Add libyuv:Android420ToI420 function which takes 3 pointers

to Y,U,V and a pixel stride for U and V.  The pixel stride is expected to be 1 or 2.

TEST=LibYUVConvertTest.Android420ToI420_Opt
BUG=libyuv:604
R=braveyao@chromium.org

Review URL: https://codereview.chromium.org/2114843002 .
This commit is contained in:
Frank Barchard 2016-07-12 16:23:51 -07:00
parent 4d9146bbb1
commit 84e04699c2
4 changed files with 302 additions and 5 deletions

View File

@ -118,6 +118,17 @@ int M420ToI420(const uint8* src_m420, int src_stride_m420,
uint8* dst_v, int dst_stride_v,
int width, int height);
// Convert Android420 to I420.
LIBYUV_API
int Android420ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
int pixel_stride_uv,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height);
// ARGB little endian (bgra in memory) to I420.
LIBYUV_API
int ARGBToI420(const uint8* src_frame, int src_stride_frame,

View File

@ -226,6 +226,75 @@ static void CopyPlane2(const uint8* src, int src_stride_0, int src_stride_1,
}
}
// Support function for NV12 etc UV channels.
// Width and height are plane sizes (typically half pixel width)
static void SplitPlane(const uint8* src_uv, int src_stride_uv,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
int y;
void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v,
int width) = SplitUVRow_C;
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_u = dst_u + (height - 1) * dst_stride_u;
dst_v = dst_v + (height - 1) * dst_stride_v;
dst_stride_u = -dst_stride_u;
dst_stride_v = -dst_stride_v;
}
// Coalesce rows.
if (src_stride_uv == width * 2 &&
dst_stride_u == width &&
dst_stride_v == width) {
width *= height;
height = 1;
src_stride_uv = dst_stride_u = dst_stride_v = 0;
}
#if defined(HAS_SPLITUVROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
SplitUVRow = SplitUVRow_Any_SSE2;
if (IS_ALIGNED(width, 16)) {
SplitUVRow = SplitUVRow_SSE2;
}
}
#endif
#if defined(HAS_SPLITUVROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
SplitUVRow = SplitUVRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
SplitUVRow = SplitUVRow_AVX2;
}
}
#endif
#if defined(HAS_SPLITUVROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SplitUVRow = SplitUVRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
SplitUVRow = SplitUVRow_NEON;
}
}
#endif
#if defined(HAS_SPLITUVROW_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2) &&
IS_ALIGNED(dst_u, 4) && IS_ALIGNED(dst_stride_u, 4) &&
IS_ALIGNED(dst_v, 4) && IS_ALIGNED(dst_stride_v, 4)) {
SplitUVRow = SplitUVRow_Any_DSPR2;
if (IS_ALIGNED(width, 16)) {
SplitUVRow = SplitUVRow_DSPR2;
}
}
#endif
for (y = 0; y < height; ++y) {
// Copy a row of UV.
SplitUVRow(src_uv, dst_u, dst_v, width);
dst_u += dst_stride_u;
dst_v += dst_stride_v;
src_uv += src_stride_uv;
}
}
// Support converting from FOURCC_M420
// Useful for bandwidth constrained transports like USB 1.0 and 2.0 and for
// easy conversion to I420.
@ -1383,6 +1452,81 @@ int ARGB4444ToI420(const uint8* src_argb4444, int src_stride_argb4444,
return 0;
}
static void SplitPixels(const uint8* src_u, int src_pixel_stride_uv,
uint8* dst_u, int width) {
int i;
for (i = 0; i < width; ++i) {
*dst_u = *src_u;
++dst_u;
src_u += src_pixel_stride_uv;
}
}
// Convert Android420 to I420.
LIBYUV_API
int Android420ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
int src_pixel_stride_uv,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
int y;
const int vu_off = src_v - src_u;
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (halfheight - 1) * src_stride_u;
src_v = src_v + (halfheight - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
if (dst_y) {
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
}
// Copy UV planes as is - I420
if (src_pixel_stride_uv == 1) {
CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight);
CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight);
return 0;
// Split UV planes - NV21
} else if (src_pixel_stride_uv == 2 && vu_off == -1 &&
src_stride_u == src_stride_v) {
SplitPlane(src_v, src_stride_v, dst_v, dst_stride_v, dst_u, dst_stride_u,
halfwidth, halfheight);
return 0;
// Split UV planes - NV12
} else if (src_pixel_stride_uv == 2 && vu_off == 1 &&
src_stride_u == src_stride_v) {
SplitPlane(src_u, src_stride_u, dst_u, dst_stride_u, dst_v, dst_stride_v,
halfwidth, halfheight);
return 0;
}
for (y = 0; y < halfheight; ++y) {
SplitPixels(src_u, src_pixel_stride_uv, dst_u, halfwidth);
SplitPixels(src_v, src_pixel_stride_uv, dst_v, halfwidth);
src_u += src_stride_u;
src_v += src_stride_v;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
return 0;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv

View File

@ -988,7 +988,7 @@ void J400ToARGBRow_C(const uint8* src_y, uint8* dst_argb, int width) {
#define BG (UG * 128 + VG * 128 + YGB)
#define BR (VR * 128 + YGB)
#if defined(__aarch64__)
#if defined(__aarch64__) // 64 bit arm
const YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
{ -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR },
{ -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR },
@ -1005,7 +1005,7 @@ const YuvConstants SIMD_ALIGNED(kYvuI601Constants) = {
{ BR, BG, BB, 0, 0, 0, 0, 0 },
{ 0x0101 * YG, 0, 0, 0 }
};
#elif defined(__arm__)
#elif defined(__arm__) // 32 bit arm
const YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
{ -UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0 },
{ UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0 },
@ -1264,9 +1264,9 @@ static __inline void YuvPixel(uint8 y, uint8 u, uint8 v,
#endif
uint32 y1 = (uint32)(y * 0x0101 * yg) >> 16;
*b = Clamp((int32)(-(u * ub ) + y1 + bb) >> 6);
*b = Clamp((int32)(-(u * ub) + y1 + bb) >> 6);
*g = Clamp((int32)(-(u * ug + v * vg) + y1 + bg) >> 6);
*r = Clamp((int32)(-( v * vr) + y1 + br) >> 6);
*r = Clamp((int32) (-(v * vr) + y1 + br) >> 6);
}
// Y contribution to R,G,B. Scale and bias.
@ -2167,7 +2167,7 @@ static void HalfRow_16_C(const uint16* src_uv, ptrdiff_t src_uv_stride,
void InterpolateRow_C(uint8* dst_ptr, const uint8* src_ptr,
ptrdiff_t src_stride,
int width, int source_y_fraction) {
int y1_fraction = source_y_fraction ;
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
const uint8* src_ptr1 = src_ptr + src_stride;
int x;

View File

@ -174,6 +174,148 @@ TESTPLANARTOP(I420, 2, 2, I420Mirror, 2, 2)
TESTPLANARTOP(I422, 2, 1, I422, 2, 1)
TESTPLANARTOP(I444, 1, 1, I444, 1, 1)
// Test Android 420 to I420
#define TESTAPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
align_buffer_page_end(src_y, kWidth * kHeight + OFF); \
align_buffer_page_end(src_u, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \
SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \
align_buffer_page_end(src_v, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \
SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \
align_buffer_page_end(dst_y_c, kWidth * kHeight); \
align_buffer_page_end(dst_u_c, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_page_end(dst_v_c, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_page_end(dst_y_opt, kWidth * kHeight); \
align_buffer_page_end(dst_u_opt, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_page_end(dst_v_opt, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[i * kWidth + j + OFF] = (fastrand() & 0xff); \
for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \
for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \
src_u[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \
(fastrand() & 0xff); \
src_v[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \
(fastrand() & 0xff); \
} \
} \
memset(dst_y_c, 1, kWidth * kHeight); \
memset(dst_u_c, 2, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_v_c, 3, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_y_opt, 101, kWidth * kHeight); \
memset(dst_u_opt, 102, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_v_opt, 103, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
MaskCpuFlags(disable_cpu_flags_); \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \
src_u + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
src_v + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
1, \
dst_y_c, kWidth, \
dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), \
dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X), \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \
src_u + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
src_v + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
1, \
dst_y_opt, kWidth, \
dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \
dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \
static_cast<int>(dst_y_opt[i * kWidth + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_EQ(0, max_diff); \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_u_c[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \
static_cast<int>(dst_u_opt[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 3); \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_v_c[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \
static_cast<int>(dst_v_opt[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 3); \
free_aligned_buffer_page_end(dst_y_c); \
free_aligned_buffer_page_end(dst_u_c); \
free_aligned_buffer_page_end(dst_v_c); \
free_aligned_buffer_page_end(dst_y_opt); \
free_aligned_buffer_page_end(dst_u_opt); \
free_aligned_buffer_page_end(dst_v_opt); \
free_aligned_buffer_page_end(src_y); \
free_aligned_buffer_page_end(src_u); \
free_aligned_buffer_page_end(src_v); \
}
#define TESTAPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
TESTAPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_ - 4, _Any, +, 0) \
TESTAPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Unaligned, +, 1) \
TESTAPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Invert, -, 0) \
TESTAPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Opt, +, 0)
TESTAPLANARTOP(Android420, 2, 2, I420, 2, 2)
#define TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \