mirror of
https://github.com/fastfloat/fast_float.git
synced 2025-12-06 16:56:57 +08:00
436 lines
13 KiB
C++
436 lines
13 KiB
C++
#ifndef FASTFLOAT_ASCII_NUMBER_H
|
|
#define FASTFLOAT_ASCII_NUMBER_H
|
|
|
|
#include <cctype>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <type_traits>
|
|
|
|
#include "float_common.h"
|
|
|
|
#ifdef FASTFLOAT_SSE2
|
|
#include <emmintrin.h>
|
|
#endif
|
|
|
|
#ifdef FASTFLOAT_NEON
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
namespace fast_float {
|
|
|
|
template <typename UC>
|
|
fastfloat_really_inline constexpr bool has_simd_opt() {
|
|
#ifdef FASTFLOAT_HAS_SIMD
|
|
return std::is_same<UC, char16_t>::value;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// Next function can be micro-optimized, but compilers are entirely
|
|
// able to optimize it well.
|
|
template <typename UC>
|
|
fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
|
|
return !(c > UC('9') || c < UC('0'));
|
|
}
|
|
|
|
fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
|
|
return (val & 0xFF00000000000000) >> 56
|
|
| (val & 0x00FF000000000000) >> 40
|
|
| (val & 0x0000FF0000000000) >> 24
|
|
| (val & 0x000000FF00000000) >> 8
|
|
| (val & 0x00000000FF000000) << 8
|
|
| (val & 0x0000000000FF0000) << 24
|
|
| (val & 0x000000000000FF00) << 40
|
|
| (val & 0x00000000000000FF) << 56;
|
|
}
|
|
|
|
// Read 8 UC into a u64. Truncates UC if not char.
|
|
template <typename UC>
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
uint64_t read8_to_u64(const UC *chars) {
|
|
if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) {
|
|
uint64_t val = 0;
|
|
for(int i = 0; i < 8; ++i) {
|
|
val |= uint64_t(uint8_t(*chars)) << (i*8);
|
|
++chars;
|
|
}
|
|
return val;
|
|
}
|
|
uint64_t val;
|
|
::memcpy(&val, chars, sizeof(uint64_t));
|
|
#if FASTFLOAT_IS_BIG_ENDIAN == 1
|
|
// Need to read as-if the number was in little-endian order.
|
|
val = byteswap(val);
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
#ifdef FASTFLOAT_SSE2
|
|
|
|
fastfloat_really_inline
|
|
uint64_t simd_read8_to_u64(const __m128i data) {
|
|
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
|
const __m128i packed = _mm_packus_epi16(data, data);
|
|
#ifdef FASTFLOAT_64BIT
|
|
return uint64_t(_mm_cvtsi128_si64(packed));
|
|
#else
|
|
uint64_t value;
|
|
// Visual Studio + older versions of GCC don't support _mm_storeu_si64
|
|
_mm_storel_epi64(reinterpret_cast<__m128i*>(&value), packed);
|
|
return value;
|
|
#endif
|
|
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
|
}
|
|
|
|
fastfloat_really_inline
|
|
uint64_t simd_read8_to_u64(const char16_t* chars) {
|
|
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
|
return simd_read8_to_u64(_mm_loadu_si128(reinterpret_cast<const __m128i*>(chars)));
|
|
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
|
}
|
|
|
|
#elif defined(FASTFLOAT_NEON)
|
|
|
|
|
|
fastfloat_really_inline
|
|
uint64_t simd_read8_to_u64(const uint16x8_t data) {
|
|
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
|
uint8x8_t utf8_packed = vmovn_u16(data);
|
|
return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0);
|
|
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
|
}
|
|
|
|
fastfloat_really_inline
|
|
uint64_t simd_read8_to_u64(const char16_t* chars) {
|
|
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
|
return simd_read8_to_u64(vld1q_u16(reinterpret_cast<const uint16_t*>(chars)));
|
|
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
|
}
|
|
|
|
#endif // FASTFLOAT_SSE2
|
|
|
|
// MSVC SFINAE is broken pre-VS2017
|
|
#if defined(_MSC_VER) && _MSC_VER <= 1900
|
|
template <typename UC>
|
|
#else
|
|
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>())>
|
|
#endif
|
|
// dummy for compile
|
|
uint64_t simd_read8_to_u64(UC const*) {
|
|
return 0;
|
|
}
|
|
|
|
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
void write_u64(uint8_t *chars, uint64_t val) {
|
|
if (cpp20_and_in_constexpr()) {
|
|
for(int i = 0; i < 8; ++i) {
|
|
*chars = uint8_t(val);
|
|
val >>= 8;
|
|
++chars;
|
|
}
|
|
return;
|
|
}
|
|
#if FASTFLOAT_IS_BIG_ENDIAN == 1
|
|
// Need to read as-if the number was in little-endian order.
