I420 and NV12 rotate functions.

Consolidate rotate files.  Add unit tests for I420
and NV12 rotate functions.  Fix remaining pitch/stride
references.
Review URL: http://webrtc-codereview.appspot.com/239001

git-svn-id: http://libyuv.googlecode.com/svn/trunk@32 16f28f9a-4ce2-e073-06de-1de4eb20be90
This commit is contained in:
frkoenig@google.com 2011-10-19 17:52:15 +00:00
parent a1280730c2
commit 3de12ae1c6
12 changed files with 1809 additions and 884 deletions

View File

@ -20,14 +20,6 @@
namespace libyuv {
// Supported rotation
enum RotationMode {
kRotateNone = 0,
kRotateClockwise = 90,
kRotateCounterClockwise = 270,
kRotate180 = 180,
};
// I420 mirror
int
I420Mirror(const uint8* src_yplane, int src_ystride,
@ -50,17 +42,6 @@ I420Crop(uint8* frame,
int src_width, int src_height,
int dst_width, int dst_height);
// Rotate I420 frame
int
I420Rotate(const uint8* src_yplane, int src_ystride,
const uint8* src_uplane, int src_ustride,
const uint8* src_vplane, int src_vstride,
uint8* dst_yplane, int dst_ystride,
uint8* dst_uplane, int dst_ustride,
uint8* dst_vplane, int dst_vstride,
int width, int height,
RotationMode mode);
} // namespace libyuv
#endif // INCLUDE_LIBYUV_GENERAL_H_

50
include/libyuv/rotate.h Normal file
View File

@ -0,0 +1,50 @@
/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef INCLUDE_LIBYUV_ROTATE_H_
#define INCLUDE_LIBYUV_ROTATE_H_
#include "libyuv/basic_types.h"
namespace libyuv {
// Supported rotation
enum RotationMode {
kRotateNone = 0,
kRotateClockwise = 90,
kRotateCounterClockwise = 270,
kRotate180 = 180,
};
// Rotate I420 frame
int
I420Rotate(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height,
RotationMode mode);
// Split a NV12 input buffer into Y, U, V buffers and
// then rotate the buffers.
int
NV12ToI420Rotate(const uint8* src_y, int src_stride_y,
const uint8* src_uv, int src_stride_uv,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height,
RotationMode mode);
} // namespace libyuv
#endif // INCLUDE_LIBYUV_ROTATE_H_

View File

@ -44,7 +44,6 @@
'source/general.cc',
'source/planar_functions.cc',
'source/rotate.cc',
'source/rotate_deinterleave.cc',
'source/row_table.cc',
'source/scale.cc',
'source/video_common.cc',

View File

@ -13,7 +13,6 @@
#include <string.h> // memcpy(), memset()
#include "libyuv/planar_functions.h"
#include "rotate.h"
namespace libyuv {
@ -282,66 +281,4 @@ I420CropPad(const uint8* src_frame, int src_width,
return 0;
}
int
I420Rotate(const uint8* src_yplane, int src_ystride,
const uint8* src_uplane, int src_ustride,
const uint8* src_vplane, int src_vstride,
uint8* dst_yplane, int dst_ystride,
uint8* dst_uplane, int dst_ustride,
uint8* dst_vplane, int dst_vstride,
int width, int height,
RotationMode mode) {
switch (mode) {
case kRotateNone:
// copy frame
return I420Copy(src_yplane, src_ystride,
src_uplane, src_ustride,
src_vplane, src_vstride,
dst_yplane, dst_ystride,
dst_uplane, dst_ustride,
dst_vplane, dst_vstride,
width, height);
break;
case kRotateClockwise:
Rotate90(src_yplane, src_ystride,
dst_yplane, dst_ystride,
width, height);
Rotate90(src_uplane, src_ustride,
dst_uplane, dst_ustride,
width, height);
Rotate90(src_vplane, src_vstride,
dst_vplane, dst_vstride,
width, height);
return 0;
break;
case kRotateCounterClockwise:
Rotate270(src_yplane, src_ystride,
dst_yplane, dst_ystride,
width, height);
Rotate270(src_uplane, src_ustride,
dst_uplane, dst_ustride,
width, height);
Rotate270(src_vplane, src_vstride,
dst_vplane, dst_vstride,
width, height);
return 0;
break;
case kRotate180:
Rotate180(src_yplane, src_ystride,
dst_yplane, dst_ystride,
width, height);
Rotate180(src_uplane, src_ustride,
dst_uplane, dst_ustride,
width, height);
Rotate180(src_vplane, src_vstride,
dst_vplane, dst_vstride,
width, height);
return 0;
break;
default:
return -1;
break;
}
}
} // namespace libyuv

