fast_float/include/fast_float/digit_comparison.h

469 lines
16 KiB
C++

#ifndef FASTFLOAT_DIGIT_COMPARISON_H
#define FASTFLOAT_DIGIT_COMPARISON_H
#include <algorithm>
#include <cstdint>
#include <cstring>
#include <iterator>
#include "float_common.h"
#include "bigint.h"
#include "ascii_number.h"
namespace fast_float {
// 1e0 to 1e19
constexpr static uint64_t powers_of_ten_uint64[] = {1UL,
10UL,
100UL,
1000UL,
10000UL,
100000UL,
1000000UL,
10000000UL,
100000000UL,
1000000000UL,
10000000000UL,
100000000000UL,
1000000000000UL,
10000000000000UL,
100000000000000UL,
1000000000000000UL,
10000000000000000UL,
100000000000000000UL,
1000000000000000000UL,
10000000000000000000UL};
// calculate the exponent, in scientific notation, of the number.
// this algorithm is not even close to optimized, but it has no practical
// effect on performance: in order to have a faster algorithm, we'd need
// to slow down performance for faster algorithms, and this is still fast.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 am_pow_t
scientific_exponent(am_mant_t mantissa, am_pow_t exponent) noexcept {
while (mantissa >= 10000) {
mantissa /= 10000;
exponent += 4;
}
while (mantissa >= 100) {
mantissa /= 100;
exponent += 2;
}
while (mantissa >= 10) {
mantissa /= 10;
exponent += 1;
}
return exponent;
}
// this converts a native floating-point number to an extended-precision float.
template <typename T>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
to_extended(T const &value) noexcept {
using equiv_uint = equiv_uint_t<T>;
constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
adjusted_mantissa am;
constexpr am_pow_t bias = binary_format<T>::mantissa_explicit_bits() -
binary_format<T>::minimum_exponent();
equiv_uint bits;
#if FASTFLOAT_HAS_BIT_CAST
bits =
#if FASTFLOAT_HAS_BIT_CAST == 1
std::
#endif
bit_cast<equiv_uint>(value);
#else
::memcpy(&bits, &value, sizeof(T));
#endif
if ((bits & exponent_mask) == 0) {
// denormal
am.power2 = 1 - bias;
am.mantissa = bits & mantissa_mask;
} else {
// normal
am.power2 = am_pow_t((bits & exponent_mask) >>
binary_format<T>::mantissa_explicit_bits());
am.power2 -= bias;
am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
}
return am;
}
// get the extended precision value of the halfway point between b and b+u.
// we are given a native float that represents b, so we need to adjust it
// halfway between b and b+u.
template <typename T>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
to_extended_halfway(T const &value) noexcept {
adjusted_mantissa am = to_extended(value);
am.mantissa <<= 1;
am.mantissa += 1;
am.power2 -= 1;
return am;
}
// round an extended-precision float to the nearest machine float.
template <typename T, typename callback>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am,
callback cb) noexcept {
constexpr am_pow_t mantissa_shift =
64 - binary_format<T>::mantissa_explicit_bits() - 1;
if (-am.power2 >= mantissa_shift) {
// have a denormal float
am_pow_t shift = -am.power2 + 1;
cb(am, std::min<am_pow_t>(shift, 64));
// check for round-up: if rounding-nearest carried us to the hidden bit.
am.power2 = (am.mantissa <
(am_mant_t(1) << binary_format<T>::mantissa_explicit_bits()))
? 0
: 1;
return;
}
// have a normal float, use the default shift.
