mirror of
https://github.com/fastfloat/fast_float.git
synced 2025-12-06 16:56:57 +08:00
114 lines
4.1 KiB
C++
114 lines
4.1 KiB
C++
#ifndef FASTFLOAT_PARSE_NUMBER_H
|
|
#define FASTFLOAT_PARSE_NUMBER_H
|
|
|
|
#include "ascii_number.h"
|
|
#include "decimal_to_binary.h"
|
|
#include "digit_comparison.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <system_error>
|
|
|
|
namespace fast_float {
|
|
|
|
|
|
namespace detail {
|
|
/**
|
|
* Special case +inf, -inf, nan, infinity, -infinity.
|
|
* The case comparisons could be made much faster given that we know that the
|
|
* strings a null-free and fixed.
|
|
**/
|
|
template <typename T>
|
|
from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept {
|
|
from_chars_result answer;
|
|
answer.ptr = first;
|
|
answer.ec = std::errc(); // be optimistic
|
|
bool minusSign = false;
|
|
if (*first == '-') { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
|
|
minusSign = true;
|
|
++first;
|
|
}
|
|
if (last - first >= 3) {
|
|
if (fastfloat_strncasecmp(first, "nan", 3)) {
|
|
answer.ptr = (first += 3);
|
|
value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN();
|
|
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
|
|
if(first != last && *first == '(') {
|
|
for(const char* ptr = first + 1; ptr != last; ++ptr) {
|
|
if (*ptr == ')') {
|
|
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
|
|
break;
|
|
}
|
|
else if(!(('a' <= *ptr && *ptr <= 'z') || ('A' <= *ptr && *ptr <= 'Z') || ('0' <= *ptr && *ptr <= '9') || *ptr == '_'))
|
|
break; // forbidden char, not nan(n-char-seq-opt)
|
|
}
|
|
}
|
|
return answer;
|
|
}
|
|
if (fastfloat_strncasecmp(first, "inf", 3)) {
|
|
if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, "inity", 5)) {
|
|
answer.ptr = first + 8;
|
|
} else {
|
|
answer.ptr = first + 3;
|
|
}
|
|
value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity();
|
|
return answer;
|
|
}
|
|
}
|
|
answer.ec = std::errc::invalid_argument;
|
|
return answer;
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
template<typename T>
|
|
from_chars_result from_chars(const char *first, const char *last,
|
|
T &value, chars_format fmt /*= chars_format::general*/) noexcept {
|
|
return from_chars_advanced(first, last, value, parse_options{fmt});
|
|
}
|
|
|
|
template<typename T>
|
|
from_chars_result from_chars_advanced(const char *first, const char *last,
|
|
T &value, parse_options options) noexcept {
|
|
|
|
static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported");
|
|
|
|
|
|
from_chars_result answer;
|
|
if (first == last) {
|
|
answer.ec = std::errc::invalid_argument;
|
|
answer.ptr = first;
|
|
return answer;
|
|
}
|
|
parsed_number_string pns = parse_number_string(first, last, options);
|
|
if (!pns.valid) {
|
|
return detail::parse_infnan(first, last, value);
|
|
}
|
|
answer.ec = std::errc(); // be optimistic
|
|
answer.ptr = pns.lastmatch;
|
|
// Next is Clinger's fast path.
|
|
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && pns.mantissa <=binary_format<T>::max_mantissa_fast_path() && !pns.too_many_digits) {
|
|
value = T(pns.mantissa);
|
|
if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
|
|
else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
|
|
if (pns.negative) { value = -value; }
|
|
return answer;
|
|
}
|
|
adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
|
|
if(pns.too_many_digits && am.power2 >= 0) {
|
|
if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
|
|
am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
|
|
}
|
|
}
|
|
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0),
|
|
// then we need to go the long way around again. This is very uncommon.
|
|
if(am.power2 < 0) { am = digit_comp<T>(pns, am); }
|
|
to_float(pns.negative, am, value);
|
|
return answer;
|
|
}
|
|
|
|
} // namespace fast_float
|
|
|
|
#endif
|