View File

@ -8,23 +8,41 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rotate.h"
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
#include "rotate_priv.h"
namespace libyuv {
typedef void (*reverse_uv_func)(const uint8*, uint8*, uint8*, int);
typedef void (*reverse_func)(const uint8*, uint8*, int);
typedef void (*rotate_wx8func)(const uint8*, int, uint8*, int, int);
typedef void (*rotate_wxhfunc)(const uint8*, int, uint8*, int, int, int);
typedef void (*rotate_uv_wx8_func)(const uint8*, int,
uint8*, int,
uint8*, int, int);
typedef void (*rotate_uv_wxh_func)(const uint8*, int,
uint8*, int,
uint8*, int, int, int);
typedef void (*rotate_wx8_func)(const uint8*, int, uint8*, int, int);
typedef void (*rotate_wxh_func)(const uint8*, int, uint8*, int, int, int);
#ifdef __ARM_NEON__
extern "C" {
void RestoreRegisters_NEON(unsigned long long *restore);
void SaveRegisters_NEON(unsigned long long *store);
void ReverseLine_NEON(const uint8* src, uint8* dst, int width);
void Transpose_wx8_NEON(const uint8* src, int src_stride,
void ReverseLineUV_NEON(const uint8* src,
uint8* dst_a, uint8* dst_b,
int width);
void TransposeWx8_NEON(const uint8* src, int src_stride,
uint8* dst, int dst_stride, int width);
void TransposeUVWx8_NEON(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width);
} // extern "C"
#endif
static void Transpose_wx8_C(const uint8* src, int src_stride,
static void TransposeWx8_C(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int w) {
int i, j;
@ -33,7 +51,7 @@ static void Transpose_wx8_C(const uint8* src, int src_stride,
dst[i * dst_stride + j] = src[j * src_stride + i];
}
static void Transpose_wxh_C(const uint8* src, int src_stride,
static void TransposeWxH_C(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height) {
int i, j;
@ -42,72 +60,82 @@ static void Transpose_wxh_C(const uint8* src, int src_stride,
dst[i * dst_stride + j] = src[j * src_stride + i];
}
void Transpose(const uint8* src, int src_stride,
void TransposePlane(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height) {
int i = height;
rotate_wx8func Transpose_wx8;
rotate_wxhfunc Transpose_wxh;
rotate_wx8_func TransposeWx8;
rotate_wxh_func TransposeWxH;
// do processor detection here.
#ifdef __ARM_NEON__
Transpose_wx8 = Transpose_wx8_NEON;
Transpose_wxh = Transpose_wxh_C;
TransposeWx8 = TransposeWx8_NEON;
TransposeWxH = TransposeWxH_C;
#else
Transpose_wx8 = Transpose_wx8_C;
Transpose_wxh = Transpose_wxh_C;
TransposeWx8 = TransposeWx8_C;
TransposeWxH = TransposeWxH_C;
#endif
// work across the source in 8x8 tiles
do {
Transpose_wx8(src, src_stride, dst, dst_stride, width);
while (i >= 8) {
TransposeWx8(src, src_stride, dst, dst_stride, width);
src += 8 * src_stride;
dst += 8;
src += 8 * src_stride; // go down 8 rows
dst += 8; // move over 8 columns
i -= 8;
} while (i >= 8);
// TODO(frkoenig): Have wx4 and maybe wx2
Transpose_wxh(src, src_stride, dst, dst_stride, width, i);
}
void Rotate90(const uint8* src, int src_stride,
TransposeWxH(src, src_stride, dst, dst_stride, width, i);
}
void RotatePlane90(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height) {
// Rotate by 90 is a transpose with the source read
// from bottom to top. So set the source pointer to the end
// of the buffer and flip the sign of the source stride.
src += src_stride * (height - 1);
src_stride = -src_stride;
Transpose(src, src_stride, dst, dst_stride, width, height);
TransposePlane(src, src_stride, dst, dst_stride, width, height);
}
void Rotate270(const uint8* src, int src_stride,
void RotatePlane270(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height) {
// Rotate by 270 is a transpose with the destination written
// from bottom to top. So set the destination pointer to the end
// of the buffer and flip the sign of the destination stride.
dst += dst_stride * (width - 1);
dst_stride = -dst_stride;
Transpose(src, src_stride, dst, dst_stride, width, height);
TransposePlane(src, src_stride, dst, dst_stride, width, height);
}
void ReverseLine_C(const uint8* src, uint8* dst, int width) {
int i;
for (i = 0; i < width; ++i)
dst[width-1 - i] = src[i];
src += width;
for (i = 0; i < width; ++i) {
--src;
dst[i] = src[0];
}
}
void Rotate180(const uint8* src, int src_stride,
void RotatePlane180(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height) {
int i;
reverse_func ReverseLine;
// do processor detection here.
// TODO(frkoenig): do processor detection here.
#ifdef __ARM_NEON__
ReverseLine = ReverseLine_NEON;
#else
ReverseLine = ReverseLine_C;
#endif
// Rotate by 180 is a mirror with the destination
// written in reverse.
dst += dst_stride * (height - 1);
for (i = 0; i < height; ++i) {
@ -118,4 +146,269 @@ void Rotate180(const uint8* src, int src_stride,
}
}
static void TransposeUVWx8_C(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int w) {
int i, j;
for (i = 0; i < w * 2; i += 2)
for (j = 0; j < 8; ++j) {
dst_a[j + ((i >> 1) * dst_stride_a)] = src[i + (j * src_stride)];
dst_b[j + ((i >> 1) * dst_stride_b)] = src[i + (j * src_stride) + 1];
}
}
static void TransposeUVWxH_C(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int w, int h) {