|
|
val = byteswap(val);
|
|
#endif
|
|
::memcpy(chars, &val, sizeof(uint64_t));
|
|
}
|
|
|
|
// credit @aqrit
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
|
|
uint32_t parse_eight_digits_unrolled(uint64_t val) {
|
|
const uint64_t mask = 0x000000FF000000FF;
|
|
const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
|
|
const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
|
|
val -= 0x3030303030303030;
|
|
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
|
|
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
|
|
return uint32_t(val);
|
|
}
|
|
|
|
|
|
// Call this if chars are definitely 8 digits.
|
|
template <typename UC>
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
uint32_t parse_eight_digits_unrolled(UC const * chars) noexcept {
|
|
if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) {
|
|
return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay
|
|
}
|
|
return parse_eight_digits_unrolled(simd_read8_to_u64(chars));
|
|
}
|
|
|
|
|
|
// credit @aqrit
|
|
fastfloat_really_inline constexpr bool is_made_of_eight_digits_fast(uint64_t val) noexcept {
|
|
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
|
|
0x8080808080808080));
|
|
}
|
|
|
|
|
|
#ifdef FASTFLOAT_HAS_SIMD
|
|
|
|
// Call this if chars might not be 8 digits.
|
|
// Using this style (instead of is_made_of_eight_digits_fast() then parse_eight_digits_unrolled())
|
|
// ensures we don't load SIMD registers twice.
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
bool simd_parse_if_eight_digits_unrolled(const char16_t* chars, uint64_t& i) noexcept {
|
|
if (cpp20_and_in_constexpr()) {
|
|
return false;
|
|
}
|
|
#ifdef FASTFLOAT_SSE2
|
|
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
|
const __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i*>(chars));
|
|
|
|
// (x - '0') <= 9
|
|
// http://0x80.pl/articles/simd-parsing-int-sequences.html
|
|
const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
|
|
const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));
|
|
|
|
if (_mm_movemask_epi8(t1) == 0) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
|
|
return true;
|
|
}
|
|
else return false;
|
|
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
|
#elif defined(FASTFLOAT_NEON)
|
|
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
|
const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t*>(chars));
|
|
|
|
// (x - '0') <= 9
|
|
// http://0x80.pl/articles/simd-parsing-int-sequences.html
|
|
const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0'));
|
|
const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));
|
|
|
|
if (vminvq_u16(mask) == 0xFFFF) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
|
|
return true;
|
|
}
|
|
else return false;
|
|
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
|
#else
|
|
(void)chars; (void)i;
|
|
return false;
|
|
#endif // FASTFLOAT_SSE2
|
|
}
|
|
|
|
#endif // FASTFLOAT_HAS_SIMD
|
|
|
|
// MSVC SFINAE is broken pre-VS2017
|
|
#if defined(_MSC_VER) && _MSC_VER <= 1900
|
|
template <typename UC>
|
|
#else
|
|
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>())>
|
|
#endif
|
|
// dummy for compile
|
|
bool simd_parse_if_eight_digits_unrolled(UC const*, uint64_t&) {
|
|
return 0;
|
|
}
|
|
|
|
|
|
template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value)>
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
void loop_parse_if_eight_digits(const UC*& p, const UC* const pend, uint64_t& i) {
|
|
if (!has_simd_opt<UC>()) {
|
|
return;
|
|
}
|
|
while ((std::distance(p, pend) >= 8) && simd_parse_if_eight_digits_unrolled(p, i)) { // in rare cases, this will overflow, but that's ok
|
|
p += 8;
|
|
}
|
|
}
|
|
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
void loop_parse_if_eight_digits(const char*& p, const char* const pend, uint64_t& i) {
|
|
// optimizes better than parse_if_eight_digits_unrolled() for UC = char.
