fast_float/include/fast_float/float_common.h
2020-11-12 22:35:32 -05:00

295 lines
9.3 KiB
C++

#ifndef FASTFLOAT_FLOAT_COMMON_H
#define FASTFLOAT_FLOAT_COMMON_H
#include <cfloat>
#include <cstdint>
#if defined(_MSC_VER) && !defined(__clang__)
#define FASTFLOAT_VISUAL_STUDIO 1
#endif
#ifdef FASTFLOAT_VISUAL_STUDIO
#define fastfloat_really_inline __forceinline
#else
#define fastfloat_really_inline inline __attribute__((always_inline))
#endif
namespace fast_float {
// Compares two ASCII strings in a case insensitive manner.
inline bool fastfloat_strncasecmp(const char *input1, const char *input2,
size_t length) {
char running_diff{0};
for (size_t i = 0; i < length; i++) {
running_diff |= (input1[i] ^ input2[i]);
}
return (running_diff == 0) || (running_diff == 32);
}
#ifndef FLT_EVAL_METHOD
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
#endif
inline bool is_space(uint8_t c) {
static const bool table[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
return table[c];
}
namespace {
constexpr uint32_t max_digits = 768;
constexpr uint32_t max_digit_without_overflow = 19;
constexpr int32_t decimal_point_range = 2047;
} // namespace
struct value128 {
uint64_t low;
uint64_t high;
value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
value128() : low(0), high(0) {}
};
/* result might be undefined when input_num is zero */
fastfloat_really_inline int leading_zeroes(uint64_t input_num) {
#ifdef FASTFLOAT_VISUAL_STUDIO
unsigned long leading_zero = 0;
// Search the mask data from most significant bit (MSB)
// to least significant bit (LSB) for a set bit (1).
if (_BitScanReverse64(&leading_zero, input_num))
return (int)(63 - leading_zero);
else
return 64;
#else
return __builtin_clzll(input_num);
#endif
}
#if defined(_WIN32) && !defined(__clang__)
// Note MinGW falls here too
#include <intrin.h>
#if !defined(_M_X64) && !defined(_M_ARM64) // _umul128 for x86, arm
// this is a slow emulation routine for 32-bit Windows
//
fastfloat_really_inline uint64_t __emulu(uint32_t x, uint32_t y) {
return x * (uint64_t)y;
}
fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd,
uint64_t *hi) {
uint64_t ad = __emulu((uint32_t)(ab >> 32), (uint32_t)cd);
uint64_t bd = __emulu((uint32_t)ab, (uint32_t)cd);
uint64_t adbc = ad + __emulu((uint32_t)ab, (uint32_t)(cd >> 32));
uint64_t adbc_carry = !!(adbc < ad);
uint64_t lo = bd + (adbc << 32);
*hi = __emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
(adbc_carry << 32) + !!(lo < bd);
return lo;
}
#endif
fastfloat_really_inline value128 full_multiplication(uint64_t value1,
uint64_t value2) {
value128 answer;
#ifdef _M_ARM64
// ARM64 has native support for 64-bit multiplications, no need to emultate
answer.high = __umulh(value1, value2);
answer.low = value1 * value2;
#else
answer.low =
_umul128(value1, value2, &answer.high); // _umul128 not available on ARM64
#endif // _M_ARM64
return answer;
}
#else
// compute value1 * value2
fastfloat_really_inline value128 full_multiplication(uint64_t value1,
uint64_t value2) {
value128 answer;
__uint128_t r = ((__uint128_t)value1) * value2;
answer.low = uint64_t(r);
answer.high = uint64_t(r >> 64);
return answer;
}
#endif
struct adjusted_mantissa {
uint64_t mantissa;
int power2; // a negative value indicate an invalid result
adjusted_mantissa() = default;
// bool operator==(const adjusted_mantissa &o) const = default;
bool operator==(const adjusted_mantissa &o) const {
return mantissa == o.mantissa && power2 == o.power2;
}
};
struct decimal {
uint32_t num_digits;
int32_t decimal_point;
bool negative;
bool truncated;
uint8_t digits[max_digits];
decimal() = default;
// Copies are not allowed since this is a fat object.
decimal(const decimal &) = delete;
// Copies are not allowed since this is a fat object.
decimal &operator=(const decimal &) = delete;
// Moves are allowed:
decimal(decimal &&) = default;
decimal &operator=(decimal &&other) = default;
// Generates a mantissa by truncating to 19 digits.