int i, j;
for (i = 0; i < w*2; i += 2)
for (j = 0; j < h; ++j) {
dst_a[j + ((i >> 1) * dst_stride_a)] = src[i + (j * src_stride)];
dst_b[j + ((i >> 1) * dst_stride_b)] = src[i + (j * src_stride) + 1];
}
}
void TransposeUV(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height) {
int i = height;
rotate_uv_wx8_func TransposeWx8;
rotate_uv_wxh_func TransposeWxH;
// do processor detection here.
#ifdef __ARM_NEON__
unsigned long long store_reg[8];
SaveRegisters_NEON(store_reg);
TransposeWx8 = TransposeUVWx8_NEON;
TransposeWxH = TransposeUVWxH_C;
#else
TransposeWx8 = TransposeUVWx8_C;
TransposeWxH = TransposeUVWxH_C;
#endif
// work through the source in 8x8 tiles
while (i >= 8) {
TransposeWx8(src, src_stride,
dst_a, dst_stride_a,
dst_b, dst_stride_b,
width);
src += 8 * src_stride; // go down 8 rows
dst_a += 8; // move over 8 columns
dst_b += 8; // move over 8 columns
i -= 8;
}
TransposeWxH(src, src_stride,
dst_a, dst_stride_a,
dst_b, dst_stride_b,
width, i);
#ifdef __ARM_NEON__
RestoreRegisters_NEON(store_reg);
#endif
}
void RotateUV90(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height) {
src += src_stride * (height - 1);
src_stride = -src_stride;
TransposeUV(src, src_stride,
dst_a, dst_stride_a,
dst_b, dst_stride_b,
width, height);
}
void RotateUV270(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height) {
dst_a += dst_stride_a * (width - 1);
dst_b += dst_stride_b * (width - 1);
dst_stride_a = -dst_stride_a;
dst_stride_b = -dst_stride_b;
TransposeUV(src, src_stride,
dst_a, dst_stride_a,
dst_b, dst_stride_b,
width, height);
}
static void ReverseLineUV_C(const uint8* src,
uint8* dst_a, uint8* dst_b,
int width) {
int i;
src += width << 1;
for (i = 0; i < width; ++i) {
src -= 2;
dst_a[i] = src[0];
dst_b[i] = src[1];
}
}
void RotateUV180(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height) {
int i;
reverse_uv_func ReverseLine;
// TODO(frkoenig) : do processor detection here.
#ifdef __ARM_NEON__
ReverseLine = ReverseLineUV_NEON;
#else
ReverseLine = ReverseLineUV_C;
#endif
dst_a += dst_stride_a * (height - 1);
dst_b += dst_stride_b * (height - 1);
for (i = 0; i < height; ++i) {
ReverseLine(src, dst_a, dst_b, width);
src += src_stride; // down one line at a time
dst_a -= dst_stride_a; // nominally up one line at a time
dst_b -= dst_stride_b; // nominally up one line at a time
}
}
int I420Rotate(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height,
RotationMode mode) {
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
// Negative height means invert the image.
if (height < 0) {
height = -height;
halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (halfheight - 1) * src_stride_u;
src_v = src_v + (halfheight - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
switch (mode) {
case kRotateNone:
// copy frame
return I420Copy(src_y, src_stride_y,
src_u, src_stride_u,
src_v, src_stride_v,
dst_y, dst_stride_y,
dst_u, dst_stride_u,
dst_v, dst_stride_v,
width, height);
case kRotateClockwise:
RotatePlane90(src_y, src_stride_y,
dst_y, dst_stride_y,
width, height);
RotatePlane90(src_u, src_stride_u,
dst_u, dst_stride_u,
halfwidth, halfheight);
RotatePlane90(src_v, src_stride_v,
dst_v, dst_stride_v,
halfwidth, halfheight);
return 0;
case kRotateCounterClockwise:
RotatePlane270(src_y, src_stride_y,
dst_y, dst_stride_y,
width, height);
RotatePlane270(src_u, src_stride_u,
dst_u, dst_stride_u,
halfwidth, halfheight);
RotatePlane270(src_v, src_stride_v,
dst_v, dst_stride_v,
halfwidth, halfheight);
return 0;
case kRotate180:
RotatePlane180(src_y, src_stride_y,
dst_y, dst_stride_y,
width, height);
RotatePlane180(src_u, src_stride_u,
dst_u, dst_stride_u,
halfwidth, halfheight);
RotatePlane180(src_v, src_stride_v,
dst_v, dst_stride_v,
halfwidth, halfheight);
return 0;
default:
break;
}
return -1;
}
int NV12ToI420Rotate(const uint8* src_y, int src_stride_y,
const uint8* src_uv, int src_stride_uv,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height,
RotationMode mode) {
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
// Negative height means invert the image.
if (height < 0) {
height = -height;
halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_uv = src_uv + (halfheight - 1) * src_stride_uv;
src_stride_y = -src_stride_y;
src_stride_uv = -src_stride_uv;
}
switch (mode) {
case kRotateNone:
// copy frame
return NV12ToI420(src_y, src_uv, src_stride_y,
dst_y, dst_stride_y,
dst_u, dst_stride_u,
dst_v, dst_stride_v,
width, height);
case kRotateClockwise:
RotatePlane90(src_y, src_stride_y,
dst_y, dst_stride_y,
width, height);
RotateUV90(src_uv, src_stride_uv,
dst_u, dst_stride_u,
dst_v, dst_stride_v,
halfwidth, halfheight);
return 0;
case kRotateCounterClockwise:
RotatePlane270(src_y, src_stride_y,
dst_y, dst_stride_y,
width, height);
RotateUV270(src_uv, src_stride_uv,
dst_u, dst_stride_u,
dst_v, dst_stride_v,
halfwidth, halfheight);
return 0;
case kRotate180:
RotatePlane180(src_y, src_stride_y,
dst_y, dst_stride_y,
width, height);
RotateUV180(src_uv, src_stride_uv,
dst_u, dst_stride_u,
dst_v, dst_stride_v,
halfwidth, halfheight);
return 0;
default:
break;
}
return -1;
}
} // namespace libyuv