cb(am, mantissa_shift);
// check for carry
if (am.mantissa >=
(am_mant_t(2) << binary_format<T>::mantissa_explicit_bits())) {
am.mantissa = (am_mant_t(1) << binary_format<T>::mantissa_explicit_bits());
++am.power2;
}
// check for infinite: we could have carried to an infinite power
am.mantissa &= ~(am_mant_t(1) << binary_format<T>::mantissa_explicit_bits());
if (am.power2 >= binary_format<T>::infinite_power()) {
am.power2 = binary_format<T>::infinite_power();
am.mantissa = 0;
}
}
template <typename callback>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
round_nearest_tie_even(adjusted_mantissa &am, am_pow_t shift,
callback cb) noexcept {
am_mant_t const mask =
(shift == 64) ? UINT64_MAX : (am_mant_t(1) << shift) - 1;
am_mant_t const halfway = (shift == 0) ? 0 : am_mant_t(1) << (shift - 1);
am_mant_t truncated_bits = am.mantissa & mask;
bool is_above = truncated_bits > halfway;
bool is_halfway = truncated_bits == halfway;
// shift digits into position
if (shift == 64) {
am.mantissa = 0;
} else {
am.mantissa >>= shift;
}
am.power2 += shift;
bool is_odd = (am.mantissa & 1) == 1;
am.mantissa += am_mant_t(cb(is_odd, is_halfway, is_above));
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
round_down(adjusted_mantissa &am, am_pow_t shift) noexcept {
if (shift == 64) {
am.mantissa = 0;
} else {
am.mantissa >>= shift;
}
am.power2 += shift;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
skip_zeros(UC const *&first, UC const *last) noexcept {
uint64_t val;
while (!cpp20_and_in_constexpr() &&
std::distance(first, last) >= int_cmp_len<UC>()) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != int_cmp_zeros<UC>()) {
break;
}
first += int_cmp_len<UC>();
}
while (first != last) {
if (*first != UC('0')) {
break;
}
first++;
}
}
// determine if any non-zero digits were truncated.
// all characters must be valid digits.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
is_truncated(UC const *first, UC const *last) noexcept {
// do 8-bit optimizations, can just compare to 8 literal 0s.
uint64_t val;
while (!cpp20_and_in_constexpr() &&
std::distance(first, last) >= int_cmp_len<UC>()) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != int_cmp_zeros<UC>()) {
return true;
}
first += int_cmp_len<UC>();
}
while (first != last) {
if (*first != UC('0')) {
return true;
}
++first;
}
return false;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
is_truncated(span<UC const> s) noexcept {
return is_truncated(s.ptr, s.ptr + s.len());
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
parse_eight_digits(UC const *&p, limb &value, am_digits &counter,
am_digits &count) noexcept {
value = value * 100000000 + parse_eight_digits_unrolled(p);
p += 8;
counter += 8;
count += 8;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
parse_one_digit(UC const *&p, limb &value, am_digits &counter,
am_digits &count) noexcept {
value = value * 10 + limb(*p - UC('0'));
++p;
++counter;
++count;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
add_native(bigint &big, limb power, limb value) noexcept {
big.mul(power);
big.add(value);
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
round_up_bigint(bigint &big, am_digits &count) noexcept {
// need to round-up the digits, but need to avoid rounding
// ....9999 to ...10000, which could cause a false halfway point.
add_native(big, 10, 1);
++count;
}
// parse the significant digits into a big integer
template <typename T, typename UC>
inline FASTFLOAT_CONSTEXPR20 am_digits
parse_mantissa(bigint &result, const parsed_number_string_t<UC> &num) noexcept {
// try to minimize the number of big integer and scalar multiplication.
// therefore, try to parse 8 digits at a time, and multiply by the largest
// scalar value (9 or 19 digits) for each step.
constexpr am_digits max_digits = binary_format<T>::max_digits();
am_digits counter = 0;
am_digits digits = 0;
limb value = 0;
#ifdef FASTFLOAT_64BIT_LIMB
am_digits const step = 19;
#else
am_digits const step = 9;
#endif
// process all integer digits.
UC const *p = num.integer.ptr;
UC const *pend = p + num.integer.len();
skip_zeros(p, pend);
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
(max_digits - digits >= 8)) {
parse_eight_digits<UC>(p, value, counter, digits);
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit<UC>(p, value, counter, digits);
}
if (digits == max_digits) {
// add the temporary value, then check if we've truncated any digits
add_native(result, limb(powers_of_ten_uint64[counter]), value);
bool truncated = is_truncated(p, pend);
if (num.fraction.ptr != nullptr) {
truncated |= is_truncated(num.fraction);
}
if (truncated) {
round_up_bigint(result, digits);
}
return digits;
} else {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
counter = 0;
value = 0;
}
}
// add our fraction digits, if they're available.