// This function should be reasonably fast.
// Note that the user is responsible to ensure that digits are
// initialized to zero when there are fewer than 19.
inline uint64_t to_truncated_mantissa() {
uint64_t val;
// 8 first digits
::memcpy(&val, digits, sizeof(uint64_t));
val = val * 2561 >> 8;
val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16;
uint64_t mantissa =
uint32_t((val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32);
// 8 more digits for a total of 16
::memcpy(&val, digits + sizeof(uint64_t), sizeof(uint64_t));
val = val * 2561 >> 8;
val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16;
uint32_t eight_digits_value =
uint32_t((val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32);
mantissa = 100000000 * mantissa + eight_digits_value;
for (uint32_t i = 2 * sizeof(uint64_t); i < max_digit_without_overflow;
i++) {
mantissa = mantissa * 10 + digits[i]; // can be accelerated
}
return mantissa;
}
// Generate san exponent matching to_truncated_mantissa()
inline int32_t to_truncated_exponent() {
return decimal_point - int32_t(max_digit_without_overflow);
}
};
constexpr static double powers_of_ten_double[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
constexpr static float powers_of_ten_float[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5,
1e6, 1e7, 1e8, 1e9, 1e10};
template <typename T> struct binary_format {
static constexpr int mantissa_explicit_bits();
static constexpr int minimum_exponent();
static constexpr int infinite_power();
static constexpr int sign_index();
static constexpr int min_exponent_fast_path();
static constexpr int max_exponent_fast_path();
static constexpr int max_exponent_round_to_even();
static constexpr int min_exponent_round_to_even();
static constexpr uint64_t max_mantissa_fast_path();
static constexpr T exact_power_of_ten(int64_t power);
};
template <> constexpr int binary_format<double>::mantissa_explicit_bits() {
return 52;
}
template <> constexpr int binary_format<float>::mantissa_explicit_bits() {
return 23;
}
template <> constexpr int binary_format<double>::max_exponent_round_to_even() {
return 23;
}
template <> constexpr int binary_format<float>::max_exponent_round_to_even() {
return 10;
}
template <> constexpr int binary_format<double>::min_exponent_round_to_even() {
return -4;
}
template <> constexpr int binary_format<float>::min_exponent_round_to_even() {
return -17;
}
template <> constexpr int binary_format<double>::minimum_exponent() {
return -1023;
}
template <> constexpr int binary_format<float>::minimum_exponent() {
return -127;
}
template <> constexpr int binary_format<double>::infinite_power() {
return 0x7FF;
}
template <> constexpr int binary_format<float>::infinite_power() {
return 0xFF;
}
template <> constexpr int binary_format<double>::sign_index() { return 63; }
template <> constexpr int binary_format<float>::sign_index() { return 31; }
template <> constexpr int binary_format<double>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
return 0;
#else
return -22;
#endif
}
template <> constexpr int binary_format<float>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
return 0;
#else
return -10;
#endif
}
template <> constexpr int binary_format<double>::max_exponent_fast_path() {
return 22;
}
template <> constexpr int binary_format<float>::max_exponent_fast_path() {
return 10;
}
template <> constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
return uint64_t(2) << mantissa_explicit_bits();
}
template <> constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
return uint64_t(2) << mantissa_explicit_bits();
}
template <>
constexpr double binary_format<double>::exact_power_of_ten(int64_t power) {
return powers_of_ten_double[power];
}
template <>
constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
return powers_of_ten_float[power];
}
} // namespace fast_float
// for convenience:
#include <ostream>
inline std::ostream &operator<<(std::ostream &out, const fast_float::decimal &d) {
out << "0.";
for (size_t i = 0; i < d.num_digits; i++) {
out << int32_t(d.digits[i]);
}
out << " * 10 ** " << d.decimal_point;
return out;
}
#endif