View File

@ -1,46 +0,0 @@
/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef LIBYUV_SOURCE_ROTATE_H_
#define LIBYUV_SOURCE_ROTATE_H_
#include "libyuv/basic_types.h"
namespace libyuv {
void Rotate90(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height);
void Rotate180(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height);
void Rotate270(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height);
void Rotate90_deinterleave(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height);
void Rotate180_deinterleave(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height);
void Rotate270_deinterleave(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height);
void Transpose(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height);
} // namespace libyuv
#endif // LIBYUV_SOURCE_ROTATE_H_

View File

@ -1,171 +0,0 @@
/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rotate.h"
namespace libyuv {
typedef void (*reverse_func)(const uint8*, uint8*, uint8*, int);
typedef void (*rotate_wx8func)(const uint8*, int,
uint8*, int,
uint8*, int, int);
typedef void (*rotate_wxhfunc)(const uint8*, int,
uint8*, int,
uint8*, int, int, int);
#ifdef __ARM_NEON__
extern "C" {
void RestoreRegisters_NEON(unsigned long long *restore);
void ReverseLine_di_NEON(const uint8* src,
uint8* dst_a, uint8* dst_b,
int width);
void SaveRegisters_NEON(unsigned long long *store);
void Transpose_di_wx8_NEON(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width);
} // extern "C"
#endif
static void Transpose_di_wx8_C(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int w) {
int i, j;
for (i = 0; i < w*2; i += 2)
for (j = 0; j < 8; ++j) {
dst_a[j + (i>>1)*dst_stride_a] = src[i + j*src_stride];
dst_b[j + (i>>1)*dst_stride_b] = src[i + j*src_stride + 1];
}
}
static void Transpose_di_wxh_C(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int w, int h) {
int i, j;
for (i = 0; i < w*2; i += 2)
for (j = 0; j < h; ++j) {
dst_a[j + (i>>1)*dst_stride_a] = src[i + j*src_stride];
dst_b[j + (i>>1)*dst_stride_b] = src[i + j*src_stride + 1];
}
}
void Transpose_deinterleave(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height) {
int i = height;
rotate_wx8func Transpose_wx8;
rotate_wxhfunc Transpose_wxh;
// do processor detection here.
#ifdef __ARM_NEON__
unsigned long long store_reg[8];
SaveRegisters_NEON(store_reg);
Transpose_wx8 = Transpose_di_wx8_NEON;
Transpose_wxh = Transpose_di_wxh_C;
#else
Transpose_wx8 = Transpose_di_wx8_C;
Transpose_wxh = Transpose_di_wxh_C;
#endif
width >>= 1;
// work across the source in 8x8 tiles
do {
Transpose_wx8(src, src_stride,
dst_a, dst_stride_a,
dst_b, dst_stride_b,
width);
src += 8 * src_stride;
dst_a += 8;
dst_b += 8;
i -= 8;
} while (i >= 8);
Transpose_wxh(src, src_stride,
dst_a, dst_stride_a,
dst_b, dst_stride_b,
width, i);
#ifdef __ARM_NEON__
RestoreRegisters_NEON(store_reg);
#endif
}
void Rotate90_deinterleave(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height) {
src += src_stride*(height-1);
src_stride = -src_stride;
Transpose_deinterleave(src, src_stride,
dst_a, dst_stride_a,
dst_b, dst_stride_b,
width, height);
}
void Rotate270_deinterleave(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height) {
dst_a += dst_stride_a*((width>>1)-1);
dst_b += dst_stride_b*((width>>1)-1);
dst_stride_a = -dst_stride_a;
dst_stride_b = -dst_stride_b;
Transpose_deinterleave(src, src_stride,
dst_a, dst_stride_a,
dst_b, dst_stride_b,
width, height);
}
static void ReverseLine_di_C(const uint8* src,
uint8* dst_a, uint8* dst_b,
int width) {
int i;
for (i = 0; i < width*2; i += 2) {
dst_a[width-1 - (i>>1)] = src[i];
dst_b[width-1 - (i>>1)] = src[i+1];
}
}
void Rotate180_deinterleave(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height) {
int i;
reverse_func ReverseLine;
// do processor detection here.
#ifdef __ARM_NEON__
ReverseLine = ReverseLine_di_NEON;
#else
ReverseLine = ReverseLine_di_C;
#endif
dst_a += dst_stride_a*(height-1);
dst_b += dst_stride_b*(height-1);
width >>= 1;
for (i = 0; i < height; ++i) {
ReverseLine(src, dst_a, dst_b, width);
src += src_stride;
dst_a -= dst_stride_a;
dst_b -= dst_stride_b;
}
}
} // namespace libyuv

