||||
std::numeric_limits<float>::max());
|
||||
|
||||
verify("-1e-999", -0.0f, std::errc::result_out_of_range);
|
||||
verify("1."
|
||||
"175494140627517859246175898662808184331245864732796240031385942718174"
|
||||
@ -2070,3 +2124,317 @@ TEST_CASE("bfloat16.general") {
|
||||
// 0.00000000000000000000000000000000000001175494210692441075487029444849287348827052428745893333857174530571588870475618904265502351336181163787841796875bf16);
|
||||
}
|
||||
#endif
|
||||
|
||||
template <typename Int, typename T, typename U>
|
||||
void verify_integer_times_pow10_result(Int mantissa, int decimal_exponent,
|
||||
T actual, U expected) {
|
||||
static_assert(std::is_same<T, U>::value,
|
||||
"expected and actual types must match");
|
||||
|
||||
INFO("m * 10^e=" << mantissa << " * 10^" << decimal_exponent
|
||||
<< "\n"
|
||||
" expected="
|
||||
<< fHexAndDec(expected) << "\n"
|
||||
<< " ..actual=" << fHexAndDec(actual) << "\n"
|
||||
<< " expected mantissa="
|
||||
<< iHexAndDec(get_mantissa(expected)) << "\n"
|
||||
<< " ..actual mantissa=" << iHexAndDec(get_mantissa(actual))
|
||||
<< "\n");
|
||||
CHECK_EQ(actual, expected);
|
||||
}
|
||||
|
||||
template <typename T, typename Int>
|
||||
T calculate_integer_times_pow10_expected_result(Int mantissa,
|
||||
int decimal_exponent) {
|
||||
std::string constructed_string =
|
||||
std::to_string(mantissa) + "e" + std::to_string(decimal_exponent);
|
||||
T expected_result;
|
||||
const auto result = fast_float::from_chars(
|
||||
constructed_string.data(),
|
||||
constructed_string.data() + constructed_string.size(), expected_result);
|
||||
if (result.ec != std::errc())
|
||||
INFO("Failed to parse: " << constructed_string);
|
||||
return expected_result;
|
||||
}
|
||||
|
||||
template <typename Int>
|
||||
void verify_integer_times_pow10_dflt(Int mantissa, int decimal_exponent,
|
||||
double expected) {
|
||||
static_assert(std::is_integral<Int>::value);
|
||||
|
||||
// the "default" overload
|
||||
const double actual =
|
||||
fast_float::integer_times_pow10(mantissa, decimal_exponent);
|
||||
|
||||
verify_integer_times_pow10_result(mantissa, decimal_exponent, actual,
|
||||
expected);
|
||||
}
|
||||
|
||||
template <typename Int>
|
||||
void verify_integer_times_pow10_dflt(Int mantissa, int decimal_exponent) {
|
||||
static_assert(std::is_integral<Int>::value);
|
||||
|
||||
const auto expected_result =
|
||||
calculate_integer_times_pow10_expected_result<double>(mantissa,
|
||||
decimal_exponent);
|
||||
|
||||
verify_integer_times_pow10_dflt(mantissa, decimal_exponent, expected_result);
|
||||
}
|
||||
|
||||
template <typename T, typename Int>
|
||||
void verify_integer_times_pow10(Int mantissa, int decimal_exponent,
|
||||
T expected) {
|
||||