|
|
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(read8_to_u64(p))) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(read8_to_u64(p)); // in rare cases, this will overflow, but that's ok
|
|
p += 8;
|
|
}
|
|
}
|
|
|
|
template <typename UC>
|
|
struct parsed_number_string_t {
|
|
int64_t exponent{0};
|
|
uint64_t mantissa{0};
|
|
UC const * lastmatch{nullptr};
|
|
bool negative{false};
|
|
bool valid{false};
|
|
bool too_many_digits{false};
|
|
// contains the range of the significant digits
|
|
span<const UC> integer{}; // non-nullable
|
|
span<const UC> fraction{}; // nullable
|
|
};
|
|
|
|
using byte_span = span<const char>;
|
|
using parsed_number_string = parsed_number_string_t<char>;
|
|
|
|
// Assuming that you use no more than 19 digits, this will
|
|
// parse an ASCII string.
|
|
template <typename UC>
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, parse_options_t<UC> options) noexcept {
|
|
chars_format const fmt = options.format;
|
|
parse_rules const rules = options.rules;
|
|
UC const decimal_point = options.decimal_point;
|
|
|
|
parsed_number_string_t<UC> answer;
|
|
answer.valid = false;
|
|
answer.too_many_digits = false;
|
|
answer.negative = (*p == UC('-'));
|
|
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
|
|
if ((*p == UC('-')) || (*p == UC('+'))) {
|
|
#else
|
|
if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
|
|
#endif
|
|
++p;
|
|
if (p == pend) {
|
|
return answer;
|
|
}
|
|
if (rules == parse_rules::json) {
|
|
if (!is_integer(*p)) { // a sign must be followed by an integer
|
|
return answer;
|
|
}
|
|
} else {
|
|
FASTFLOAT_DEBUG_ASSERT(rules == parse_rules::std);
|
|
if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
|
|
return answer;
|
|
}
|
|
}
|
|
}
|
|
UC const * const start_digits = p;
|
|
|
|
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
|
|
|
|
while ((p != pend) && is_integer(*p)) {
|
|
// a multiplication by 10 is cheaper than an arbitrary integer
|
|
// multiplication
|
|
i = 10 * i +
|
|
uint64_t(*p - UC('0')); // might overflow, we will handle the overflow later
|
|
++p;
|
|
}
|
|
UC const * const end_of_integer_part = p;
|
|
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
|
|
answer.integer = span<const UC>(start_digits, size_t(digit_count));
|
|
// disallow leading zeros
|
|
if (rules == parse_rules::json && start_digits[0] == UC('0') && digit_count > 1) {
|
|
return answer;
|
|
}
|
|
|
|
int64_t exponent = 0;
|
|
const bool has_decimal_point = (p != pend) && (*p == decimal_point);
|
|
if (has_decimal_point) {
|
|
++p;
|
|
UC const * before = p;
|
|
// can occur at most twice without overflowing, but let it occur more, since
|
|
// for integers with many digits, digit parsing is the primary bottleneck.
|
|
loop_parse_if_eight_digits(p, pend, i);
|
|
|
|
while ((p != pend) && is_integer(*p)) {
|
|
uint8_t digit = uint8_t(*p - UC('0'));
|
|
++p;
|
|
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
|
|
}
|
|
exponent = before - p;
|
|
answer.fraction = span<const UC>(before, size_t(p - before));
|
|
digit_count -= exponent;
|
|
}
|
|
// we must have encountered at least one integer!
