I010, also known as YUV420P10, is 10 bit YUV pixel format with 3 planes.
Both I010 and NV12 are 4:2:0 subsampling. NV12 has a Y plane, and an
interleaved UV plane.
Bug: 357721018
Change-Id: If215529b9eda8e0fb32aed666ca179c90244aaff
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5764823
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
- P010 and NV12 have the same layout: Full size Y plane and half size UV plane.
P010 and NV12 are 4:2:0 subsampling
- P010 uses upper 10 bits of 16 bit elements
- NV12 uses 8 bit elements
- The Convert16To8 used internally will discard the low 2 bits.
- UV order is the same - U first in memory, followed by V, interleaved
- UV plane is be rounded up in size to allow odd size Y to have UV values
- Similar code could be used to convert P210ToNV16, P410ToNV24, with the size
of the UV plane affected by subsampling 4:2:2 and 4:4:4 variants.
Bug: b/357439226
Change-Id: I5d6ec84d97d0e0cc4008eeb18a929ea28570d6d9
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5761958
Reviewed-by: Wan-Teh Chang <wtc@google.com>
We can make use of the ZA tile register to do the transpose and
de-interleaving of UV components without any explicit permute
instructions: the tile is loaded horizontally placing UV components into
alternative columns, then we can just store the independent components
vertically.
Change-Id: I67bd82dc840a43888290be1c9db8a3c05f16d730
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5703588
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
We can make use of the ZA tile register to do the transpose without any
explicit permute instructions: just load the tile horizontally and store
it vertically.
Change-Id: I1c31e89af52a408e3491e62d6c9e6fee41b1b80a
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5703587
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
We cannot use the standard dot-product instructions since the
coefficients multiplication results are both added and subtracted, but
I8MM supports mixed-sign dot products which work well here. We need to
add an additional variant of the coefficient structs since we need
negative constants for the elements that were previously subtracted.
Reduction in runtimes observed compared to the previous Neon
implementation:
Cortex-A510: -37.3%
Cortex-A520: -31.1%
Cortex-A715: -37.1%
Cortex-A720: -37.0%
Cortex-X2: -62.1%
Cortex-X3: -62.2%
Cortex-X4: -40.4%
Bug: libyuv:977
Change-Id: Idc3d9a6408c30e1bce3816a1ed926ecd76792236
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5712928
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Reviewed-by: Justin Green <greenjustin@google.com>
This reverts commit f480fa1c4a4af0ce3c34cd7b1ab0d85f1a36ce17.
This code has a number of small issues:
* The YUVTORGB_SVE_SETUP macro requires p0 to be initialized to
all-true, however the existing kernel does not initialise p0 until
after this macro is called, so flip the order.
* The p2 register is missing from the clobber list, so add it.
* The existing code uses the wrong condition flags when determining
whether to do the tail iteration using WHILE instructions or not.
Additionally the number of tail iterations is incorrect, as it was
incorrectly not changed from when the tail code was always executed.
While we are here, make another few small improvements:
* Remove the single-quote digit separators as requested here:
https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5622133
* Remove "volatile" from the asm block counting the vector length. This
particular asm block cannot be removed by the compiler since the
output register is consumed by subsequent code, so "volatile" is
unnecessary here and we remove it.
* Add some additional empty comments to force clang-format to put macros
into the next line rather than on the same line as other asm.
Bug: b/352371649
Change-Id: I45676fab95343f588cf11ce2cf9186ffbe87489e
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5703586
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
There is no nice way of forming the TBL permute indices here since we
are operating on sets of three bytes at a time, so instead load the
appropriate indices from a static array. We can make use of SVE
predication to ensure we are operating on a multiple of three bytes for
the load/store instructions rather than needing to make use of more
expensive LD4 or ST3 instructions.
Reduction in runtime observed compared to the existing Neon
implementations:
| ARGBToRAWRow | ARGBToRGB24Row
Cortex-A510 | -50.8% | -19.9%
Cortex-A720 | -39.8% | -39.1%
Cortex-X2 | -66.5% | -51.9%
Bug: libyuv:973
Change-Id: Iaead678715a3d70d54cf823391272a6196836769
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5631544
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
This can make use of the existing helper functions for RAWToARGBRow_SVE2
and RAWToRGBARow_SVE2 since the layouts are similar, we just need to
adjust the TBL constants to match the different input layout.