static_assert(std::is_floating_point<T>::value);
|
||||
static_assert(std::is_integral<Int>::value);
|
||||
|
||||
// explicit specialization
|
||||
const auto actual =
|
||||
fast_float::integer_times_pow10<T>(mantissa, decimal_exponent);
|
||||
|
||||
verify_integer_times_pow10_result(mantissa, decimal_exponent, actual,
|
||||
expected);
|
||||
}
|
||||
|
||||
template <typename T, typename Int>
|
||||
void verify_integer_times_pow10(Int mantissa, int decimal_exponent) {
|
||||
static_assert(std::is_floating_point<T>::value);
|
||||
static_assert(std::is_integral<Int>::value);
|
||||
|
||||
const auto expected_result = calculate_integer_times_pow10_expected_result<T>(
|
||||
mantissa, decimal_exponent);
|
||||
|
||||
verify_integer_times_pow10(mantissa, decimal_exponent, expected_result);
|
||||
}
|
||||
|
||||
namespace all_supported_types {
|
||||
template <typename Int>
|
||||
void verify_integer_times_pow10(Int mantissa, int decimal_exponent) {
|
||||
static_assert(std::is_integral<Int>::value);
|
||||
|
||||
// verify the "default" overload
|
||||
verify_integer_times_pow10_dflt(mantissa, decimal_exponent);
|
||||
|
||||
// verify explicit specializations
|
||||
::verify_integer_times_pow10<double>(mantissa, decimal_exponent);
|
||||
::verify_integer_times_pow10<float>(mantissa, decimal_exponent);
|
||||
#if defined(__STDCPP_FLOAT64_T__)
|
||||
::verify_integer_times_pow10<std::float64_t>(mantissa, decimal_exponent);
|
||||
#endif
|
||||
#if defined(__STDCPP_FLOAT32_T__)
|
||||
::verify_integer_times_pow10<std::float32_t>(mantissa, decimal_exponent);
|
||||
#endif
|
||||
#if defined(__STDCPP_FLOAT16_T__)
|
||||
::verify_integer_times_pow10<std::float16_t>(mantissa, decimal_exponent);
|
||||
#endif
|
||||
#if defined(__STDCPP_BFLOAT16_T__)
|
||||
::verify_integer_times_pow10<std::bfloat16_t>(mantissa, decimal_exponent);
|
||||
#endif
|
||||
}
|
||||
} // namespace all_supported_types
|
||||
|
||||
TEST_CASE("integer_times_pow10") {
|
||||
/* explicitly verifying API with different types of integers */
|
||||
// double (the "default" overload)
|
||||
verify_integer_times_pow10_dflt<int8_t>(31, -1, 3.1);
|
||||
verify_integer_times_pow10_dflt<int8_t>(-31, -1, -3.1);
|
||||
verify_integer_times_pow10_dflt<uint8_t>(31, -1, 3.1);
|
||||
verify_integer_times_pow10_dflt<int16_t>(31415, -4, 3.1415);
|
||||
verify_integer_times_pow10_dflt<int16_t>(-31415, -4, -3.1415);
|
||||
verify_integer_times_pow10_dflt<uint16_t>(31415, -4, 3.1415);
|
||||
verify_integer_times_pow10_dflt<int32_t>(314159265, -8, 3.14159265);
|
||||
verify_integer_times_pow10_dflt<int32_t>(-314159265, -8, -3.14159265);
|
||||
verify_integer_times_pow10_dflt<uint32_t>(3141592653, -9, 3.141592653);
|
||||
verify_integer_times_pow10_dflt<long>(314159265, -8, 3.14159265);