View File

@ -1,310 +0,0 @@
.global RestoreRegisters_NEON
.global ReverseLine_di_NEON
.global SaveRegisters_NEON
.global Transpose_di_wx8_NEON
.type RestoreRegisters_NEON, function
.type ReverseLine_di_NEON, function
.type SaveRegisters_NEON, function
.type Transpose_di_wx8_NEON, function
@ void SaveRegisters_NEON (unsigned long long store)
@ r0 unsigned long long store
SaveRegisters_NEON:
vst1.i64 {d8, d9, d10, d11}, [r0]!
vst1.i64 {d12, d13, d14, d15}, [r0]!
bx lr
@ void RestoreRegisters_NEON (unsigned long long store)
@ r0 unsigned long long store
RestoreRegisters_NEON:
vld1.i64 {d8, d9, d10, d11}, [r0]!
vld1.i64 {d12, d13, d14, d15}, [r0]!
bx lr
@ void ReverseLine_NEON (const uint8* src,
@ uint8* dst_a,
@ uint8* dst_b,
@ int width)
@ r0 const uint8* src
@ r1 uint8* dst_a
@ r2 uint8* dst_b
@ r3 width
ReverseLine_di_NEON:
@ compute where to start writing destination
add r1, r1, r3 @ dst_a + width
add r2, r2, r3 @ dst_b + width
@ work on input segments that are multiples of 16, but
@ width that has been passed is output segments, half
@ the size of input.
lsrs r12, r3, #3
beq .line_residuals
@ the output is written in to two blocks.
mov r12, #-8
@ back of destination by the size of the register that is
@ going to be reversed
sub r1, r1, #8
sub r2, r2, #8
@ the loop needs to run on blocks of 16. what will be left
@ over is either a negative number, the residuals that need
@ to be done, or 0. if this isn't subtracted off here the
@ loop will run one extra time.
sub r3, r3, #8
.segments_of_8:
vld2.8 {d0, d1}, [r0]! @ src += 16
@ reverse the bytes in the 64 bit segments
vrev64.8 q0, q0
vst1.8 {d0}, [r1], r12 @ dst_a -= 8
vst1.8 {d1}, [r2], r12 @ dst_b -= 8
subs r3, r3, #8
bge .segments_of_8
@ add 16 back to the counter. if the result is 0 there is no
@ residuals so return
adds r3, r3, #8
bxeq lr
add r1, r1, #8
add r2, r2, #8
.line_residuals:
mov r12, #-1
sub r1, r1, #1
sub r2, r2, #1
@ do this in neon registers as per
@ http://blogs.arm.com/software-enablement/196-coding-for-neon-part-2-dealing-with-leftovers/
.segments_of_2:
vld2.8 {d0[0], d1[0]}, [r0]! @ src += 2
vst1.8 {d0[0]}, [r1], r12 @ dst_a -= 1
vst1.8 {d1[0]}, [r2], r12 @ dst_b -= 1
subs r3, r3, #1
bgt .segments_of_2
bx lr
@ void Transpose_di_wx8_NEON (const uint8* src, int src_pitch,
@ uint8* dst_a, int dst_pitch_a,
@ uint8* dst_b, int dst_pitch_b,
@ int width)
@ r0 const uint8* src
@ r1 int src_pitch
@ r2 uint8* dst_a
@ r3 int dst_pitch_a
@ stack uint8* dst_b
@ stack int dst_pitch_b
@ stack int width
Transpose_di_wx8_NEON:
push {r4-r9,lr}
ldr r4, [sp, #28] @ dst_b
ldr r5, [sp, #32] @ dst_pitch_b
ldr r7, [sp, #36] @ width
@ loops are on blocks of 8. loop will stop when
@ counter gets to or below 0. starting the counter
@ at w-8 allow for this
sub r8, #8
@ handle 8x8 blocks. this should be the majority of the plane
.loop_8x8:
mov r9, r0
vld2.8 {d0, d1}, [r9], r1
vld2.8 {d2, d3}, [r9], r1
vld2.8 {d4, d5}, [r9], r1
vld2.8 {d6, d7}, [r9], r1
vld2.8 {d8, d9}, [r9], r1
vld2.8 {d10, d11}, [r9], r1
vld2.8 {d12, d13}, [r9], r1
vld2.8 {d14, d15}, [r9]
vtrn.8 q1, q0
vtrn.8 q3, q2
vtrn.8 q5, q4
vtrn.8 q7, q6
vtrn.16 q1, q3
vtrn.16 q0, q2
vtrn.16 q5, q7
vtrn.16 q4, q6
vtrn.32 q1, q5
vtrn.32 q0, q4
vtrn.32 q3, q7
vtrn.32 q2, q6
vrev16.8 q0, q0
vrev16.8 q1, q1
vrev16.8 q2, q2
vrev16.8 q3, q3
vrev16.8 q4, q4
vrev16.8 q5, q5
vrev16.8 q6, q6
vrev16.8 q7, q7
mov r9, r2
vst1.8 {d2}, [r9], r3
vst1.8 {d0}, [r9], r3
vst1.8 {d6}, [r9], r3
vst1.8 {d4}, [r9], r3
vst1.8 {d10}, [r9], r3
vst1.8 {d8}, [r9], r3
vst1.8 {d14}, [r9], r3
vst1.8 {d12}, [r9]
mov r9, r4
vst1.8 {d3}, [r9], r5
vst1.8 {d1}, [r9], r5
vst1.8 {d7}, [r9], r5
vst1.8 {d5}, [r9], r5
vst1.8 {d11}, [r9], r5
vst1.8 {d9}, [r9], r5
vst1.8 {d15}, [r9], r5
vst1.8 {d13}, [r9]
add r0, #8*2 @ src += 8*2
add r2, r3, lsl #3 @ dst_a += 8 * dst_pitch_a
add r4, r5, lsl #3 @ dst_b += 8 * dst_pitch_b
subs r8, #8 @ w -= 8
bge .loop_8x8
@ add 8 back to counter. if the result is 0 there are
@ no residuals.
adds r8, #8
beq .done
@ some residual, so between 1 and 7 lines left to transpose
cmp r8, #2
blt .block_1x8
cmp r8, #4
blt .block_2x8
@ TODO(frkoenig) : clean this up
.block_4x8:
mov r9, r0
vld1.64 {d0}, [r9], r1
vld1.64 {d1}, [r9], r1
vld1.64 {d2}, [r9], r1
vld1.64 {d3}, [r9], r1
vld1.64 {d4}, [r9], r1
vld1.64 {d5}, [r9], r1
vld1.64 {d6}, [r9], r1
vld1.64 {d7}, [r9]
adr r12, vtbl_4x4_transpose
vld1.8 {q7}, [r12]
vtrn.8 q0, q1
vtrn.8 q2, q3
vtbl.8 d8, {d0, d1}, d14
vtbl.8 d9, {d0, d1}, d15
vtbl.8 d10, {d2, d3}, d14
vtbl.8 d11, {d2, d3}, d15
vtbl.8 d12, {d4, d5}, d14
vtbl.8 d13, {d4, d5}, d15
vtbl.8 d0, {d6, d7}, d14
vtbl.8 d1, {d6, d7}, d15
mov r9, r2
vst1.32 {d8[0]}, [r9], r3
vst1.32 {d8[1]}, [r9], r3
vst1.32 {d9[0]}, [r9], r3
vst1.32 {d9[1]}, [r9], r3
add r9, r2, #4
vst1.32 {d12[0]}, [r9], r3
vst1.32 {d12[1]}, [r9], r3
vst1.32 {d13[0]}, [r9], r3
vst1.32 {d13[1]}, [r9]
mov r9, r4
vst1.32 {d10[0]}, [r9], r5
vst1.32 {d10[1]}, [r9], r5
vst1.32 {d11[0]}, [r9], r5
vst1.32 {d11[1]}, [r9], r5
add r9, r4, #4
vst1.32 {d0[0]}, [r9], r5
vst1.32 {d0[1]}, [r9], r5
vst1.32 {d1[0]}, [r9], r5
vst1.32 {d1[1]}, [r9]
add r0, #4*2 @ src += 4 * 2
add r2, r3, lsl #2 @ dst_a += 4 * dst_pitch_a
add r4, r5, lsl #2 @ dst_b += 4 * dst_pitch_b
subs r8, #4 @ w -= 4
beq .done
@ some residual, check to see if it includes a 2x8 block,
@ or less
cmp r8, #2
blt .block_1x8
.block_2x8:
mov r9, r0
vld2.16 {d0[0], d2[0]}, [r9], r1
vld2.16 {d1[0], d3[0]}, [r9], r1
vld2.16 {d0[1], d2[1]}, [r9], r1
vld2.16 {d1[1], d3[1]}, [r9], r1
vld2.16 {d0[2], d2[2]}, [r9], r1
vld2.16 {d1[2], d3[2]}, [r9], r1
vld2.16 {d0[3], d2[3]}, [r9], r1
vld2.16 {d1[3], d3[3]}, [r9]
vtrn.8 d0, d1
vtrn.8 d2, d3
mov r9, r2
vst1.64 {d0}, [r9], r3
vst1.64 {d2}, [r9]
mov r9, r4
vst1.64 {d1}, [r9], r5
vst1.64 {d3}, [r9]
add r0, #2*2 @ src += 2 * 2
add r2, r3, lsl #1 @ dst_a += 2 * dst_pitch_a
add r4, r5, lsl #1 @ dst_a += 2 * dst_pitch_a
subs r8, #2 @ w -= 2
beq .done
.block_1x8:
vld2.8 {d0[0], d1[0]}, [r0], r1
vld2.8 {d0[1], d1[1]}, [r0], r1
vld2.8 {d0[2], d1[2]}, [r0], r1
vld2.8 {d0[3], d1[3]}, [r0], r1
vld2.8 {d0[4], d1[4]}, [r0], r1
vld2.8 {d0[5], d1[5]}, [r0], r1
vld2.8 {d0[6], d1[6]}, [r0], r1
vld2.8 {d0[7], d1[7]}, [r0]
vst1.64 {d0}, [r2]
vst1.64 {d1}, [r4]
.done:
pop {r4-r9, pc}
vtbl_4x4_transpose:
.byte 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15

