mirror of
https://github.com/fastfloat/fast_float.git
synced 2025-12-06 16:56:57 +08:00
321 lines
11 KiB
C++
321 lines
11 KiB
C++
#ifndef FASTFLOAT_ASCII_NUMBER_H
|
|
#define FASTFLOAT_ASCII_NUMBER_H
|
|
|
|
#include <cctype>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <type_traits>
|
|
|
|
#include "float_common.h"
|
|
|
|
#if FASTFLOAT_SSE2
|
|
#include <emmintrin.h>
|
|
#endif
|
|
|
|
|
|
namespace fast_float {
|
|
|
|
// Next function can be micro-optimized, but compilers are entirely
|
|
// able to optimize it well.
|
|
template <typename CharT>
|
|
fastfloat_really_inline constexpr bool is_integer(CharT c) noexcept {
|
|
return c >= static_cast<CharT>('0') && c <= static_cast<CharT>('9');
|
|
}
|
|
|
|
fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
|
|
return (val & 0xFF00000000000000) >> 56
|
|
| (val & 0x00FF000000000000) >> 40
|
|
| (val & 0x0000FF0000000000) >> 24
|
|
| (val & 0x000000FF00000000) >> 8
|
|
| (val & 0x00000000FF000000) << 8
|
|
| (val & 0x0000000000FF0000) << 24
|
|
| (val & 0x000000000000FF00) << 40
|
|
| (val & 0x00000000000000FF) << 56;
|
|
}
|
|
|
|
fastfloat_really_inline
|
|
uint64_t fast_read_u64(const char* chars)
|
|
{
|
|
uint64_t val;
|
|
::memcpy(&val, chars, sizeof(uint64_t));
|
|
return val;
|
|
}
|
|
|
|
// https://quick-bench.com/q/fk6Y07KDGu8XZ9iUtQD8QJTc3Hg
|
|
fastfloat_really_inline
|
|
uint64_t fast_read_u64(const char16_t* chars)
|
|
{
|
|
#if FASTFLOAT_SSE2
|
|
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
|
static const char16_t masks[] = {0xff, 0xff, 0xff, 0xff};
|
|
const __m128i m_masks = _mm_loadu_si128(reinterpret_cast<const __m128i*>(masks));
|
|
|
|
// mask hi bytes and pack
|
|
const char* const p = reinterpret_cast<const char*>(chars);
|
|
__m128i i1 = _mm_and_si128(_mm_loadu_si64(p), m_masks);
|
|
__m128i i2 = _mm_and_si128(_mm_loadu_si64(p + 8), m_masks);
|
|
__m128i packed = _mm_packus_epi16(i1, i2);
|
|
|
|
// extract
|
|
uint64_t val;
|
|
_mm_storeu_si64(&val, _mm_shuffle_epi32(packed, 0x8));
|
|
return val;
|
|
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
|
#else
|
|
alignas(8) unsigned char bytes[8];
|
|
for (int i = 0; i < 8; ++i)
|
|
bytes[i] = (unsigned char)chars[i];
|
|
|
|
uint64_t val;
|
|
::memcpy(&val, bytes, sizeof(uint64_t));
|
|
return val;
|
|
#endif
|
|
}
|
|
|
|
template <typename CharT>
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
uint64_t read_u64(const CharT *chars) {
|
|
if (cpp20_and_in_constexpr()) {
|
|
uint64_t val = 0;
|
|
for(int i = 0; i < 8; ++i) {
|
|
val |= uint64_t(*chars) << (i*8);
|
|
++chars;
|
|
}
|
|
return val;
|
|
}
|
|
uint64_t val = fast_read_u64(chars);
|
|
#if FASTFLOAT_IS_BIG_ENDIAN == 1
|
|
// Need to read as-if the number was in little-endian order.
|
|
val = byteswap(val);
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
void write_u64(uint8_t *chars, uint64_t val) {
|
|
if (cpp20_and_in_constexpr()) {
|
|
for(int i = 0; i < 8; ++i) {
|
|
*chars = uint8_t(val);
|
|
val >>= 8;
|
|
++chars;
|
|
}
|
|
return;
|
|
}
|
|
#if FASTFLOAT_IS_BIG_ENDIAN == 1
|
|
// Need to read as-if the number was in little-endian order.