|
||||
verify_integer_times_pow10_dflt<long>(-314159265, -8, -3.14159265);
|
||||
verify_integer_times_pow10_dflt<unsigned long>(3141592653, -9, 3.141592653);
|
||||
verify_integer_times_pow10_dflt<int64_t>(3141592653589793238, -18,
|
||||
3.141592653589793238);
|
||||
verify_integer_times_pow10_dflt<int64_t>(-3141592653589793238, -18,
|
||||
-3.141592653589793238);
|
||||
verify_integer_times_pow10_dflt<uint64_t>(3141592653589793238, -18,
|
||||
3.141592653589793238);
|
||||
verify_integer_times_pow10_dflt<long long>(3141592653589793238, -18,
|
||||
3.141592653589793238);
|
||||
verify_integer_times_pow10_dflt<long long>(-3141592653589793238, -18,
|
||||
-3.141592653589793238);
|
||||
verify_integer_times_pow10_dflt<unsigned long long>(3141592653589793238, -18,
|
||||
3.141592653589793238);
|
||||
// double (explicit specialization)
|
||||
verify_integer_times_pow10<double, int8_t>(31, -1, 3.1);
|
||||
verify_integer_times_pow10<double, int8_t>(-31, -1, -3.1);
|
||||
verify_integer_times_pow10<double, uint8_t>(31, -1, 3.1);
|
||||
verify_integer_times_pow10<double, int16_t>(31415, -4, 3.1415);
|
||||
verify_integer_times_pow10<double, int16_t>(-31415, -4, -3.1415);
|
||||
verify_integer_times_pow10<double, uint16_t>(31415, -4, 3.1415);
|
||||
verify_integer_times_pow10<double, int32_t>(314159265, -8, 3.14159265);
|
||||
verify_integer_times_pow10<double, int32_t>(-314159265, -8, -3.14159265);
|
||||
verify_integer_times_pow10<double, uint32_t>(3141592653, -9, 3.141592653);
|
||||
verify_integer_times_pow10<double, long>(314159265, -8, 3.14159265);
|
||||
verify_integer_times_pow10<double, long>(-314159265, -8, -3.14159265);
|
||||
verify_integer_times_pow10<double, unsigned long>(3141592653, -9,
|
||||
3.141592653);
|
||||
verify_integer_times_pow10<double, int64_t>(3141592653589793238, -18,
|
||||
3.141592653589793238);
|
||||
verify_integer_times_pow10<double, int64_t>(-3141592653589793238, -18,
|
||||
-3.141592653589793238);
|
||||
verify_integer_times_pow10<double, uint64_t>(3141592653589793238, -18,
|
||||
3.141592653589793238);
|
||||
verify_integer_times_pow10<double, long long>(3141592653589793238, -18,
|
||||
3.141592653589793238);
|
||||
verify_integer_times_pow10<double, long long>(-3141592653589793238, -18,
|
||||
-3.141592653589793238);
|
||||
verify_integer_times_pow10<double, unsigned long long>(
|
||||
3141592653589793238, -18, 3.141592653589793238);
|
||||
// float (explicit specialization)
|
||||
verify_integer_times_pow10<float, int8_t>(31, -1, 3.1f);
|
||||
verify_integer_times_pow10<float, int8_t>(-31, -1, -3.1f);
|
||||
verify_integer_times_pow10<float, uint8_t>(31, -1, 3.1f);
|
||||
verify_integer_times_pow10<float, int16_t>(31415, -4, 3.1415f);
|
||||
verify_integer_times_pow10<float, int16_t>(-31415, -4, -3.1415f);
|
||||
verify_integer_times_pow10<float, uint16_t>(31415, -4, 3.1415f);
|
||||
verify_integer_times_pow10<float, int32_t>(314159265, -8, 3.14159265f);
|
||||
verify_integer_times_pow10<float, int32_t>(-314159265, -8, -3.14159265f);
|
||||
verify_integer_times_pow10<float, uint32_t>(3141592653, -9, 3.14159265f);
|
||||
verify_integer_times_pow10<float, long>(314159265, -8, 3.14159265f);
|
||||
verify_integer_times_pow10<float, long>(-314159265, -8, -3.14159265f);
|
||||
verify_integer_times_pow10<float, unsigned long>(3141592653, -9, 3.14159265f);
|
||||
verify_integer_times_pow10<float, int64_t>(3141592653589793238, -18,
|
||||
3.141592653589793238f);
|
||||
verify_integer_times_pow10<float, int64_t>(-3141592653589793238, -18,
|
||||
-3.141592653589793238f);
|
||||
verify_integer_times_pow10<float, uint64_t>(3141592653589793238, -18,
|
||||
3.141592653589793238f);
|
||||
verify_integer_times_pow10<float, long long>(3141592653589793238, -18,
|
||||
3.141592653589793238f);
|
||||
verify_integer_times_pow10<float, long long>(-3141592653589793238, -18,
|
||||
-3.141592653589793238f);
|
||||
verify_integer_times_pow10<float, unsigned long long>(
|
||||
3141592653589793238, -18, 3.141592653589793238f);
|
||||
|
||||
for (int mode : {FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO, FE_TONEAREST}) {
|
||||
fesetround(mode);
|
||||
INFO("fesetround(): " << std::string{round_name(mode)});
|
||||
|
||||
struct Guard {
|
||||
~Guard() { fesetround(FE_TONEAREST); }
|
||||
} guard;
|
||||
|
||||
namespace all = all_supported_types;
|
||||
|
||||
all::verify_integer_times_pow10(0, 0);
|
||||
all::verify_integer_times_pow10(1, 0);
|
||||
all::verify_integer_times_pow10(0, 1);
|
||||
all::verify_integer_times_pow10(1, 1);
|
||||
all::verify_integer_times_pow10(-1, 0);
|
||||
all::verify_integer_times_pow10(0, -1);
|
||||
all::verify_integer_times_pow10(-1, -1);
|
||||
all::verify_integer_times_pow10(-1, 1);
|
||||
all::verify_integer_times_pow10(1, -1);
|
||||
|
||||
/* denormal min */
|
||||
verify_integer_times_pow10_dflt(49406564584124654, -340,
|
||||
std::numeric_limits<double>::denorm_min());
|
||||
verify_integer_times_pow10<double>(
|
||||
49406564584124654, -340, std::numeric_limits<double>::denorm_min());
|
||||
verify_integer_times_pow10<float>(14012984, -52,
|
||||
std::numeric_limits<float>::denorm_min());
|
||||
|
||||
/* normal min */
|
||||
verify_integer_times_pow10_dflt(22250738585072014, -324,
|
||||
std::numeric_limits<double>::min());
|
||||
verify_integer_times_pow10<double>(22250738585072014, -324,
|
||||
std::numeric_limits<double>::min());
|
||||
verify_integer_times_pow10<float>(11754944, -45,
|
||||
std::numeric_limits<float>::min());
|
||||
|
||||
/* max */
|
||||
verify_integer_times_pow10_dflt(17976931348623158, 292,
|
||||
std::numeric_limits<double>::max());
|
||||
verify_integer_times_pow10<double>(17976931348623158, 292,
|
||||
std::numeric_limits<double>::max());
|
||||
verify_integer_times_pow10<float>(34028235, 31,
|
||||
std::numeric_limits<float>::max());
|
||||
|
||||
/* underflow */
|
||||
// (DBL_TRUE_MIN / 2) underflows to 0
|
||||
verify_integer_times_pow10_dflt(49406564584124654 / 2, -340, 0.);
|
||||
verify_integer_times_pow10<double>(49406564584124654 / 2, -340, 0.);
|
||||
// (FLT_TRUE_MIN / 2) underflows to 0
|
||||
verify_integer_times_pow10<float>(14012984 / 2, -52, 0.f);
|
||||
|
||||
/* rounding to denormal min */
|
||||
// (DBL_TRUE_MIN / 2 + 0.0000000000000001e-324) rounds to DBL_TRUE_MIN
|
||||
verify_integer_times_pow10_dflt(49406564584124654 / 2 + 1, -340,
|
||||
std::numeric_limits<double>::denorm_min());
|
||||
verify_integer_times_pow10<double>(
|
||||
49406564584124654 / 2 + 1, -340,
|
||||
std::numeric_limits<double>::denorm_min());
|
||||
// (FLT_TRUE_MIN / 2 + 0.0000001e-45) rounds to FLT_TRUE_MIN
|
||||
verify_integer_times_pow10<float>(14012984 / 2 + 1, -52,
|
||||
std::numeric_limits<float>::denorm_min());
|
||||
|
||||
/* overflow */
|
||||
// (DBL_MAX + 0.0000000000000001e308) overflows to infinity
|
||||
verify_integer_times_pow10_dflt(17976931348623158 + 1, 292,
|
||||
std::numeric_limits<double>::infinity());
|
||||
verify_integer_times_pow10<double>(17976931348623158 + 1, 292,
|
||||
std::numeric_limits<double>::infinity());
|
||||
// (DBL_MAX + 0.00000000000000001e308) overflows to infinity
|
||||
verify_integer_times_pow10_dflt(179769313486231580 + 1, 291,
|
||||
std::numeric_limits<double>::infinity());
|
||||
verify_integer_times_pow10<double>(179769313486231580 + 1, 291,
|
||||
std::numeric_limits<double>::infinity());
|
||||
// (FLT_MAX + 0.0000001e38) overflows to infinity
|
||||
verify_integer_times_pow10<float>(34028235 + 1, 31,
|
||||
std::numeric_limits<float>::infinity());
|
||||
// (FLT_MAX + 0.00000007e38) overflows to infinity
|
||||
verify_integer_times_pow10<float>(340282350 + 7, 30,
|
||||
std::numeric_limits<float>::infinity());
|
||||
|
||||
// loosely verifying correct rounding of 1 to 64 bits
|
||||
// worth of significant digits
|
||||
all::verify_integer_times_pow10(1, 42);
|
||||
all::verify_integer_times_pow10(1, -42);
|
||||
all::verify_integer_times_pow10(12, 42);
|
||||
all::verify_integer_times_pow10(12, -42);
|
||||
all::verify_integer_times_pow10(123, 42);
|
||||
all::verify_integer_times_pow10(123, -42);
|
||||
all::verify_integer_times_pow10(1234, 42);
|
||||
all::verify_integer_times_pow10(1234, -42);
|
||||
all::verify_integer_times_pow10(12345, 42);
|
||||
all::verify_integer_times_pow10(12345, -42);
|
||||
