/* * Copyright 2024 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/row.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif #if !defined(LIBYUV_DISABLE_SVE) && defined(__aarch64__) #define READYUV444_SVE \ "ld1b {z0.h}, p1/z, [%[src_y]] \n" \ "ld1b {z1.h}, p1/z, [%[src_u]] \n" \ "ld1b {z2.h}, p1/z, [%[src_v]] \n" \ "add %[src_y], %[src_y], %[vl] \n" \ "add %[src_u], %[src_u], %[vl] \n" \ "add %[src_v], %[src_v], %[vl] \n" \ "prfm pldl1keep, [%[src_y], 448] \n" \ "prfm pldl1keep, [%[src_u], 448] \n" \ "trn1 z0.b, z0.b, z0.b \n" \ "prfm pldl1keep, [%[src_v], 448] \n" #define READYUV422_SVE \ "ld1b {z0.h}, p1/z, [%[src_y]] \n" \ "ld1b {z1.s}, p1/z, [%[src_u]] \n" \ "ld1b {z2.s}, p1/z, [%[src_v]] \n" \ "inch %[src_y] \n" \ "incw %[src_u] \n" \ "incw %[src_v] \n" \ "prfm pldl1keep, [%[src_y], 448] \n" \ "prfm pldl1keep, [%[src_u], 128] \n" \ "prfm pldl1keep, [%[src_v], 128] \n" \ "trn1 z0.b, z0.b, z0.b \n" \ "trn1 z1.h, z1.h, z1.h \n" \ "trn1 z2.h, z2.h, z2.h \n" // Read twice as much data from YUV, putting the even elements from the Y data // in z0.h and odd elements in z1.h. U/V data is not duplicated, stored in // z2.h/z3.h. #define READYUV422_SVE_2X \ "ld1b {z0.b}, p1/z, [%[src_y]] \n" \ "ld1b {z2.h}, p1/z, [%[src_u]] \n" \ "ld1b {z3.h}, p1/z, [%[src_v]] \n" \ "incb %[src_y] \n" \ "inch %[src_u] \n" \ "inch %[src_v] \n" \ "prfm pldl1keep, [%[src_y], 448] \n" \ "prfm pldl1keep, [%[src_u], 128] \n" \ "prfm pldl1keep, [%[src_v], 128] \n" \ "trn2 z1.b, z0.b, z0.b \n" \ "trn1 z0.b, z0.b, z0.b \n" #define READYUV400_SVE \ "ld1b {z0.h}, p1/z, [%[src_y]] \n" \ "inch %[src_y] \n" \ "prfm pldl1keep, [%[src_y], 448] \n" \ "trn1 z0.b, z0.b, z0.b \n" // We need a different predicate for the UV component to handle the tail. // If there is a single element remaining then we want to load one Y element // but two UV elements. #define READNV_SVE \ "ld1b {z0.h}, p1/z, [%[src_y]] \n" /* Y0Y0 */ \ "ld1b {z1.h}, p2/z, [%[src_uv]] \n" /* U0V0 or V0U0 */ \ "inch %[src_y] \n" \ "inch %[src_uv] \n" \ "prfm pldl1keep, [%[src_y], 448] \n" \ "prfm pldl1keep, [%[src_uv], 256] \n" \ "trn1 z0.b, z0.b, z0.b \n" /* YYYY */ \ "tbl z1.b, {z1.b}, z22.b \n" /* UVUV */ #define READYUY2_SVE \ "ld1w {z0.s}, p2/z, [%[src_yuy2]] \n" /* YUYV */ \ "incb %[src_yuy2] \n" \ "prfm pldl1keep, [%[src_yuy2], 448] \n" \ "tbl z1.b, {z0.b}, z22.b \n" /* UVUV */ \ "trn1 z0.b, z0.b, z0.b \n" /* YYYY */ #define READUYVY_SVE \ "ld1w {z0.s}, p2/z, [%[src_uyvy]] \n" /* UYVY */ \ "incb %[src_uyvy] \n" \ "prfm pldl1keep, [%[src_uyvy], 448] \n" \ "tbl z1.b, {z0.b}, z22.b \n" /* UVUV */ \ "trn2 z0.b, z0.b, z0.b \n" /* YYYY */ #define YUVTORGB_SVE_SETUP \ "ld1rb {z28.b}, p0/z, [%[kUVCoeff], #0] \n" \ "ld1rb {z29.b}, p0/z, [%[kUVCoeff], #1] \n" \ "ld1rb {z30.b}, p0/z, [%[kUVCoeff], #2] \n" \ "ld1rb {z31.b}, p0/z, [%[kUVCoeff], #3] \n" \ "ld1rh {z24.h}, p0/z, [%[kRGBCoeffBias], #0] \n" \ "ld1rh {z25.h}, p0/z, [%[kRGBCoeffBias], #2] \n" \ "ld1rh {z26.h}, p0/z, [%[kRGBCoeffBias], #4] \n" \ "ld1rh {z27.h}, p0/z, [%[kRGBCoeffBias], #6] \n" // Like I4XXTORGB_SVE but U/V components are stored in even/odd .b lanes of z1 // rather than widened .h elements of z1/z2. #define NVTORGB_SVE \ "umulh z0.h, z24.h, z0.h \n" /* Y */ \ "umullb z6.h, z30.b, z1.b \n" \ "umullb z4.h, z28.b, z1.b \n" /* DB */ \ "umullt z5.h, z29.b, z1.b \n" /* DR */ \ "umlalt z6.h, z31.b, z1.b \n" /* DG */ \ "add z17.h, z0.h, z26.h \n" /* G */ \ "add z16.h, z0.h, z4.h \n" /* B */ \ "add z18.h, z0.h, z5.h \n" /* R */ \ "uqsub z17.h, z17.h, z6.h \n" /* G */ \ "uqsub z16.h, z16.h, z25.h \n" /* B */ \ "uqsub z18.h, z18.h, z27.h \n" /* R */ // Like NVTORGB_SVE but U/V components are stored in widened .h elements of // z1/z2 rather than even/odd .b lanes of z1. #define I4XXTORGB_SVE \ "umulh z0.h, z24.h, z0.h \n" /* Y */ \ "umullb z6.h, z30.b, z1.b \n" \ "umullb z4.h, z28.b, z1.b \n" /* DB */ \ "umullb z5.h, z29.b, z2.b \n" /* DR */ \ "umlalb z6.h, z31.b, z2.b \n" /* DG */ \ "add z17.h, z0.h, z26.h \n" /* G */ \ "add z16.h, z0.h, z4.h \n" /* B */ \ "add z18.h, z0.h, z5.h \n" /* R */ \ "uqsub z17.h, z17.h, z6.h \n" /* G */ \ "uqsub z16.h, z16.h, z25.h \n" /* B */ \ "uqsub z18.h, z18.h, z27.h \n" /* R */ // The U/V component multiplies do not need to be duplicated in I422, we just // need to combine them with Y0/Y1 correctly. #define I422TORGB_SVE_2X \ "umulh z0.h, z24.h, z0.h \n" /* Y0 */ \ "umulh z1.h, z24.h, z1.h \n" /* Y1 */ \ "umullb z6.h, z30.b, z2.b \n" \ "umullb z4.h, z28.b, z2.b \n" /* DB */ \ "umullb z5.h, z29.b, z3.b \n" /* DR */ \ "umlalb z6.h, z31.b, z3.b \n" /* DG */ \ \ "add z17.h, z0.h, z26.h \n" /* G0 */ \ "add z21.h, z1.h, z26.h \n" /* G1 */ \ "add z16.h, z0.h, z4.h \n" /* B0 */ \ "add z20.h, z1.h, z4.h \n" /* B1 */ \ "add z18.h, z0.h, z5.h \n" /* R0 */ \ "add z22.h, z1.h, z5.h \n" /* R1 */ \ "uqsub z17.h, z17.h, z6.h \n" /* G0 */ \ "uqsub z21.h, z21.h, z6.h \n" /* G1 */ \ "uqsub z16.h, z16.h, z25.h \n" /* B0 */ \ "uqsub z20.h, z20.h, z25.h \n" /* B1 */ \ "uqsub z18.h, z18.h, z27.h \n" /* R0 */ \ "uqsub z22.h, z22.h, z27.h \n" /* R1 */ #define I400TORGB_SVE \ "umulh z18.h, z24.h, z0.h \n" /* Y */ \ "movprfx z16, z18 \n" \ "usqadd z16.h, p0/m, z16.h, z4.h \n" /* B */ \ "movprfx z17, z18 \n" \ "usqadd z17.h, p0/m, z17.h, z6.h \n" /* G */ \ "usqadd z18.h, p0/m, z18.h, z5.h \n" /* R */ // Convert from 2.14 fixed point RGB to 8 bit ARGB, interleaving as BG and RA // pairs to allow us to use ST2 for storing rather than ST4. #define RGBTOARGB8_SVE \ /* Inputs: B: z16.h, G: z17.h, R: z18.h, A: z19.b */ \ "uqshrnb z16.b, z16.h, #6 \n" /* B0 */ \ "uqshrnb z18.b, z18.h, #6 \n" /* R0 */ \ "uqshrnt z16.b, z17.h, #6 \n" /* BG */ \ "trn1 z17.b, z18.b, z19.b \n" /* RA */ #define RGBTOARGB8_SVE_2X \ /* Inputs: B: z16.h, G: z17.h, R: z18.h, A: z19.b */ \ "uqshrnb z16.b, z16.h, #6 \n" /* B0 */ \ "uqshrnb z17.b, z17.h, #6 \n" /* G0 */ \ "uqshrnb z18.b, z18.h, #6 \n" /* R0 */ \ "uqshrnt z16.b, z20.h, #6 \n" /* B1 */ \ "uqshrnt z17.b, z21.h, #6 \n" /* G1 */ \ "uqshrnt z18.b, z22.h, #6 \n" /* R1 */ // Convert from 2.14 fixed point RGB to 8 bit RGBA, interleaving as AB and GR // pairs to allow us to use ST2 for storing rather than ST4. #define RGBTORGBA8_SVE \ /* Inputs: B: z16.h, G: z17.h, R: z18.h, A: z19.b */ \ "uqshrnt z19.b, z16.h, #6 \n" /* AB */ \ "uqshrnb z20.b, z17.h, #6 \n" /* G0 */ \ "uqshrnt z20.b, z18.h, #6 \n" /* GR */ #define YUVTORGB_SVE_REGS \ "z0", "z1", "z2", "z3", "z4", "z5", "z6", "z7", "z16", "z17", "z18", "z19", \ "z20", "z22", "z23", "z24", "z25", "z26", "z27", "z28", "z29", "z30", \ "z31", "p0", "p1", "p2", "p3" void I444ToARGBRow_SVE2(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { uint64_t vl; asm volatile ( "cnth %[vl] \n" "ptrue p0.b \n" YUVTORGB_SVE_SETUP "dup z19.b, #255 \n" /* A */ "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" // Run bulk of computation with an all-true predicate to avoid predicate // generation overhead. "ptrue p1.h \n" "1: \n" READYUV444_SVE I4XXTORGB_SVE RGBTOARGB8_SVE "subs %w[width], %w[width], %w[vl] \n" "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "add %[dst_argb], %[dst_argb], %[vl], lsl #2 \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" // Calculate a predicate for the final iteration to deal with the tail. "whilelt p1.h, wzr, %w[width] \n" READYUV444_SVE I4XXTORGB_SVE RGBTOARGB8_SVE "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "99: \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_SVE_REGS); } void I400ToARGBRow_SVE2(const uint8_t* src_y, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { uint64_t vl; asm volatile ( "cnth %[vl] \n" "ptrue p0.b \n" "dup z19.b, #255 \n" // A YUVTORGB_SVE_SETUP "cmp %w[width], %w[vl] \n" "mov z1.h, #128 \n" // U/V "umullb z6.h, z30.b, z1.b \n" "umullb z4.h, z28.b, z1.b \n" // DB "umullb z5.h, z29.b, z1.b \n" // DR "mla z6.h, p0/m, z31.h, z1.h \n" // DG "sub z4.h, z4.h, z25.h \n" "sub z5.h, z5.h, z27.h \n" "sub z6.h, z26.h, z6.h \n" "b.le 2f \n" // Run bulk of computation with an all-true predicate to avoid predicate // generation overhead. "ptrue p1.h \n" "sub %w[width], %w[width], %w[vl] \n" "1: \n" // READYUV400_SVE I400TORGB_SVE RGBTOARGB8_SVE "subs %w[width], %w[width], %w[vl] \n" "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "add %[dst_argb], %[dst_argb], %[vl], lsl #2 \n" "b.gt 1b \n" "add %w[width], %w[width], %w[vl] \n" // Calculate a predicate for the final iteration to deal with the tail. "2: \n" "whilelt p1.h, wzr, %w[width] \n" // READYUV400_SVE I400TORGB_SVE RGBTOARGB8_SVE "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" : [src_y] "+r"(src_y), // %[src_y] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_SVE_REGS); } void I422ToARGBRow_SVE2(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { uint64_t vl; asm volatile( "cntb %[vl] \n" "ptrue p0.b \n" YUVTORGB_SVE_SETUP "dup z19.b, #255 \n" /* A0 */ "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" // Run bulk of computation with an all-true predicate to avoid predicate // generation overhead. "ptrue p1.b \n" "1: \n" READYUV422_SVE_2X I422TORGB_SVE_2X RGBTOARGB8_SVE_2X "subs %w[width], %w[width], %w[vl] \n" "st4b {z16.b, z17.b, z18.b, z19.b}, p1, [%[dst_argb]] \n" "incb %[dst_argb], all, mul #4 \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" // Calculate a predicate for the final iteration to deal with the tail. "cnth %[vl] \n" "whilelt p1.b, wzr, %w[width] \n" READYUV422_SVE_2X I422TORGB_SVE_2X RGBTOARGB8_SVE_2X "st4b {z16.b, z17.b, z18.b, z19.b}, p1, [%[dst_argb]] \n" "99: \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_SVE_REGS); } void I422ToRGBARow_SVE2(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { uint64_t vl; asm volatile ( "cnth %[vl] \n" "ptrue p0.b \n" YUVTORGB_SVE_SETUP "dup z19.b, #255 \n" // A "subs %w[width], %w[width], %w[vl] \n" "b.le 2f \n" // Run bulk of computation with an all-true predicate to avoid predicate // generation overhead. "ptrue p1.h \n" "1: \n" // READYUV422_SVE I4XXTORGB_SVE RGBTORGBA8_SVE "subs %w[width], %w[width], %w[vl] \n" "st2h {z19.h, z20.h}, p1, [%[dst_argb]] \n" "add %[dst_argb], %[dst_argb], %[vl], lsl #2 \n" "b.gt 1b \n" // Calculate a predicate for the final iteration to deal with the tail. "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" "whilelt p1.h, wzr, %w[width] \n" // READYUV422_SVE I4XXTORGB_SVE RGBTORGBA8_SVE "st2h {z19.h, z20.h}, p1, [%[dst_argb]] \n" "99: \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_SVE_REGS); } void I444AlphaToARGBRow_SVE2(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, const uint8_t* src_a, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { uint64_t vl; asm volatile ( "cnth %[vl] \n" "ptrue p0.b \n" YUVTORGB_SVE_SETUP "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" // Run bulk of computation with an all-true predicate to avoid predicate // generation overhead. "ptrue p1.h \n" "1: \n" READYUV444_SVE "ld1b {z19.h}, p1/z, [%[src_a]] \n" "add %[src_a], %[src_a], %[vl] \n" // A I4XXTORGB_SVE RGBTOARGB8_SVE "subs %w[width], %w[width], %w[vl] \n" "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "add %[dst_argb], %[dst_argb], %[vl], lsl #2 \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" // Calculate a predicate for the final iteration to deal with the tail. "whilelt p1.h, wzr, %w[width] \n" READYUV444_SVE "ld1b {z19.h}, p1/z, [%[src_a]] \n" // A I4XXTORGB_SVE RGBTOARGB8_SVE "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "99: \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [src_a] "+r"(src_a), // %[src_a] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_SVE_REGS); } void I422AlphaToARGBRow_SVE2(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, const uint8_t* src_a, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { uint64_t vl; asm volatile( "cntb %[vl] \n" "ptrue