Observed reduction in runtime compared to the existing Neon kernel:
Cortex-A510: -25.6%
Cortex-A720: -15.2%
Cortex-X2: -10.2%
Cortex-X4: -30.2%
Bug: libyuv:973
Change-Id: Ie3676693286be90d09f0045766c3492cbc04ea64
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5638555
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Reviewed-by: Justin Green <greenjustin@google.com>
There is no nice way of forming the TBL permute indices here since we
are operating on sets of three bytes at a time, so instead load the
appropriate indices from a static array. We can make use of SVE
predication to ensure we are operating on a multiple of three bytes for
the load/store instructions rather than needing to make use of more
expensive LD3 or ST3 instructions.
Reduction in runtime observed compared to the existing Neon
implementation:
Cortex-A510: -39.2%
Cortex-A720: -34.5%
Cortex-X2: -31.0%
Bug: libyuv:973
Change-Id: I68560bde7a529e5cec150b0e9d3ffe4341038fb8
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5631543
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
We can construct particular predicates to load only up to 3/4 of a full
vector, allowing us to use TBL to shuffle elements into the correct
place rather than needing to rely on more expensive LD3 or ST4
instructions.
Reduction in runtimes observed compared to the existing Neon
implementation:
| RAWToARGBRow | RAWToRGBARow
Cortex-A510 | -32.4% | -31.9%
Cortex-A720 | -15.7% | -15.6%
Cortex-X2 | -24.6% | -24.4%
Bug: libyuv:973
Change-Id: I271c625d97bab3b0e08ac1e9d7fcf7d18f3d6894
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5631542
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Reviewed-by: Justin Green <greenjustin@google.com>
There are existing x86 implementations for these kernels, but not for
AArch64, so add them.
Reduction in runtimes, compared to the existing C code compiled with
LLVM 17:
| Cortex-A55 | Cortex-A510 | Cortex-A76
P210ToARGBRow | -59.8% | -16.8% | -53.2%
P210ToAR30Row | -48.1% | -21.8% | -54.0%
P410ToARGBRow | -56.5% | -32.2% | -54.1%
P410ToAR30Row | -42.4% | -4.5% | -50.4%
Co-authored-by: Cosmina Dunca <cosmina.dunca@arm.com>
Bug: libyuv:976
Change-Id: I24a5addd2c54c7fdfb9717e2a45ae5acd43d6e96
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5607764
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
A semicolon is treated as the start of a comment by some assemblers
causing the vector length to be reported incorrectly, so use a newline
instead.
- Add volatile asm in row_gcc and row_neon64
Bug: b/5631539
Change-Id: I6b0836fcdd9247ef7b9e8ceda01df3150519ecf8
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5666060
Reviewed-by: Justin Green <greenjustin@google.com>
There is an existing x86 implementation for this kernel, but not for
AArch64, so add one.
Reduction in runtimes, compared to the existing C code compiled with
LLVM 17:
Cortex-A55: -43.1%
Cortex-A510: -22.3%
Cortex-A76: -54.8%
Co-authored-by: Cosmina Dunca <cosmina.dunca@arm.com>
Bug: libyuv:976
Change-Id: Ifead36bcb8682a527136223e0dcd210e9abe744a
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5607763
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Reviewed-by: Justin Green <greenjustin@google.com>
There are existing x86 implementations for these kernels, but not for
AArch64, so add them.
Reduction in runtimes, compared to the existing C code compiled with
LLVM 17:
| I210ToAR30Row | I210ToARGBRow
Cortex-A55 | -40.8% | -54.4%
Cortex-A510 | -26.2% | -22.7%
Cortex-A76 | -49.2% | -44.5%
Co-authored-by: Cosmina Dunca <cosmina.dunca@arm.com>
Bug: libyuv:976
Change-Id: I967951a6b453ac0023a30d96b754c85c2a3bf14a
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5607762
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
- Some configs have int64 elements off by default.
Disable ScaleDownBy4 row function to avoid compile error
Bug: 344954354
Change-Id: Ie0d74daea72375eff6438ab54cb2803d68d67e52
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5598460
Reviewed-by: James Zern <jzern@google.com>
1. Add two defined marco LIBYUV_RVV_HAS_TUPLE_TYPE & LIBYUV_RVV_HAS_VXRM_ARG
Intrinsic v0.12 introduces
- tuple type in segment load & store
- vxrm argument in fixed-point intrinsics (e.g vnclip)
These two marcos are controled by __riscv_v_intrinsic.