|
|
val = byteswap(val);
|
|
#endif
|
|
::memcpy(chars, &val, sizeof(uint64_t));
|
|
}
|
|
|
|
// credit @aqrit
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
|
|
uint32_t parse_eight_digits_unrolled(uint64_t val) {
|
|
const uint64_t mask = 0x000000FF000000FF;
|
|
const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
|
|
const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
|
|
val -= 0x3030303030303030;
|
|
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
|
|
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
|
|
return uint32_t(val);
|
|
}
|
|
|
|
template <typename CharT>
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
uint32_t parse_eight_digits_unrolled(const CharT *chars) noexcept {
|
|
return parse_eight_digits_unrolled(read_u64(chars));
|
|
}
|
|
|
|
// credit @aqrit
|
|
fastfloat_really_inline constexpr bool is_made_of_eight_digits_fast(uint64_t val) noexcept {
|
|
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
|
|
0x8080808080808080));
|
|
}
|
|
|
|
template <typename CharT>
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
bool is_made_of_eight_digits_fast(const CharT *chars) noexcept {
|
|
return is_made_of_eight_digits_fast(read_u64(chars));
|
|
}
|
|
|
|
typedef span<const char> byte_span;
|
|
|
|
template <typename CharT>
|
|
struct parsed_number_string {
|
|
int64_t exponent{0};
|
|
uint64_t mantissa{0};
|
|
const CharT *lastmatch{nullptr};
|
|
bool negative{false};
|
|
bool valid{false};
|
|
bool is_64bit_int{false};
|
|
bool too_many_digits{false};
|
|
// contains the range of the significant digits
|
|
span<const CharT> integer{}; // non-nullable
|
|
span<const CharT> fraction{}; // nullable
|
|
};
|
|
|
|
// Assuming that you use no more than 19 digits, this will
|
|
// parse an ASCII string.
|
|
template <typename CharT>
|
|
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
|
parsed_number_string<CharT> parse_number_string(const CharT *p, const CharT *pend, parse_options options, const bool parse_ints = false) noexcept {
|
|
const chars_format fmt = options.format;
|
|
const parse_rules rules = options.rules;
|
|
const CharT decimal_point = static_cast<CharT>(options.decimal_point);
|
|
|
|
parsed_number_string<CharT> answer;
|
|
answer.valid = false;
|
|
answer.too_many_digits = false;
|
|
answer.negative = (*p == static_cast<CharT>('-'));
|
|
#if FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
|
|
if ((*p == static_cast<CharT>('-')) || (*p == static_cast<CharT>('+'))) {
|
|
#else
|
|
if (*p == static_cast<CharT>('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
|
|
#endif
|
|
++p;
|
|
if (p == pend) {
|
|
return answer;
|
|
}
|
|
// a sign must be followed by an integer or the dot
|
|
if (!is_integer(*p) && (rules == parse_rules::json_rules || *p != decimal_point))
|
|
return answer;
|
|
}
|
|
const CharT *const start_digits = p;
|
|
|
|
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
|
|
|
|
while ((p != pend) && is_integer(*p)) {
|
|
// a multiplication by 10 is cheaper than an arbitrary integer
|
|
// multiplication
|
|
i = 10 * i +
|
|
uint64_t(*p - static_cast<CharT>('0')); // might overflow, we will handle the overflow later
|
|
++p;
|
|
}
|
|
const CharT *const end_of_integer_part = p;
|
|
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
|
|
answer.integer = span<const CharT>(start_digits, size_t(digit_count));
|
|
int64_t exponent = 0;
|
|
const bool has_decimal_point = (p != pend) && (*p == decimal_point);
|
|
if (has_decimal_point) {
|
|
++p;
|
|
const CharT* before = p;
|
|
// can occur at most twice without overflowing, but let it occur more, since
|
|
// for integers with many digits, digit parsing is the primary bottleneck.
|
|
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
|
|
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
|
|
p += 8;
|
|
}
|
|
while ((p != pend) && is_integer(*p)) {
|
|
i = i * 10 + uint64_t(*p - static_cast<CharT>('0')); // in rare cases, this will overflow, but that's ok
|
|
++p;
|
|
}
|
|
exponent = before - p;
|
|
answer.fraction = span<const CharT>(before, size_t(p - before));
|
|
digit_count -= exponent;
|
|
}
|
|
// we must have encountered at least one integer (or two if a decimal point exists, with json rules).