if (num.fraction.ptr != nullptr) {
p = num.fraction.ptr;
pend = p + num.fraction.len();
if (digits == 0) {
skip_zeros(p, pend);
}
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
(max_digits - digits >= 8)) {
parse_eight_digits<UC>(p, value, counter, digits);
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit<UC>(p, value, counter, digits);
}
if (digits == max_digits) {
// add the temporary value, then check if we've truncated any digits
add_native(result, limb(powers_of_ten_uint64[counter]), value);
bool truncated = is_truncated(p, pend);
if (truncated) {
round_up_bigint(result, digits);
}
return digits;
} else {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
counter = 0;
value = 0;
}
}
}
if (counter != 0) {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
}
return digits;
}
template <typename T>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa positive_digit_comp(
bigint &bigmant, adjusted_mantissa am, am_pow_t const exponent) noexcept {
FASTFLOAT_ASSERT(bigmant.pow10(exponent));
bool truncated;
am.mantissa = bigmant.hi64(truncated);
constexpr am_pow_t bias = binary_format<T>::mantissa_explicit_bits() -
binary_format<T>::minimum_exponent();
am.power2 =
static_cast<fast_float::am_pow_t>(bigmant.bit_length() - 64 + bias);
round<T>(am, [truncated](adjusted_mantissa &a, am_pow_t shift) {
round_nearest_tie_even(
a, shift,
[truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
return is_above || (is_halfway && truncated) ||
(is_odd && is_halfway);
});
});
return am;
}
// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
// we then need to scale by `2^(f- e)`, and then the two significant digits
// are of the same magnitude.
template <typename T>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
bigint &bigmant, adjusted_mantissa am, am_pow_t const exponent) noexcept {
bigint &real_digits = bigmant;
am_pow_t const &real_exp = exponent;
T b;
{
// get the value of `b`, rounded down, and get a bigint representation of
// b+h
adjusted_mantissa am_b = am;
// gcc7 bug: use a lambda to remove the noexcept qualifier bug with
// -Wnoexcept-type.
round<T>(am_b, [](adjusted_mantissa &a, am_pow_t shift) {
round_down(a, shift);
});
to_float(
#ifndef FASTFLOAT_ONLY_POSITIVE_C_NUMBER_WO_INF_NAN
false,
#endif
am_b, b);
}
adjusted_mantissa theor = to_extended_halfway(b);
bigint theor_digits(theor.mantissa);
am_pow_t theor_exp = theor.power2;
// scale real digits and theor digits to be same power.
am_pow_t pow2_exp = theor_exp - real_exp;
am_pow_t pow5_exp = -real_exp;
if (pow5_exp != 0) {
FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
}
if (pow2_exp > 0) {
FASTFLOAT_ASSERT(theor_digits.pow2(pow2_exp));
} else if (pow2_exp < 0) {
FASTFLOAT_ASSERT(real_digits.pow2(-pow2_exp));
}
// compare digits, and use it to direct rounding
int ord = real_digits.compare(theor_digits);
round<T>(am, [ord](adjusted_mantissa &a, am_pow_t shift) {
round_nearest_tie_even(
a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
(void)_; // not needed, since we've done our comparison
(void)__; // not needed, since we've done our comparison
if (ord > 0) {
return true;
} else if (ord < 0) {
return false;
} else {
return is_odd;
}
});
});
return am;
}
// parse the significant digits as a big integer to unambiguously round
// the significant digits. here, we are trying to determine how to round
// an extended float representation close to `b+h`, halfway between `b`
// (the float rounded-down) and `b+u`, the next positive float. this
// algorithm is always correct, and uses one of two approaches. when
// the exponent is positive relative to the significant digits (such as
// 1234), we create a big-integer representation, get the high 64-bits,
// determine if any lower bits are truncated, and use that to direct
// rounding. in case of a negative exponent relative to the significant
// digits (such as 1.2345), we create a theoretical representation of
// `b` as a big-integer type, scaled to the same binary exponent as
// the actual digits. we then compare the big integer representations
// of both, and use that to direct rounding.
template <typename T, typename UC>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa digit_comp(
parsed_number_string_t<UC> const &num, adjusted_mantissa am) noexcept {
// remove the invalid exponent bias
am.power2 -= invalid_am_bias;
am_pow_t const sci_exp = scientific_exponent(num);
bigint bigmant;
am_digits const digits = parse_mantissa<T, UC>(bigmant, num);
// can't underflow, since digits is at most max_digits.
am_pow_t const exponent =
static_cast<am_pow_t>(sci_exp + 1 - static_cast<am_pow_t>(digits));
if (exponent >= 0) {
return positive_digit_comp<T>(bigmant, am, exponent);
} else {
return negative_digit_comp<T>(bigmant, am, exponent);
}
}
} // namespace fast_float
#endif