mirror of
https://github.com/fastfloat/fast_float.git
synced 2025-12-07 01:06:48 +08:00
114 lines
3.4 KiB
C++
114 lines
3.4 KiB
C++
#include "fast_float/fast_float.h"
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <ios>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <system_error>
|
|
|
|
template <typename T> char *to_string(T d, char *buffer) {
|
|
auto written = std::snprintf(buffer, 64, "%.*e",
|
|
std::numeric_limits<T>::max_digits10 - 1, d);
|
|
return buffer + written;
|
|
}
|
|
|
|
|
|
static fast_float::value128 g_lehmer64_state;
|
|
|
|
/**
|
|
* D. H. Lehmer, Mathematical methods in large-scale computing units.
|
|
* Proceedings of a Second Symposium on Large Scale Digital Calculating
|
|
* Machinery;
|
|
* Annals of the Computation Laboratory, Harvard Univ. 26 (1951), pp. 141-146.
|
|
*
|
|
* P L'Ecuyer, Tables of linear congruential generators of different sizes and
|
|
* good lattice structure. Mathematics of Computation of the American
|
|
* Mathematical
|
|
* Society 68.225 (1999): 249-260.
|
|
*/
|
|
|
|
static inline void lehmer64_seed(uint64_t seed) {
|
|
g_lehmer64_state.high = 0;
|
|
g_lehmer64_state.low = seed;
|
|
}
|
|
|
|
static inline uint64_t lehmer64() {
|
|
fast_float::value128 v = fast_float::full_multiplication(g_lehmer64_state.low,UINT64_C(0xda942042e4dd58b5));
|
|
v.high += g_lehmer64_state.high * UINT64_C(0xda942042e4dd58b5);
|
|
g_lehmer64_state = v;
|
|
return v.high;
|
|
}
|
|
|
|
size_t errors;
|
|
|
|
void random_values(size_t N) {
|
|
char buffer[64];
|
|
lehmer64_seed(N);
|
|
for (size_t t = 0; t < N; t++) {
|
|
if ((t % 1048576) == 0) {
|
|
std::cout << ".";
|
|
std::cout.flush();
|
|
}
|
|
uint64_t word = lehmer64();
|
|
double v;
|
|
memcpy(&v, &word, sizeof(v));
|
|
// if (!std::isnormal(v))
|
|
{
|
|
const char *string_end = to_string(v, buffer);
|
|
double result_value;
|
|
auto result = fast_float::from_chars(buffer, string_end, result_value);
|
|
// Starting with version 4.0 for fast_float, we return result_out_of_range if the
|
|
// value is either too small (too close to zero) or too large (effectively infinity).
|
|
// So std::errc::result_out_of_range is normal for well-formed input strings.
|
|
if (result.ec != std::errc() && result.ec != std::errc::result_out_of_range) {
|
|
std::cerr << "parsing error ? " << buffer << std::endl;
|
|
errors++;
|
|
if (errors > 10) {
|
|
abort();
|
|
}
|
|
continue;
|
|
}
|
|
if (std::isnan(v)) {
|
|
if (!std::isnan(result_value)) {
|
|
std::cerr << "not nan" << buffer << std::endl;
|
|
errors++;
|
|
if (errors > 10) {
|
|
abort();
|
|
}
|
|
}
|
|
} else if(copysign(1,result_value) != copysign(1,v)) {
|
|
std::cerr << buffer << std::endl;
|
|
std::cerr << "I got " << std::hexfloat << result_value << " but I was expecting " << v
|
|
<< std::endl;
|
|
abort();
|
|
} else if (result_value != v) {
|
|
std::cerr << "no match ? " << buffer << std::endl;
|
|
std::cout << "started with " << std::hexfloat << v << std::endl;
|
|
std::cout << "got back " << std::hexfloat << result_value << std::endl;
|
|
std::cout << std::dec;
|
|
errors++;
|
|
if (errors > 10) {
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
int main() {
|
|
errors = 0;
|
|
size_t N = size_t(1) << (sizeof(size_t) * 4); // shift: 32 for 64bit, 16 for 32bit
|
|
random_values(N);
|
|
if (errors == 0) {
|
|
std::cout << std::endl;
|
|
std::cout << "all ok" << std::endl;
|
|
return EXIT_SUCCESS;
|
|
}
|
|
std::cerr << std::endl;
|
|
std::cerr << "errors were encountered" << std::endl;
|
|
return EXIT_FAILURE;
|
|
}
|