View File

@ -1,7 +1,15 @@
.global RestoreRegisters_NEON
.global ReverseLine_NEON
.global Transpose_wx8_NEON
.global ReverseLineUV_NEON
.global SaveRegisters_NEON
.global TransposeWx8_NEON
.global TransposeUVWx8_NEON
.type RestoreRegisters_NEON, function
.type ReverseLine_NEON, function
.type Transpose_wx8_NEON, function
.type ReverseLineUV_NEON, function
.type SaveRegisters_NEON, function
.type TransposeWx8_NEON, function
.type TransposeUVWx8_NEON, function
@ void ReverseLine_NEON (const uint8* src, uint8* dst, int width)
@ r0 const uint8* src
@ -23,7 +31,7 @@ ReverseLine_NEON:
@ along with 16 to get the next location.
mov r3, #-24
beq .line_residuals
beq Lline_residuals
@ back of destination by the size of the register that is
@ going to be reversed
@ -35,7 +43,7 @@ ReverseLine_NEON:
@ loop will run one extra time.
sub r2, #16
.segments_of_16:
Lsegments_of_16:
vld1.8 {q0}, [r0]! @ src += 16
@ reverse the bytes in the 64 bit segments. unable to reverse
@ -48,7 +56,7 @@ ReverseLine_NEON:
vst1.8 {d0}, [r1], r3 @ dst -= 16
subs r2, #16
bge .segments_of_16
bge Lsegments_of_16
@ add 16 back to the counter. if the result is 0 there is no
@ residuals so return
@ -57,7 +65,7 @@ ReverseLine_NEON:
add r1, #16
.line_residuals:
Lline_residuals:
mov r3, #-3
@ -65,38 +73,38 @@ ReverseLine_NEON:
subs r2, #2
@ check for 16*n+1 scenarios where segments_of_2 should not
@ be run, but there is something left over.
blt .segment_of_1
blt Lsegment_of_1
@ do this in neon registers as per
@ http://blogs.arm.com/software-enablement/196-coding-for-neon-part-2-dealing-with-leftovers/
.segments_of_2:
Lsegments_of_2:
vld2.8 {d0[0], d1[0]}, [r0]! @ src += 2
vst1.8 {d1[0]}, [r1]!
vst1.8 {d0[0]}, [r1], r3 @ dst -= 2
subs r2, #2
bge .segments_of_2
bge Lsegments_of_2
adds r2, #2
bxeq lr
.segment_of_1:
Lsegment_of_1:
add r1, #1
vld1.8 {d0[0]}, [r0]
vst1.8 {d0[0]}, [r1]
bx lr
@ void Transpose_wx8_NEON (const uint8* src, int src_pitch,
@ uint8* dst, int dst_pitch,
@ void TransposeWx8_NEON (const uint8* src, int src_stride,
@ uint8* dst, int dst_stride,
@ int w)
@ r0 const uint8* src
@ r1 int src_pitch
@ r1 int src_stride
@ r2 uint8* dst
@ r3 int dst_pitch
@ r3 int dst_stride
@ stack int w
Transpose_wx8_NEON:
TransposeWx8_NEON:
push {r4,r8,r9,lr}
ldr r8, [sp, #16] @ width
@ -107,7 +115,7 @@ Transpose_wx8_NEON:
sub r8, #8
@ handle 8x8 blocks. this should be the majority of the plane
.loop_8x8:
Lloop_8x8:
mov r9, r0
vld1.8 {d0}, [r9], r1
@ -151,23 +159,23 @@ Transpose_wx8_NEON:
vst1.8 {d6}, [r9]
add r0, #8 @ src += 8
add r2, r3, lsl #3 @ dst += 8 * dst_pitch
add r2, r3, lsl #3 @ dst += 8 * dst_stride
subs r8, #8 @ w -= 8
bge .loop_8x8
bge Lloop_8x8
@ add 8 back to counter. if the result is 0 there are
@ no residuals.
adds r8, #8
beq .done
beq Ldone
@ some residual, so between 1 and 7 lines left to transpose
cmp r8, #2
blt .block_1x8
blt Lblock_1x8
cmp r8, #4
blt .block_2x8
blt Lblock_2x8
.block_4x8:
Lblock_4x8:
mov r9, r0
vld1.32 {d0[0]}, [r9], r1
vld1.32 {d0[1]}, [r9], r1
@ -202,16 +210,16 @@ Transpose_wx8_NEON:
vst1.32 {d1[1]}, [r9]
add r0, #4 @ src += 4
add r2, r3, lsl #2 @ dst += 4 * dst_pitch
add r2, r3, lsl #2 @ dst += 4 * dst_stride
subs r8, #4 @ w -= 4
beq .done
beq Ldone
@ some residual, check to see if it includes a 2x8 block,
@ or less
cmp r8, #2
blt .block_1x8
blt Lblock_1x8
.block_2x8:
Lblock_2x8:
mov r9, r0
vld1.16 {d0[0]}, [r9], r1
vld1.16 {d1[0]}, [r9], r1
@ -230,11 +238,11 @@ Transpose_wx8_NEON:
vst1.64 {d1}, [r9]
add r0, #2 @ src += 2
add r2, r3, lsl #1 @ dst += 2 * dst_pitch
add r2, r3, lsl #1 @ dst += 2 * dst_stride
subs r8, #2 @ w -= 2
beq .done
beq Ldone
.block_1x8:
Lblock_1x8:
vld1.8 {d0[0]}, [r0], r1
vld1.8 {d0[1]}, [r0], r1
vld1.8 {d0[2]}, [r0], r1
@ -246,9 +254,310 @@ Transpose_wx8_NEON:
vst1.64 {d0}, [r2]
.done:
Ldone:
pop {r4,r8,r9,pc}
vtbl_4x4_transpose:
.byte 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15
@ void SaveRegisters_NEON (unsigned long long store)
@ r0 unsigned long long store
SaveRegisters_NEON:
vst1.i64 {d8, d9, d10, d11}, [r0]!
vst1.i64 {d12, d13, d14, d15}, [r0]!
bx lr
@ void RestoreRegisters_NEON (unsigned long long store)
@ r0 unsigned long long store
RestoreRegisters_NEON:
vld1.i64 {d8, d9, d10, d11}, [r0]!
vld1.i64 {d12, d13, d14, d15}, [r0]!
bx lr
@ void ReverseLineUV_NEON (const uint8* src,
@ uint8* dst_a,
@ uint8* dst_b,
@ int width)
@ r0 const uint8* src
@ r1 uint8* dst_a
@ r2 uint8* dst_b
@ r3 width
ReverseLineUV_NEON:
@ compute where to start writing destination
add r1, r1, r3 @ dst_a + width
add r2, r2, r3 @ dst_b + width
@ work on input segments that are multiples of 16, but
@ width that has been passed is output segments, half
@ the size of input.
lsrs r12, r3, #3
beq Lline_residuals_di
@ the output is written in to two blocks.
mov r12, #-8
@ back of destination by the size of the register that is
@ going to be reversed
sub r1, r1, #8
sub r2, r2, #8
@ the loop needs to run on blocks of 8. what will be left
@ over is either a negative number, the residuals that need