all::verify_integer_times_pow10(123456, 42);
|
||||
all::verify_integer_times_pow10(123456, -42);
|
||||
all::verify_integer_times_pow10(1234567, 42);
|
||||
all::verify_integer_times_pow10(1234567, -42);
|
||||
all::verify_integer_times_pow10(12345678, 42);
|
||||
all::verify_integer_times_pow10(12345678, -42);
|
||||
all::verify_integer_times_pow10(123456789, 42);
|
||||
all::verify_integer_times_pow10(1234567890, 42);
|
||||
all::verify_integer_times_pow10(1234567890, -42);
|
||||
all::verify_integer_times_pow10(12345678901, 42);
|
||||
all::verify_integer_times_pow10(12345678901, -42);
|
||||
all::verify_integer_times_pow10(123456789012, 42);
|
||||
all::verify_integer_times_pow10(123456789012, -42);
|
||||
all::verify_integer_times_pow10(1234567890123, 42);
|
||||
all::verify_integer_times_pow10(1234567890123, -42);
|
||||
all::verify_integer_times_pow10(12345678901234, 42);
|
||||
all::verify_integer_times_pow10(12345678901234, -42);
|
||||
all::verify_integer_times_pow10(123456789012345, 42);
|
||||
all::verify_integer_times_pow10(123456789012345, -42);
|
||||
all::verify_integer_times_pow10(1234567890123456, 42);
|
||||
all::verify_integer_times_pow10(1234567890123456, -42);
|
||||
all::verify_integer_times_pow10(12345678901234567, 42);
|
||||
all::verify_integer_times_pow10(12345678901234567, -42);
|
||||
all::verify_integer_times_pow10(123456789012345678, 42);
|
||||
all::verify_integer_times_pow10(123456789012345678, -42);
|
||||
all::verify_integer_times_pow10(1234567890123456789, 42);
|
||||
all::verify_integer_times_pow10(1234567890123456789, -42);
|
||||
all::verify_integer_times_pow10(12345678901234567890ull, 42);
|
||||
all::verify_integer_times_pow10(12345678901234567890ull, -42);
|
||||
all::verify_integer_times_pow10(std::numeric_limits<int64_t>::max(), 42);
|
||||
all::verify_integer_times_pow10(std::numeric_limits<int64_t>::max(), -42);
|
||||
all::verify_integer_times_pow10(std::numeric_limits<uint64_t>::max(), 42);
|
||||
all::verify_integer_times_pow10(std::numeric_limits<uint64_t>::max(), -42);
|
||||
}
|
||||
}
|
||||
36
tests/example_integer_times_pow10.cpp
Normal file
36
tests/example_integer_times_pow10.cpp
Normal file
@ -0,0 +1,36 @@
|
||||
#include "fast_float/fast_float.h"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
void default_overload() {
|
||||
const uint64_t W = 12345678901234567;
|
||||
const int Q = 23;
|
||||
const double result = fast_float::integer_times_pow10(W, Q);
|
||||
std::cout.precision(17);
|
||||
std::cout << W << " * 10^" << Q << " = " << result << " ("
|
||||
<< (result == 12345678901234567e23 ? "==" : "!=") << "expected)\n";
|
||||
}
|
||||
|
||||
void double_specialization() {
|
||||
const uint64_t W = 12345678901234567;
|
||||
const int Q = 23;
|
||||
