fast_float/include/fast_float/parse_number.h
2021-08-03 10:44:24 +02:00

134 lines
4.7 KiB
C++

#ifndef FASTFLOAT_PARSE_NUMBER_H
#define FASTFLOAT_PARSE_NUMBER_H
#include "ascii_number.h"
#include "decimal_to_binary.h"
#include "simple_decimal_conversion.h"
#include <cassert>
#include <cmath>
#include <cstring>
#include <limits>
#include <system_error>
namespace fast_float {
namespace detail {
/**
* Special case +inf, -inf, nan, infinity, -infinity.
* The case comparisons could be made much faster given that we know that the
* strings a null-free and fixed.
**/
template <typename T>
from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept {
from_chars_result answer;
answer.ptr = first;
answer.ec = std::errc(); // be optimistic
bool minusSign = false;
if (*first == '-') { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
minusSign = true;
++first;
}
if (last - first >= 3) {
if (fastfloat_strncasecmp(first, "nan", 3)) {
answer.ptr = (first += 3);
value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN();
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
if(first != last && *first == '(') {
for(const char* ptr = first + 1; ptr != last; ++ptr) {
if (*ptr == ')') {
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
break;
}
else if(!(('a' <= *ptr && *ptr <= 'z') || ('A' <= *ptr && *ptr <= 'Z') || ('0' <= *ptr && *ptr <= '9') || *ptr == '_'))
break; // forbidden char, not nan(n-char-seq-opt)
}
}
return answer;
}
if (fastfloat_strncasecmp(first, "inf", 3)) {
if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, "inity", 5)) {
answer.ptr = first + 8;
} else {
answer.ptr = first + 3;
}
value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity();
return answer;
}
}
answer.ec = std::errc::invalid_argument;
return answer;
}
template<typename T>
fastfloat_really_inline void to_float(bool negative, adjusted_mantissa am, T &value) {
uint64_t word = am.mantissa;
word |= uint64_t(am.power2) << binary_format<T>::mantissa_explicit_bits();
word = negative
? word | (uint64_t(1) << binary_format<T>::sign_index()) : word;
#if FASTFLOAT_IS_BIG_ENDIAN == 1
if (std::is_same<T, float>::value) {
::memcpy(&value, (char *)&word + 4, sizeof(T)); // extract value at offset 4-7 if float on big-endian
} else {
::memcpy(&value, &word, sizeof(T));
}
#else
// For little-endian systems:
::memcpy(&value, &word, sizeof(T));
#endif
}
} // namespace detail
template<typename T>
from_chars_result from_chars(const char *first, const char *last,
T &value, chars_format fmt /*= chars_format::general*/) noexcept {
return from_chars_advanced(first, last, value, parse_options{fmt});
}
template<typename T>
from_chars_result from_chars_advanced(const char *first, const char *last,
T &value, parse_options options) noexcept {
static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported");
from_chars_result answer;
if (first == last) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
}
parsed_number_string pns = parse_number_string(first, last, options);
if (!pns.valid) {
return detail::parse_infnan(first, last, value);
}
answer.ec = std::errc(); // be optimistic
answer.ptr = pns.lastmatch;
// Next is Clinger's fast path.
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && pns.mantissa <=binary_format<T>::max_mantissa_fast_path() && !pns.too_many_digits) {
value = T(pns.mantissa);
if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
if (pns.negative) { value = -value; }
return answer;
}
adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
if(pns.too_many_digits) {
if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
am.power2 = -1; // value is invalid.
}
}
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0),
// then we need to go the long way around again. This is very uncommon.
if(am.power2 < 0) { am = parse_long_mantissa<binary_format<T>>(first, last, options); }
detail::to_float(pns.negative, am, value);
return answer;
}
} // namespace fast_float
#endif