@ to be done, or 0. if this isn't subtracted off here the
@ loop will run one extra time.
sub r3, r3, #8
Lsegments_of_8_di:
vld2.8 {d0, d1}, [r0]! @ src += 16
@ reverse the bytes in the 64 bit segments
vrev64.8 q0, q0
vst1.8 {d0}, [r1], r12 @ dst_a -= 8
vst1.8 {d1}, [r2], r12 @ dst_b -= 8
subs r3, r3, #8
bge Lsegments_of_8_di
@ add 8 back to the counter. if the result is 0 there is no
@ residuals so return
adds r3, r3, #8
bxeq lr
add r1, r1, #8
add r2, r2, #8
Lline_residuals_di:
mov r12, #-1
sub r1, r1, #1
sub r2, r2, #1
@ do this in neon registers as per
@ http://blogs.arm.com/software-enablement/196-coding-for-neon-part-2-dealing-with-leftovers/
Lsegments_of_1:
vld2.8 {d0[0], d1[0]}, [r0]! @ src += 2
vst1.8 {d0[0]}, [r1], r12 @ dst_a -= 1
vst1.8 {d1[0]}, [r2], r12 @ dst_b -= 1
subs r3, r3, #1
bgt Lsegments_of_1
bx lr
@ void TransposeUVWx8_NEON (const uint8* src, int src_stride,
@ uint8* dst_a, int dst_stride_a,
@ uint8* dst_b, int dst_stride_b,
@ int width)
@ r0 const uint8* src
@ r1 int src_stride
@ r2 uint8* dst_a
@ r3 int dst_stride_a
@ stack uint8* dst_b
@ stack int dst_stride_b
@ stack int width
TransposeUVWx8_NEON:
push {r4-r9,lr}
ldr r4, [sp, #28] @ dst_b
ldr r5, [sp, #32] @ dst_stride_b
ldr r8, [sp, #36] @ width
@ loops are on blocks of 8. loop will stop when
@ counter gets to or below 0. starting the counter
@ at w-8 allow for this
sub r8, #8
@ handle 8x8 blocks. this should be the majority of the plane
Lloop_8x8_di:
mov r9, r0
vld2.8 {d0, d1}, [r9], r1
vld2.8 {d2, d3}, [r9], r1
vld2.8 {d4, d5}, [r9], r1
vld2.8 {d6, d7}, [r9], r1
vld2.8 {d8, d9}, [r9], r1
vld2.8 {d10, d11}, [r9], r1
vld2.8 {d12, d13}, [r9], r1
vld2.8 {d14, d15}, [r9]
vtrn.8 q1, q0
vtrn.8 q3, q2
vtrn.8 q5, q4
vtrn.8 q7, q6
vtrn.16 q1, q3
vtrn.16 q0, q2
vtrn.16 q5, q7
vtrn.16 q4, q6
vtrn.32 q1, q5
vtrn.32 q0, q4
vtrn.32 q3, q7
vtrn.32 q2, q6
vrev16.8 q0, q0
vrev16.8 q1, q1
vrev16.8 q2, q2
vrev16.8 q3, q3
vrev16.8 q4, q4
vrev16.8 q5, q5
vrev16.8 q6, q6
vrev16.8 q7, q7
mov r9, r2
vst1.8 {d2}, [r9], r3
vst1.8 {d0}, [r9], r3
vst1.8 {d6}, [r9], r3
vst1.8 {d4}, [r9], r3
vst1.8 {d10}, [r9], r3
vst1.8 {d8}, [r9], r3
vst1.8 {d14}, [r9], r3
vst1.8 {d12}, [r9]
mov r9, r4
vst1.8 {d3}, [r9], r5
vst1.8 {d1}, [r9], r5
vst1.8 {d7}, [r9], r5
vst1.8 {d5}, [r9], r5
vst1.8 {d11}, [r9], r5
vst1.8 {d9}, [r9], r5
vst1.8 {d15}, [r9], r5
vst1.8 {d13}, [r9]
add r0, #8*2 @ src += 8*2
add r2, r3, lsl #3 @ dst_a += 8 * dst_stride_a
add r4, r5, lsl #3 @ dst_b += 8 * dst_stride_b
subs r8, #8 @ w -= 8
bge Lloop_8x8_di
@ add 8 back to counter. if the result is 0 there are
@ no residuals.
adds r8, #8
beq Ldone_di
@ some residual, so between 1 and 7 lines left to transpose
cmp r8, #2
blt Lblock_1x8_di
cmp r8, #4
blt Lblock_2x8_di
@ TODO(frkoenig) : clean this up
Lblock_4x8_di:
mov r9, r0
vld1.64 {d0}, [r9], r1
vld1.64 {d1}, [r9], r1
vld1.64 {d2}, [r9], r1
vld1.64 {d3}, [r9], r1
vld1.64 {d4}, [r9], r1
vld1.64 {d5}, [r9], r1
vld1.64 {d6}, [r9], r1
vld1.64 {d7}, [r9]
adr r12, vtbl_4x4_transpose_di
vld1.8 {q7}, [r12]
vtrn.8 q0, q1
vtrn.8 q2, q3
vtbl.8 d8, {d0, d1}, d14
vtbl.8 d9, {d0, d1}, d15
vtbl.8 d10, {d2, d3}, d14
vtbl.8 d11, {d2, d3}, d15
vtbl.8 d12, {d4, d5}, d14
vtbl.8 d13, {d4, d5}, d15
vtbl.8 d0, {d6, d7}, d14
vtbl.8 d1, {d6, d7}, d15
mov r9, r2
vst1.32 {d8[0]}, [r9], r3
vst1.32 {d8[1]}, [r9], r3
vst1.32 {d9[0]}, [r9], r3
vst1.32 {d9[1]}, [r9], r3
add r9, r2, #4
vst1.32 {d12[0]}, [r9], r3
vst1.32 {d12[1]}, [r9], r3
vst1.32 {d13[0]}, [r9], r3
vst1.32 {d13[1]}, [r9]
mov r9, r4
vst1.32 {d10[0]}, [r9], r5
vst1.32 {d10[1]}, [r9], r5
vst1.32 {d11[0]}, [r9], r5
vst1.32 {d11[1]}, [r9], r5
add r9, r4, #4
vst1.32 {d0[0]}, [r9], r5
vst1.32 {d0[1]}, [r9], r5
vst1.32 {d1[0]}, [r9], r5
vst1.32 {d1[1]}, [r9]
add r0, #4*2 @ src += 4 * 2
add r2, r3, lsl #2 @ dst_a += 4 * dst_stride_a
add r4, r5, lsl #2 @ dst_b += 4 * dst_stride_b
subs r8, #4 @ w -= 4
beq Ldone_di
@ some residual, check to see if it includes a 2x8 block,
@ or less
cmp r8, #2
blt Lblock_1x8_di
Lblock_2x8_di:
mov r9, r0
vld2.16 {d0[0], d2[0]}, [r9], r1
vld2.16 {d1[0], d3[0]}, [r9], r1
vld2.16 {d0[1], d2[1]}, [r9], r1
vld2.16 {d1[1], d3[1]}, [r9], r1
vld2.16 {d0[2], d2[2]}, [r9], r1
vld2.16 {d1[2], d3[2]}, [r9], r1
vld2.16 {d0[3], d2[3]}, [r9], r1
vld2.16 {d1[3], d3[3]}, [r9]
vtrn.8 d0, d1
vtrn.8 d2, d3
mov r9, r2
vst1.64 {d0}, [r9], r3
vst1.64 {d2}, [r9]
mov r9, r4
vst1.64 {d1}, [r9], r5
vst1.64 {d3}, [r9]
add r0, #2*2 @ src += 2 * 2
add r2, r3, lsl #1 @ dst_a += 2 * dst_stride_a
add r4, r5, lsl #1 @ dst_a += 2 * dst_stride_a
subs r8, #2 @ w -= 2
beq Ldone_di
Lblock_1x8_di:
vld2.8 {d0[0], d1[0]}, [r0], r1
vld2.8 {d0[1], d1[1]}, [r0], r1
vld2.8 {d0[2], d1[2]}, [r0], r1
vld2.8 {d0[3], d1[3]}, [r0], r1
vld2.8 {d0[4], d1[4]}, [r0], r1
vld2.8 {d0[5], d1[5]}, [r0], r1
vld2.8 {d0[6], d1[6]}, [r0], r1
vld2.8 {d0[7], d1[7]}, [r0]
vst1.64 {d0}, [r2]
vst1.64 {d1}, [r4]
Ldone_di:
pop {r4-r9, pc}
vtbl_4x4_transpose_di:
.byte 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15