|
|
if (digit_count == 0) {
|
|
return answer;
|
|
}
|
|
// or at least two if a decimal point exists, with json rules
|
|
else if (rules == parse_rules::json && has_decimal_point && digit_count == 1) {
|
|
return answer;
|
|
}
|
|
int64_t exp_number = 0; // explicit exponential part
|
|
if ((fmt & chars_format::scientific) && (p != pend) && ((UC('e') == *p) || (UC('E') == *p))) {
|
|
UC const * location_of_e = p;
|
|
++p;
|
|
bool neg_exp = false;
|
|
if ((p != pend) && (UC('-') == *p)) {
|
|
neg_exp = true;
|
|
++p;
|
|
} else if ((p != pend) && (UC('+') == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
|
|
++p;
|
|
}
|
|
if ((p == pend) || !is_integer(*p)) {
|
|
if(!(fmt & chars_format::fixed)) {
|
|
// We are in error.
|
|
return answer;
|
|
}
|
|
// Otherwise, we will be ignoring the 'e'.
|
|
p = location_of_e;
|
|
} else {
|
|
while ((p != pend) && is_integer(*p)) {
|
|
uint8_t digit = uint8_t(*p - UC('0'));
|
|
if (exp_number < 0x10000000) {
|
|
exp_number = 10 * exp_number + digit;
|
|
}
|
|
++p;
|
|
}
|
|
if(neg_exp) { exp_number = - exp_number; }
|
|
exponent += exp_number;
|
|
}
|
|
} else {
|
|
// If it scientific and not fixed, we have to bail out.
|
|
if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
|
|
}
|
|
answer.lastmatch = p;
|
|
answer.valid = true;
|
|
|
|
// If we frequently had to deal with long strings of digits,
|
|
// we could extend our code by using a 128-bit integer instead
|
|
// of a 64-bit integer. However, this is uncommon.
|
|
//
|
|
// We can deal with up to 19 digits.
|
|
if (digit_count > 19) { // this is uncommon
|
|
// It is possible that the integer had an overflow.
|
|
// We have to handle the case where we have 0.0000somenumber.
|
|
// We need to be mindful of the case where we only have zeroes...
|
|
// E.g., 0.000000000...000.
|
|
UC const * start = start_digits;
|
|
while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
|
|
if(*start == UC('0')) { digit_count --; }
|
|
start++;
|
|
}
|
|
|
|
if (digit_count > 19) {
|
|
answer.too_many_digits = true;
|
|
// Let us start again, this time, avoiding overflows.
|
|
// We don't need to check if is_integer, since we use the
|
|
// pre-tokenized spans from above.
|
|
i = 0;
|
|
p = answer.integer.ptr;
|
|
UC const* int_end = p + answer.integer.len();
|
|
const uint64_t minimal_nineteen_digit_integer{ 1000000000000000000 };
|
|
while ((i < minimal_nineteen_digit_integer) && (p != int_end)) {
|
|
i = i * 10 + uint64_t(*p - UC('0'));
|
|
++p;
|
|
}
|
|
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
|
|
exponent = end_of_integer_part - p + exp_number;
|
|
}
|
|
else { // We have a value with a fractional component.
|
|
p = answer.fraction.ptr;
|
|
UC const* frac_end = p + answer.fraction.len();
|
|
while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
|
|
i = i * 10 + uint64_t(*p - UC('0'));
|
|
++p;
|
|
}
|
|
exponent = answer.fraction.ptr - p + exp_number;
|
|
}
|
|
// We have now corrected both exponent and i, to a truncated value
|
|
}
|
|
}
|
|
answer.exponent = exponent;
|
|
answer.mantissa = i;
|
|
return answer;
|
|
}
|
|
|
|
} // namespace fast_float
|
|
|
|
#endif
|