2. Support RVV v0.12 intrinsics in row_rvv.cc & scale_rvv.cc
Change-Id: I921f91d9dc8fdda031e7b6647d0e296aa2793c39
Signed-off-by: Bruce Lai <bruce.lai@sifive.com>
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/4767120
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
This is mostly similar to the existing NV{12,21}ToARGBRow_SVE2 kernels
except reading the YUV components all from the same interleaved input
array. We load four-byte elements and then use TBL to de-interleave the
UV components.
Unlike the NV{12,21} cases we need to de-interleave bytes rather than
widened 16-bit elements. Since we need a TBL instruction already it
would ordinarily be possible to perform the zero-extension from bytes to
16-bit elements by setting the index for every other byte to be out of
range. Such an approach does not work in SVE since at a vector length of
2048 bits since all possible byte values (0-255) are valid indices into
the vector. We instead get around this by rewriting the I4XXTORGB_SVE
macro to perform widening multiplies, operating on the low byte of each
16-bit UV element instead of the full value and therefore eliminating
the need for a zero-extension.
Observed reductions in runtimes compared to the existing Neon code:
| UYVYToARGBRow | YUY2ToARGBRow
Cortex-A510 | -30.2% | -30.2%
Cortex-A720 | -4.8% | -4.7%
Cortex-X2 | -9.6% | -10.1%
Bug: libyuv:973
Change-Id: I841a049aba020d0517563d24d2f14f4d1221ebc6
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5622132
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
This is mostly a copy of the I422ToARGBRow_SVE2 implementation, but we
can pre-calculate the UV component results before the loop body.
Unlike in the Neon version of the code we can make use of MOVPRFX and
USQADD to avoid needing to apply the bias separately from the UV
coefficient multiply additions.
Reduction in runtime observed compared to the existing Neon code:
Cortex-A510: -26.1%
Cortex-A520: -5.9%
Cortex-A715: -49.5%
Cortex-A720: -49.4%
Cortex-X2: -22.5%
Cortex-X3: -23.5%
Cortex-X4: -21.6%
Bug: libyuv:973
Change-Id: Ib9fc52bd53a1c6a1aac8bd865ab88539aca098ea
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5598767
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
We need a permute to duplicate the UV components, so we can share a
common implementation for both NV12 and NV21 by varying the inputs to
the INDEX instruction that generates the TBL indices.
Observed reductions in runtimes compared to the existing Neon code:
| NV12ToARGBRow_SVE2 | NV21ToARGBRow_SVE2
Cortex-A510 | -29.1% | -29.1%
Cortex-A720 | -4.8% | -4.8%
Cortex-X2 | -9.2% | -9.2%
Bug: libyuv:973
Change-Id: I40e20f0438cf7bad05a5ecc4db83b4a6168da958
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5598766
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
We cannot use the standard dot-product instructions since the matrix of
coefficients are signed, but I8MM supports mixed-sign products which
work well here.
Reduction in runtimes observed compared to the previous Neon
implementation:
Cortex-A510: -50.8%
Cortex-A520: -33.3%
Cortex-A715: -38.6%
Cortex-A720: -38.5%
Cortex-X2: -43.2%
Cortex-X3: -40.0%
Cortex-X4: -55.0%
Change-Id: Ia4fe486faf8f43d0b837ad21bb37e2159f3bdb77
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5621577
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
This commit just adds the kCpuHasSME to represent that the CPU has the
Arm Scalable Matrix Extension enabled, but this commit does not
introduce any code to actually use it yet.
Add a test to check that the HWCAP value is interpreted correctly.
Change-Id: I2de7bca26ca44ff3ee278b59108298a299a171b7
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5598869
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
This is almost identical to the existing I422ToARGBRow_SVE2 kernel, we
just need to interleave differently for the output.
The RGBA format actually saves us an instruction compared to ARGB since
there is no need to merge in the alpha component, we can just replace
the odd elements of the alpha vector itself during the narrowing.
Also rename some existing macros to make more sense when distinguishing
between ARGB and RGBA.
Reductions in runtime observed compared to the existing Neon code:
Cortex-A510: -27.0%
Cortex-A720: -5.3%
Cortex-X2: -14.7%
Bug: libyuv:973
Change-Id: I1e12ff608ee49c25b918097007e16d87b39cb067
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5593797
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
These kernels are mostly identical to each other except for the order of
the results, so we can use a single macro to parameterize the pairwise
addition and use the same macro for both implementations, just with the
register order flipped.