72
source/rotate_priv.h Normal file
View File

@ -0,0 +1,72 @@
/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef SOURCE_ROTATE_PRIV_H_
#define SOURCE_ROTATE_PRIV_H_
#include "libyuv/basic_types.h"
namespace libyuv {
// Rotate planes by 90, 180, 270
void
RotatePlane90(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height);
void
RotatePlane180(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height);
void
RotatePlane270(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height);
void
RotateUV90(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height);
// Rotations for when U and V are interleaved.
// These functions take one input pointer and
// split the data into two buffers while
// rotating them.
void
RotateUV180(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height);
void
RotateUV270(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height);
// The 90 and 270 functions are based on transposes.
// Doing a transpose with reversing the read/write
// order will result in a rotation by +- 90 degrees.
void
TransposePlane(const uint8* src, int src_stride,
uint8* dst, int dst_stride,
int width, int height);
void
TransposeUV(const uint8* src, int src_stride,
uint8* dst_a, int dst_stride_a,
uint8* dst_b, int dst_stride_b,
int width, int height);
} // namespace libyuv
#endif // SOURCE_ROTATE_PRIV_H_

File diff suppressed because it is too large Load Diff

View File

@ -11,7 +11,6 @@
#ifndef UINIT_TEST_H_
#define UINIT_TEST_H_
#include "basic_types.h"
#include <gtest/gtest.h>
class libyuvTest : public ::testing::Test {
@ -20,8 +19,8 @@ class libyuvTest : public ::testing::Test {
virtual void SetUp();
virtual void TearDown();
const uint32 _rotate_max_w;
const uint32 _rotate_max_h;
const int _rotate_max_w;
const int _rotate_max_h;
};