const double result = fast_float::integer_times_pow10<double>(W, Q);
|
||||
std::cout.precision(17);
|
||||
std::cout << "double: " << W << " * 10^" << Q << " = " << result << " ("
|
||||
<< (result == 12345678901234567e23 ? "==" : "!=") << "expected)\n";
|
||||
}
|
||||
|
||||
void float_specialization() {
|
||||
const uint64_t W = 12345678;
|
||||
const int Q = 23;
|
||||
const float result = fast_float::integer_times_pow10<float>(W, Q);
|
||||
std::cout.precision(9);
|
||||
std::cout << "float: " << W << " * 10^" << Q << " = " << result << " ("
|
||||
<< (result == 12345678e23f ? "==" : "!=") << "expected)\n";
|
||||
}
|
||||
|
||||
int main() {
|
||||
default_overload();
|
||||
double_specialization();
|
||||
float_specialization();
|
||||
}
|
||||
@ -831,6 +831,275 @@ int main() {
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
// dont parse UTF-16 code units of emojis as int if low byte is ascii digit
|
||||
{
|
||||
const std::u16string emojis[] = {
|
||||
u"ℹ", u"ℹ️", u"☸", u"☸️", u"☹", u"☹️", u"✳", u"✳️",
|
||||
u"✴", u"✴️", u"⤴", u"⤴️", u"⤵", u"⤵️", u"〰", u"〰️",
|
||||
};
|
||||
bool failed = false;
|
||||
auto array_size = sizeof(emojis) / sizeof(emojis[0]);
|
||||
for (size_t i = 0; i < array_size; i++) {
|
||||
auto e = emojis[i];
|
||||
int foo;
|
||||
auto answer = fast_float::from_chars(e.data(), e.data() + e.size(), foo);
|
||||
if (answer.ec == std::errc()) {
|
||||
failed = true;
|
||||
std::cerr << "Incorrectly parsed emoji #" << i << " as integer " << foo
|
||||
<< "." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
if (failed) {
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
// dont parse UTF-32 code points of emojis as int if low byte is ascii digit
|
||||
{
|
||||
const std::u32string emojis[] = {
|
||||
U"ℹ",
|
||||
U"ℹ️",
|
||||
U"☸",
|
||||
U"☸️",
|
||||
U"☹",
|
||||
U"☹️",
|
||||
U"✳",
|
||||
U"✳️",
|
||||
U"✴",
|
||||
U"✴️",
|
||||
U"⤴",
|
||||
U"⤴️",
|
||||
U"⤵",
|
||||
U"⤵️",
|
||||
U"〰",
|
||||
U"〰️",
|
||||
U"🈲",
|
||||
U"🈳",
|
||||
U"🈴",
|
||||
U"🈵",
|
||||
U"🈶",
|
||||
U"🈷",
|
||||
U"🈷️",
|
||||
U"🈸",
|
||||
U"🈹",
|
||||
U"🌰",
|
||||
U"🌱",
|
||||
U"🌲",
|
||||
U"🌳",
|
||||
U"🌴",
|
||||
U"🌵",
|
||||
U"🌶",
|
||||
U"🌶️",
|
||||
U"🌷",
|
||||
U"🌸",
|
||||
U"🌹",
|
||||
U"🐰",
|
||||
U"🐱",
|
||||
U"🐲",
|
||||
U"🐳",
|
||||
U"🐴",
|
||||
U"🐵",
|
||||
U"🐶",
|
||||
U"🐷",
|
||||
U"🐸",
|
||||
U"🐹",
|
||||
U"🔰",
|
||||
U"🔱",
|
||||
U"🔲",
|
||||
U"🔳",
|
||||
U"🔴",
|
||||
U"🔵",
|
||||
U"🔶",
|
||||
U"🔷",
|
||||
U"🔸",
|
||||
U"🔹",
|
||||
U"😰",
|
||||
U"😱",
|
||||
U"😲",
|
||||
U"😳",
|
||||
U"😴",
|
||||
U"😵",
|
||||
U"😵💫",
|
||||
U"😶",
|
||||
U"😶🌫",
|
||||
U"😶🌫️",
|
||||
U"😷",
|
||||
U"😸",
|
||||
U"😹",
|
||||
U"🤰",
|
||||
U"🤰🏻",
|
||||
U"🤰🏼",
|
||||
U"🤰🏽",
|
||||
U"🤰🏾",
|
||||
U"🤰🏿",
|
||||
U"🤱",
|
||||
U"🤱🏻",
|
||||
U"🤱🏼",
|
||||
U"🤱🏽",
|
||||
U"🤱🏾",
|
||||
U"🤱🏿",
|
||||
U"🤲",
|
||||
U"🤲🏻",
|
||||
U"🤲🏼",
|
||||
U"🤲🏽",
|
||||
U"🤲🏾",
|
||||
U"🤲🏿",
|
||||
U"🤳",
|
||||
U"🤳🏻",
|
||||
U"🤳🏼",
|
||||
U"🤳🏽",
|
||||
U"🤳🏾",
|
||||
U"🤳🏿",
|
||||
U"🤴",
|
||||
U"🤴🏻",
|
||||
U"🤴🏼",
|
||||
U"🤴🏽",
|
||||
U"🤴🏾",
|
||||
U"🤴🏿",
|
||||
U"🤵",
|
||||
U"🤵♀",
|
||||
U"🤵♀️",
|
||||
U"🤵♂",
|
||||
U"🤵♂️",
|
||||
U"🤵🏻",
|
||||
U"🤵🏻♀",
|
||||
U"🤵🏻♀️",
|
||||
U"🤵🏻♂",
|
||||
U"🤵🏻♂️",
|
||||
U"🤵🏼",
|
||||
U"🤵🏼♀",
|
||||
U"🤵🏼♀️",
|
||||
U"🤵🏼♂",
|
||||
U"🤵🏼♂️",
|
||||
U"🤵🏽",
|
||||
U"🤵🏽♀",
|
||||
U"🤵🏽♀️",
|
||||
U"🤵🏽♂",
|
||||
U"🤵🏽♂️",
|
||||
U"🤵🏾",
|
||||
U"🤵🏾♀",
|
||||
U"🤵🏾♀️",
|
||||
U"🤵🏾♂",
|
||||
U"🤵🏾♂️",
|
||||
U"🤵🏿",
|
||||
U"🤵🏿♀",
|
||||
U"🤵🏿♀️",
|
||||
U"🤵🏿♂",
|
||||
U"🤵🏿♂️",
|
||||
U"🤶",
|
||||
U"🤶🏻",
|
||||
U"🤶🏼",
|
||||
U"🤶🏽",
|
||||
U"🤶🏾",
|
||||
U"🤶🏿",
|
||||
U"🤷",
|
||||
U"🤷♀",
|
||||
U"🤷♀️",
|
||||
U"🤷♂",
|
||||
U"🤷♂️",
|
||||
U"🤷🏻",
|
||||
U"🤷🏻♀",
|
||||
U"🤷🏻♀️",
|
||||
U"🤷🏻♂",
|
||||
U"🤷🏻♂️",
|
||||
U"🤷🏼",
|
||||
U"🤷🏼♀",
|
||||
U"🤷🏼♀️",
|
||||
U"🤷🏼♂",
|
||||
U"🤷🏼♂️",
|
||||
U"🤷🏽",
|
||||
U"🤷🏽♀",
|
||||
U"🤷🏽♀️",
|
||||
U"🤷🏽♂",
|
||||
U"🤷🏽♂️",
|
||||
U"🤷🏾",
|
||||
U"🤷🏾♀",
|
||||
U"🤷🏾♀️",
|
||||
U"🤷🏾♂",
|
||||
U"🤷🏾♂️",
|
||||
U"🤷🏿",
|
||||
U"🤷🏿♀",
|
||||
U"🤷🏿♀️",
|
||||
U"🤷🏿♂",
|
||||
U"🤷🏿♂️",
|
||||
U"🤸",
|
||||
U"🤸♀",
|
||||
U"🤸♀️",
|
||||
U"🤸♂",
|
||||
U"🤸♂️",
|
||||
U"🤸🏻",
|
||||
U"🤸🏻♀",
|
||||
U"🤸🏻♀️",
|
||||
U"🤸🏻♂",
|
||||
U"🤸🏻♂️",
|
||||
U"🤸🏼",
|
||||
U"🤸🏼♀",
|
||||
U"🤸🏼♀️",
|
||||
U"🤸🏼♂",
|
||||
U"🤸🏼♂️",
|
||||
U"🤸🏽",
|
||||
U"🤸🏽♀",
|
||||
U"🤸🏽♀️",
|
||||
U"🤸🏽♂",
|
||||
U"🤸🏽♂️",
|
||||
U"🤸🏾",
|
||||
U"🤸🏾♀",
|
||||
U"🤸🏾♀️",
|
||||
U"🤸🏾♂",
|
||||
U"🤸🏾♂️",
|
||||
U"🤸🏿",
|
||||
U"🤸🏿♀",
|
||||
U"🤸🏿♀️",
|
||||
U"🤸🏿♂",
|
||||
U"🤸🏿♂️",
|
||||
U"🤹",
|
||||
U"🤹♀",
|
||||
U"🤹♀️",
|
||||
U"🤹♂",
|
||||
U"🤹♂️",
|
||||
U"🤹🏻",
|
||||
U"🤹🏻♀",
|
||||
U"🤹🏻♀️",
|
||||
U"🤹🏻♂",
|
||||
U"🤹🏻♂️",
|
||||
U"🤹🏼",
|
||||
U"🤹🏼♀",
|
||||
U"🤹🏼♀️",
|
||||
U"🤹🏼♂",
|
||||
U"🤹🏼♂️",
|
||||
U"🤹🏽",
|
||||
U"🤹🏽♀",
|
||||
U"🤹🏽♀️",
|
||||
U"🤹🏽♂",
|
||||
U"🤹🏽♂️",
|
||||
U"🤹🏾",
|
||||
U"🤹🏾♀",
|
||||
U"🤹🏾♀️",
|
||||
U"🤹🏾♂",
|
||||
U"🤹🏾♂️",
|
||||
U"🤹🏿",
|
||||
U"🤹🏿♀",
|
||||
U"🤹🏿♀️",
|
||||
U"🤹🏿♂",
|
||||
U"🤹🏿♂️",
|
||||
};
|
||||
bool failed = false;
|
||||
auto array_size = sizeof(emojis) / sizeof(emojis[0]);
|
||||
for (size_t i = 0; i < array_size; i++) {
|
||||
auto e = emojis[i];
|
||||
int foo;
|
||||
auto answer = fast_float::from_chars(e.data(), e.data() + e.size(), foo);
|
||||
if (answer.ec == std::errc()) {
|
||||
failed = true;
|
||||
std::cerr << "Incorrectly parsed emoji #" << i << " as integer " << foo
|
||||
<< "." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
if (failed) {
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user