p0.b \n" YUVTORGB_SVE_SETUP "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" // Run bulk of computation with an all-true predicate to avoid predicate // generation overhead. "ptrue p1.b \n" "1: \n" READYUV422_SVE_2X "ld1b {z19.b}, p1/z, [%[src_a]] \n" "add %[src_a], %[src_a], %[vl] \n" // A I422TORGB_SVE_2X RGBTOARGB8_SVE_2X "subs %w[width], %w[width], %w[vl] \n" "st4b {z16.b, z17.b, z18.b, z19.b}, p1, [%[dst_argb]] \n" "incb %[dst_argb], all, mul #4 \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" // Calculate a predicate for the final iteration to deal with the tail. "cnth %[vl] \n" "whilelt p1.b, wzr, %w[width] \n" READYUV422_SVE_2X "ld1b {z19.b}, p1/z, [%[src_a]] \n" // A I422TORGB_SVE_2X RGBTOARGB8_SVE_2X "st4b {z16.b, z17.b, z18.b, z19.b}, p1, [%[dst_argb]] \n" "99: \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [src_a] "+r"(src_a), // %[src_a] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_SVE_REGS); } static inline void NVToARGBRow_SVE2(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width, uint32_t nv_uv_start, uint32_t nv_uv_step) { uint64_t vl; asm("cnth %0" : "=r"(vl)); int width_last_y = width & (vl - 1); int width_last_uv = width_last_y + (width_last_y & 1); asm volatile( "ptrue p0.b \n" // YUVTORGB_SVE_SETUP "index z22.s, %w[nv_uv_start], %w[nv_uv_step] \n" "dup z19.b, #255 \n" // A "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" // Run bulk of computation with an all-true predicate to avoid predicate // generation overhead. "ptrue p1.h \n" "ptrue p2.h \n" "1: \n" // READNV_SVE NVTORGB_SVE RGBTOARGB8_SVE "subs %w[width], %w[width], %w[vl] \n" "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "add %[dst_argb], %[dst_argb], %[vl], lsl #2 \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" // Calculate a predicate for the final iteration to deal with the tail. "3: \n" "whilelt p1.h, wzr, %w[width_last_y] \n" "whilelt p2.h, wzr, %w[width_last_uv] \n" // READNV_SVE NVTORGB_SVE RGBTOARGB8_SVE "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "99: \n" : [src_y] "+r"(src_y), // %[src_y] [src_uv] "+r"(src_uv), // %[src_uv] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [vl] "r"(vl), // %[vl] [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [nv_uv_start] "r"(nv_uv_start), // %[nv_uv_start] [nv_uv_step] "r"(nv_uv_step), // %[nv_uv_step] [width_last_y] "r"(width_last_y), // %[width_last_y] [width_last_uv] "r"(width_last_uv) // %[width_last_uv] : "cc", "memory", YUVTORGB_SVE_REGS, "p2"); } void NV12ToARGBRow_SVE2(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { uint32_t nv_uv_start = 0x02000200U; uint32_t nv_uv_step = 0x04040404U; NVToARGBRow_SVE2(src_y, src_uv, dst_argb, yuvconstants, width, nv_uv_start, nv_uv_step); } void NV21ToARGBRow_SVE2(const uint8_t* src_y, const uint8_t* src_vu, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { uint32_t nv_uv_start = 0x00020002U; uint32_t nv_uv_step = 