Similar to other 2x2 kernels the implementation here differs slightly
for the last element if the problem size is odd, so use an "any" kernel
to avoid needing to handle this in the common code path.
Observed reduction in runtime compared to the existing Neon code:
| AYUVToUVRow | AYUVToVURow
Cortex-A510 | -33.1% | -33.0%
Cortex-A720 | -25.1% | -25.1%
Cortex-X2 | -59.5% | -53.9%
Cortex-X4 | -39.2% | -39.4%
Bug: libyuv:973
Change-Id: I957db9ea31c8830535c243175790db0ff2a3ccae
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5522316
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
Avoiding LD4 and unrolling gives a good perf improvement for the little
core especially.
Observed reduction in runtime relative to the existing Neon code:
Cortex-A510: -69.7%
Cortex-A720: -7.7%
Cortex-X2: -41.9%
Cortex-X4: -14.5%
Bug: libyuv:973
Change-Id: I4b3292fa23a6e866d761dfca035538cb09eba9bc
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5522315
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Reviewed-by: Justin Green <greenjustin@google.com>
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
There are existing x86 implementations for these kernels, but not for
AArch64, so add them.
Reduction in runtimes, compared to the existing C code compiled with
LLVM 17:
I210ToAR30Row on Cortex-A55: -43.8%
I210ToAR30Row on Cortex-A510: -27.0%
I210ToAR30Row on Cortex-A76: -50.4%
I410ToAR30Row on Cortex-A55: -44.3%
I410ToAR30Row on Cortex-A510: -17.5%
I410ToAR30Row on Cortex-A76: -57.2%
Co-authored-by: Cosmina Dunca <cosmina.dunca@arm.com>
Bug: libyuv:976
Change-Id: Ib5fb9b2ce6ef06ec76ecd8473be5fe76d2622fbc
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5593931
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
There is are existing x86 implementations for these kernels, but not for
AArch64, so add them.
Reduction in runtimes, compared to the existing C code compiled with
LLVM 17:
| I210ToARGBRow | I410ToARGBRow
Cortex-A55 | -55.6% | -56.2%
Cortex-A510 | -22.6% | -35.6%
Cortex-A76 | -48.1% | -57.2%
Co-authored-by: Cosmina Dunca <cosmina.dunca@arm.com>
Bug: libyuv:976
Change-Id: I2ccae1388760a129c73d2e550b32bb0b5af235d6
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5465594
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
There are existing x86 implementations for these kernels, but not for
AArch64, so add them.
Reduction in runtimes, compared to the existing C code compiled with
LLVM 17:
| I210AlphaToARGBRow | I410AlphaToARGBRow
Cortex-A55 | -55.3% | -56.1%
Cortex-A510 | -27.9% | -42.6%
Cortex-A76 | -54.9% | -60.3%
Co-authored-by: Cosmina Dunca <cosmina.dunca@arm.com>
Bug: libyuv:976
Change-Id: Ieb7ad945abda72babd0cfe1020738d31e3562705
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5465593
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
The existing Neon code only makes use of 64-bit vectors throughout which
limits the performance on larger cores. To avoid this, swap the Neon
code from a Wx8 implementation to a Wx16 implementation and process
blocks of 16 full vectors at a time.
The original code also handled widths that were not exact multiples of
16, however this should already be handled by the "any" kernel so it is
removed.
Finally, avoid duplicating the TransposeWx16_C fallback kernel
definition in all architectures that need it, and just put it once in
rotate_common.cc instead.
Observed speedups for TransposePlane across a range of
micro-architectures:
Cortex-A53: -40.0%
Cortex-A55: -20.7%
Cortex-A57: -43.9%
Cortex-A510: -43.5%
Cortex-A520: -43.9%
Cortex-A720: -31.1%
Cortex-X2: -38.3%
Cortex-X4: -43.6%
Change-Id: Ic7c4d5f24eb27091d743ddc00cd95ef178b6984e
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5545459
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
There are existing x86 implementations for these kernels but not for
AArch64, so add them.
Reduction in runtimes, compared to the existing C code compiled with
LLVM 17:
| ABGRToAR30Row | ARGBToAR30Row
Cortex-A55 | -55.1% | -55.1%
Cortex-A510 | -39.3% | -40.1%
Cortex-A76 | -62.3% | -63.6%
Co-authored-by: Cosmina Dunca <cosmina.dunca@arm.com>
Bug: libyuv:976
Change-Id: I307f03bddcbe5429c2d3ab2f42aa023a3539ddd0
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5465592
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Using the platform-specific functions IsProcessorFeaturePresent and
sysctlbyname to check individual features.