|
|
if (digit_count == 0 || (rules == parse_rules::json_rules && has_decimal_point && digit_count == 1)) {
|
|
return answer;
|
|
}
|
|
int64_t exp_number = 0; // explicit exponential part
|
|
if ((fmt & chars_format::scientific) && (p != pend) && ((static_cast<CharT>('e') == *p) || (static_cast<CharT>('E') == *p))) {
|
|
const CharT * location_of_e = p;
|
|
++p;
|
|
bool neg_exp = false;
|
|
if ((p != pend) && (static_cast<CharT>('-') == *p)) {
|
|
neg_exp = true;
|
|
++p;
|
|
} else if ((p != pend) && (static_cast<CharT>('+') == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
|
|
++p;
|
|
}
|
|
if ((p == pend) || !is_integer(*p)) {
|
|
if(!(fmt & chars_format::fixed)) {
|
|
// We are in error.
|
|
return answer;
|
|
}
|
|
// Otherwise, we will be ignoring the 'e'.
|
|
p = location_of_e;
|
|
} else {
|
|
while ((p != pend) && is_integer(*p)) {
|
|
uint8_t digit = uint8_t(*p - static_cast<CharT>('0'));
|
|
if (exp_number < 0x10000000) {
|
|
exp_number = 10 * exp_number + digit;
|
|
}
|
|
++p;
|
|
}
|
|
if(neg_exp) { exp_number = - exp_number; }
|
|
exponent += exp_number;
|
|
}
|
|
} else {
|
|
// If it scientific and not fixed, we have to bail out.
|
|
if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
|
|
}
|
|
|
|
// disallow leading zeros before the decimal point
|
|
if (rules == parse_rules::json_rules && start_digits[0] == static_cast<CharT>('0') && digit_count >= 2 && is_integer(start_digits[1]))
|
|
return answer;
|
|
|
|
answer.lastmatch = p;
|
|
answer.valid = true;
|
|
answer.is_64bit_int = (p == end_of_integer_part);
|
|
|
|
// If we frequently had to deal with long strings of digits,
|
|
// we could extend our code by using a 128-bit integer instead
|
|
// of a 64-bit integer. However, this is uncommon.
|
|
//
|
|
// We can deal with up to 19 digits.
|
|
if (digit_count > 19) { // this is uncommon
|
|
// It is possible that the integer had an overflow.
|
|
// We have to handle the case where we have 0.0000somenumber.
|
|
// We need to be mindful of the case where we only have zeroes...
|
|
// E.g., 0.000000000...000.
|
|
const CharT *start = start_digits;
|
|
while ((start != pend) && (*start == static_cast<CharT>('0') || *start == decimal_point)) {
|
|
if(*start == static_cast<CharT>('0')) { digit_count --; }
|
|
start++;
|
|
}
|
|
constexpr uint64_t minimal_twenty_digit_integer{10000000000000000000ULL};
|
|
// maya: A 64-bit number may have up to 20 digits!
|
|
// If we're parsing ints, preserve accuracy up to 20 digits
|
|
// instead of rounding them to a floating point value.
|
|
answer.too_many_digits = rules == parse_rules::json_rules && parse_ints && answer.is_64bit_int ?
|
|
(digit_count > 20 || i < minimal_twenty_digit_integer) : digit_count > 19;
|
|
|
|
if (answer.too_many_digits) {
|
|
answer.is_64bit_int = false;
|
|
// Let us start again, this time, avoiding overflows.
|
|
// We don't need to check if is_integer, since we use the
|
|
// pre-tokenized spans from above.
|
|
i = 0;
|
|
p = answer.integer.ptr;
|
|
const CharT* int_end = p + answer.integer.len();
|
|
const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
|
|
while((i < minimal_nineteen_digit_integer) && (p != int_end)) {
|
|
i = i * 10 + uint64_t(*p - static_cast<CharT>('0'));
|
|
++p;
|
|
}
|
|
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
|
|
exponent = end_of_integer_part - p + exp_number;
|
|
} else { // We have a value with a fractional component.
|
|
p = answer.fraction.ptr;
|
|
const CharT* frac_end = p + answer.fraction.len();
|
|
while((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
|
|
i = i * 10 + uint64_t(*p - static_cast<CharT>('0'));
|
|
++p;
|
|
}
|
|
exponent = answer.fraction.ptr - p + exp_number;
|
|
}
|
|
// We have now corrected both exponent and i, to a truncated value
|
|
}
|
|
}
|
|
answer.exponent = exponent;
|
|
answer.mantissa = i;
|
|
return answer;
|
|
}
|
|
|
|
} // namespace fast_float
|
|
|
|
#endif
|