Bug: libyuv:980
Change-Id: I7971238ca72e5df862c30c2e65331c46dc634074
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5465591
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
By maintaining the interleaved format of the data we can use a common
kernel for all input channel orderings and simply pass a different
vector of constants instead.
A similar approach is possible with only Neon by making use of
multiplies and repeated application of ADDP to combine channels, however
this is slower on older cores like Cortex-A53 so is not pursued further.
For odd problem sizes we need a slightly different implementation for
the final element, so introduce an "any" kernel to address that rather
than bloating the code for the common case.
Observed affect on runtimes compared to the existing Neon kernels:
| Cortex-A510 | Cortex-A720 | Cortex-X2
ABGRToUVJRow | -15.5% | +5.4% | -33.1%
ABGRToUVRow | -15.6% | +5.3% | -35.9%
ARGBToUVJRow | -10.1% | +5.4% | -32.7%
ARGBToUVRow | -10.1% | +5.4% | -29.3%
BGRAToUVRow | -15.5% | +4.6% | -32.8%
RGBAToUVRow | -10.1% | +4.2% | -36.0%
Bug: libyuv:973
Change-Id: I041ca44db0ae8a2adffcdf24e822eebe962baf33
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5505537
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
This is mostly identical to the existing I422ToARGBRow_SVE
implementation, we just need to make sure to load the alpha component
rather than hard-coding it to 255.
Reduction in runtimes observed compared to the existing Neon code:
Cortex-A510: -32.1%
Cortex-A720: -5.1%
Cortex-X2: -10.1%
Bug: libyuv:973
Change-Id: I6f800f3ef59f1dc82b409233017b3cb108da0257
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5444426
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
This is mostly identical to the existing I444ToARGBRow_SVE
implementation, we just need to make sure to load the alpha component
rather than hard-coding it to 255.
Reduction in runtimes observed compared to the existing Neon code:
Cortex-A510: -34.2%
Cortex-A720: -17.6%
Cortex-X2: -9.6%
Bug: libyuv:973
Change-Id: Ief63965f6f1048ea24baf8f4037aabdd184e2925
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5444425
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
We need a new macro for reading I422 data, but is otherwise mostly
identical to the existing I444ToARGBRow_SVE implementation.
Reduction in runtimes observed compared to the existing Neon code:
Cortex-A510: -25.0%
Cortex-A720: -5.0%
Cortex-X2: -10.8%
Change-Id: I27ddb604a46a53e61c9bde21f76dbc7bd91e0cef
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5444424
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
We can use the Neon dot-product instructions as a slightly faster
widening accumulation. This also has the advantage of widening to 32
bits so avoids the risk of overflow present in the original Neon code.
Reduction in runtimes observed for HammingDistance compared to the
existing Neon code:
Cortex-A55: -4.4%
Cortex-A510: -26.5%
Cortex-A76: -8.1%
Cortex-A720: -15.5%
Cortex-X1: -4.1%
Cortex-X2: -5.1%
Bug: libyuv:977
Change-Id: I9e5e10d228c339d905cb2e668a9811ff0a6af5de
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5490049
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
This re-lands commit ba0bba5b2b7e38c9365a5d152b4efa0458863213.
Now with additional #ifdef __linux__ guards to avoid compiling
Linux-specific code on non-Linux platforms. Non-linux feature detection
will be added in a separate patch.
Using getauxval(AT_HWCAP{,2}) has the advantage of also working under
emulation where faking /proc/cpuinfo is not supported.
For the Chromium sandbox, getauxval is supported since API version 18.
The minimum supported API version at time of writing is 21 so we should
be able to use getauxval unconditionally. On the off-chance the call
fails it will return 0 and we will correctly fall-back to using only
Neon.
If we want to read the current CPU implementer or part number we could
do this by checking HWCAP_CPUID and then reading MIDR_EL1. This will
cause a kernel trap to emulate the EL1 read but should still be a lot
faster than reading the whole of /proc/cpuinfo.
Bug: libyuv:980
Change-Id: I8ae103ea7e32ef44db72f3c9896417bfe97ff5c5
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5465590
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
The Neon dot-product instructions perform two widening steps rather than
one, saving us the need to widen the absolute difference to 16-bits
before accumulating. Additionally, the dot-product instructions tend to
have better performance characteristics than traditional widening
multiply instructions like SMLAL used in the existing
SumSquareError_NEON code.
Observed reduction in runtimes compared to the existing Neon kernel:
Cortex-A55: -9.1%
Cortex-A510: -36.7%
Cortex-A76: -37.6%
Cortex-A720: -48.8%
Cortex-X1: -56.1%
Cortex-X2: -42.6%
Bug: libyuv:977
Change-Id: Ie20c69040cc47a803d8e95620d31e0bf1e1dac12
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5463945
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
This reverts commit ba0bba5b2b7e38c9365a5d152b4efa0458863213.
Reason for revert: breaks builds on windows and mac
Step _compile_ failed. Error logs are shown below:
[1/104] CXX obj/libyuv_internal/cpu_id.o
FAILED: obj/libyuv_internal/cpu_id.o
../../buildtools/reclient/rewrapper -cfg=../../buildtools/reclient_cfgs/chromium-browser-clang/rewra...(too long)
../../source/cpu_id.cc:25:10: fatal error: 'sys/auxv.h' file not found
25 | #include // For getauxval()
| ^~~~~~~~~~~~
1 error generated.
More information in raw_io.output_text[failure_summary]
Original change's description:
> [AArch64] Use getauxval(AT_HWCAP{,2}) for feature detection
>
> This has the advantage of also working under emulation where
> faking /proc/cpuinfo is not supported.
>
> For the Chromium sandbox, getauxval is supported since API version 18.
> The minimum supported API version at time of writing is 21 so we should
> be able to use getauxval unconditionally. On the off-chance the call
> fails it will return 0 and we will correctly fall-back to using only
> Neon.
>
> Change-Id: Ibbaa9caec1915ac0725c42d6cd2abc7ce19786c7
> Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5453620
> Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Change-Id: Ic0f764217af7b4d998f19a8f78fc04ca85a45a3b
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5463918
Bot-Commit: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
This has the advantage of also working under emulation where
faking /proc/cpuinfo is not supported.
For the Chromium sandbox, getauxval is supported since API version 18.
The minimum supported API version at time of writing is 21 so we should
be able to use getauxval unconditionally. On the off-chance the call
fails it will return 0 and we will correctly fall-back to using only
Neon.
Change-Id: Ibbaa9caec1915ac0725c42d6cd2abc7ce19786c7
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5453620
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Don't define HAS_*_NEON_DOTPROD for 32-bit Arm platforms, since they are
only defined in *_neon64.cc for now.
Also define -DLIBYUV_NEON=1 and pass -mfpu=neon to *_neon.cc for 32-bit
Arm platforms, since otherwise __ARM_NEON__ is not defined.
Also fix a typo: ly_lib_static should be ly_lib_name in the name of the
common object files. The existing code happens to work since they are
defined to the same thing.
Change-Id: Ibdc9e5d0391f7ff8db1ca83384e5bd45ac9950a2
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5439562
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
Being able to use SVE2 functionality for these kernels has a number of
performance wins compared to the existing Neon code:
* For the Y component calculation we are able to use UMULH, versus the
existing UMULL x2 + UZP2 sequence in Neon.
* For the RGBTORGBA8 calculation we are able to take advantage of
interleaving narrowing instructions, allowing us to use ST2 rather
than ST4 for the store. This is a big performance win on some
micro-architectures where ST4 is costly.
* The use of predication means we do not need to add "any" kernels, we
can simply rerun the calculation with a not-full predicate for the
final iteration.
To avoid the overhead of generating a predicate register on every
iteration we duplicate the loop body and only generate a predicate on
the final iteration of the loop. This costs a small amount on the final
iteration but should still be significantly quicker than the overhead of
a function call needed by the "any" cases. Duplicating the loop body to
reduce the use of the WHILELT instruction improves little core
performance by ~12% by itself but has negligable impact on other
micro-architectures.
Reduction in runtime for the new SVE2 implementation compared to the
existing Neon implementation on selected micro-architectures:
Cortex-A510: -36.5%
Cortex-A720: -17.3%
Cortex-X2: -11.3%
Bug: libyuv:973
Change-Id: I2a485f0dfa077a56f96b80a667ad38bbea47b4b4
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5424739
Reviewed-by: Frank Barchard <fbarchard@chromium.org>