0x04040404U; NVToARGBRow_SVE2(src_y, src_vu, dst_argb, yuvconstants, width, nv_uv_start, nv_uv_step); } // Dot-product constants are stored as four-tuples with the two innermost // elements flipped to account for the interleaving nature of the widening // addition instructions. static const int16_t kARGBToUVCoefficients[] = { // UB, -UR, -UG, 0, -VB, VR, -VG, 0 56, -19, -37, 0, -9, 56, -47, 0, }; static const int16_t kRGBAToUVCoefficients[] = { // 0, -UG, UB, -UR, 0, -VG, -VB, VR 0, -37, 56, -19, 0, -47, -9, 56, }; static const int16_t kBGRAToUVCoefficients[] = { // 0, -UG, -UR, UB, 0, -VG, VR, -VB 0, -37, -19, 56, 0, -47, 56, -9, }; static const int16_t kABGRToUVCoefficients[] = { // -UR, UB, -UG, 0, VR, -VB, -VG, 0 -19, 56, -37, 0, 56, -9, -47, 0, }; static const int16_t kARGBToUVJCoefficients[] = { // UB, -UR, -UG, 0, -VB, VR, -VG, 0 63, -21, -42, 0, -10, 63, -53, 0, }; static const int16_t kABGRToUVJCoefficients[] = { // -UR, UB, -UG, 0, VR, -VB, -VG, 0 -21, 63, -42, 0, 63, -10, -53, 0, }; static void ARGBToUVMatrixRow_SVE2(const uint8_t* src_argb, int src_stride_argb, uint8_t* dst_u, uint8_t* dst_v, int width, const int16_t* uvconstants) { const uint8_t* src_argb_1 = src_argb + src_stride_argb; uint64_t vl; asm volatile ( "ptrue p0.b \n" "ld1rd {z24.d}, p0/z, [%[uvconstants]] \n" "ld1rd {z25.d}, p0/z, [%[uvconstants], #8] \n" "mov z26.b, #0x80 \n" "cntb %[vl] \n" "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" // Process 4x vectors from each input row per iteration. // Cannot use predication here due to unrolling. "1: \n" // e.g. "ld1b {z0.b}, p0/z, [%[src0], #0, mul vl] \n" // bgrabgra "ld1b {z4.b}, p0/z, [%[src1], #0, mul vl] \n" // bgrabgra "ld1b {z1.b}, p0/z, [%[src0], #1, mul vl] \n" // bgrabgra "ld1b {z5.b}, p0/z, [%[src1], #1, mul vl] \n" // bgrabgra "ld1b {z2.b}, p0/z, [%[src0], #2, mul vl] \n" // bgrabgra "ld1b {z6.b}, p0/z, [%[src1], #2, mul vl] \n" // bgrabgra "ld1b {z3.b}, p0/z, [%[src0], #3, mul vl] \n" // bgrabgra "ld1b {z7.b}, p0/z, [%[src1], #3, mul vl] \n" // bgrabgra "incb %[src0], all, mul #4 \n" "incb %[src1], all, mul #4 \n" "uaddlb z16.h, z0.b, z4.b \n" // brbrbrbr "uaddlt z17.h, z0.b, z4.b \n" // gagagaga "uaddlb z18.h, z1.b, z5.b \n" // brbrbrbr "uaddlt z19.h, z1.b, z5.b \n" // gagagaga "uaddlb z20.h, z2.b, z6.b \n" // brbrbrbr "uaddlt z21.h, z2.b, z6.b \n" // gagagaga "uaddlb z22.h, z3.b, z7.b \n" // brbrbrbr "uaddlt z23.h, z3.b, z7.b \n" // gagagaga "trn1 z0.s, z16.s, z17.s \n" // brgabgra "trn2 z1.s, z16.s, z17.s \n" // brgabgra "trn1 z2.s, z18.s, z19.s \n" // brgabgra "trn2 z3.s, z18.s, z19.s \n" // brgabgra "trn1 z4.s, z20.s, z21.s \n" // brgabgra "trn2 z5.s, z20.s, z21.s \n" // brgabgra "trn1 z6.s, z22.s, z23.s \n" // brgabgra "trn2 z7.s, z22.s, z23.s \n" // brgabgra "subs %w[width], %w[width], %w[vl] \n" // 4*VL per loop "urhadd z0.h, p0/m, z0.h, z1.h \n" // brgabrga "urhadd z2.h, p0/m, z2.h, z3.h \n" // brgabrga "urhadd z4.h, p0/m, z4.h, z5.h \n" // brgabrga "urhadd z6.h, p0/m, z6.h, z7.h \n" // brgabrga "movi v16.8h, #0 \n" "movi v17.8h, #0 \n" "movi v18.8h, #0 \n" "movi v19.8h, #0 \n" "movi v20.8h, #0 \n" "movi v21.8h, #0 \n" "movi v22.8h, #0 \n" "movi v23.8h, #0 \n" "sdot z16.d, z0.h, z24.h \n" // UUxxxxxx "sdot z17.d, z2.h, z24.h \n" // UUxxxxxx "sdot z18.d, z4.h, z24.h \n" // UUxxxxxx "sdot z19.d, z6.h, z24.h \n" // UUxxxxxx "sdot z20.d, z0.h, z25.h \n" // VVxxxxxx "sdot z21.d, z2.h, z25.h \n" // VVxxxxxx "sdot z22.d, z4.h, z25.h \n" // VVxxxxxx "sdot z23.d, z6.h, z25.h \n" // VVxxxxxx "uzp1 z16.s, z16.s, z17.s \n" // UUxx "uzp1 z18.s, z18.s, z19.s \n" // UUxx "uzp1 z20.s, z20.s, z21.s \n" // VVxx "uzp1 z22.s, z22.s, z23.s \n" // VVxx "uzp1 z16.h, z16.h, z18.h \n" // UU "uzp1 z20.h, z20.h, z22.h \n" // VV "addhnb z16.b, z16.h, z26.h \n" // U "addhnb z20.b, z20.h, z26.h \n" // V "st1b {z16.h}, p0, [%[dst_u]] \n" // U "st1b {z20.h}, p0, [%[dst_v]] \n" // V "inch %[dst_u] \n" "inch %[dst_v] \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" // VL per loop "b.le 99f \n" // Process remaining pixels from each input row. // Use predication to do one vector from each input array, so may loop up // to three iterations. "cntw %x[vl] \n" "3: \n" "whilelt p1.s, wzr, %w[width] \n" "ld1d {z0.d}, p1/z, [%[src0]] \n" // bgrabgra "ld1d {z4.d}, p1/z, [%[src1]] \n" // bgrabgra "incb %[src0] \n" "incb %[src1] \n" "uaddlb z16.h, z0.b, z4.b \n" // brbrbrbr "uaddlt z17.h, z0.b, z4.b \n" // gagagaga "trn1 z0.s, z16.s, z17.s \n" // brgabgra "trn2 z1.s, z16.s, z17.s \n" // brgabgra "urhadd z0.h, p0/m, z0.h, z1.h \n" // brgabrga "subs %w[width], %w[width], %w[vl] \n" // VL per loop "movi v16.8h, #0 \n" "movi v20.8h, #0 \n" "sdot z16.d, z0.h, z24.h \n" "sdot z20.d, z0.h, z25.h \n" "addhnb z16.b, z16.h, z26.h \n" // U "addhnb z20.b, z20.h, z26.h \n" // V "st1b {z16.d}, p0, [%[dst_u]] \n" // U "st1b {z20.d}, p0, [%[dst_v]] \n" // V "incd %[dst_u] \n" "incd %[dst_v] \n" "b.gt 3b \n" "99: \n" : [src0] "+r"(src_argb), // %[src0] [src1] "+r"(src_argb_1), // %[src1] [dst_u] "+r"(dst_u), // %[dst_u] [dst_v] "+r"(dst_v), // %[dst_v] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : [uvconstants] "r"(uvconstants) : "cc", "memory", "z0", "z1", "z2", "z3", "z4", "z5", "z6", "z7", "z16", "z17", "z18", "z19", "z20", "z21", "z22", "z23", "z24", "z25", "z26", "p0"); } void ARGBToUVRow_SVE2(const uint8_t* src_argb, int src_stride_argb, uint8_t* dst_u, uint8_t* dst_v, int width) { ARGBToUVMatrixRow_SVE2(src_argb, src_stride_argb, dst_u, dst_v, width, kARGBToUVCoefficients); } void ARGBToUVJRow_SVE2(const uint8_t* src_argb, int src_stride_argb, uint8_t* dst_u, uint8_t* dst_v, int width) { ARGBToUVMatrixRow_SVE2(src_argb, src_stride_argb, dst_u, dst_v, width, kARGBToUVJCoefficients); } void ABGRToUVJRow_SVE2(const uint8_t* src_abgr, int src_stride_abgr, uint8_t* dst_uj, uint8_t* dst_vj, int width) { ARGBToUVMatrixRow_SVE2(src_abgr, src_stride_abgr, dst_uj, dst_vj, width, kABGRToUVJCoefficients); } void BGRAToUVRow_SVE2(const uint8_t* src_bgra, int src_stride_bgra, uint8_t* dst_u, uint8_t* dst_v, int width) { ARGBToUVMatrixRow_SVE2(src_bgra, src_stride_bgra, dst_u, dst_v, width, kBGRAToUVCoefficients); } void ABGRToUVRow_SVE2(const uint8_t* src_abgr, int src_stride_abgr, uint8_t* dst_u, uint8_t* dst_v, int width) { ARGBToUVMatrixRow_SVE2(src_abgr, src_stride_abgr, dst_u, dst_v, width, kABGRToUVCoefficients); } void RGBAToUVRow_SVE2(const uint8_t* src_rgba, int src_stride_rgba, uint8_t* dst_u, uint8_t* dst_v, int width) { ARGBToUVMatrixRow_SVE2(src_rgba, src_stride_rgba, dst_u, dst_v, width, kRGBAToUVCoefficients); } #define ARGBTORGB565_SVE \ /* Inputs: \ * z0: rrrrrxxxbbbbbxxx \ * z1: xxxxxxxxggggggxx \ * z3: 0000000000000011 (3, 0, 3, 0, ...) \ * z4: 0000011111100000 \ */ \ "lsr z0.b, p0/m, z0.b, z3.b \n" \ "lsl z1.h, z1.h, #3 \n" \ "bsl z1.d, z1.d, z0.d, z4.d \n" void ARGBToRGB565Row_SVE2(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { unsigned bsl_mask = 0x7e0; uint64_t vl; width *= 2; asm volatile ( "mov z3.h, #3 \n" "dup z4.h, %w[bsl_mask] \n" "cntb %[vl] \n" "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" "ptrue p0.b \n" "1: \n" "ld2b {z0.b, z1.b}, p0/z, [%[src]] \n" // BR, GA "incb %[src], all, mul #2 \n" "subs %w[width], %w[width], %w[vl] \n" ARGBTORGB565_SVE "st1b {z1.b}, p0, [%[dst]] \n" "incb %[dst] \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" "whilelt p0.b, wzr, %w[width] \n" "ld2b {z0.b, z1.b}, p0/z, [%[src]] \n" // BR, GA ARGBTORGB565_SVE "st1b {z1.b}, p0, [%[dst]] \n" "99: \n" : [src] "+r"(src_argb), // %[src] [dst] "+r"(dst_rgb), // %[dst] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : [bsl_mask] "r"(bsl_mask) // %[bsl_mask] : "cc", "memory", "z0", "z1", "z3", "z4", "p0"); } void ARGBToRGB565DitherRow_SVE2(const uint8_t* src_argb, uint8_t* dst_rgb, uint32_t dither4, int width) { unsigned bsl_mask = 0x7e0; uint64_t vl; width *= 2; asm volatile ( "mov z3.h, #3 \n" "dup z4.h, %w[bsl_mask] \n" "dup z2.s, %w[dither4] \n" "zip1 z2.b, z2.b, z2.b \n" "cntb %[vl] \n" "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" "ptrue p0.b \n" "1: \n" "ld2b {z0.b, z1.b}, p0/z, [%[src]] \n" // BR, GA "incb %[src], all, mul #2 \n" "uqadd z0.b, z0.b, z2.b \n" "uqadd z1.b, z1.b, z2.b \n" "subs %w[width], %w[width], %w[vl] \n" ARGBTORGB565_SVE "st1b {z1.b}, p0, [%[dst]] \n" "incb %[dst] \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" "whilelt p0.b, wzr, %w[width] \n" "ld2b {z0.b, z1.b}, p0/z, [%[src]] \n" // BR, GA "uqadd z0.b, z0.b, z2.b \n" "uqadd z1.b, z1.b, z2.b \n" ARGBTORGB565_SVE "st1b {z1.b}, p0, [%[dst]] \n" "99: \n" : [src] "+r"(src_argb), // %[src] [dst] "+r"(dst_rgb), // %[dst] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : [bsl_mask] "r"(bsl_mask), // %[bsl_mask] [dither4] "r"(dither4) // %[dither4] : "cc", "memory", "z0", "z1", "z3", "z4", "p0"); } #define ARGB1555TOARGB \ /* Input: z1/z3.h = arrrrrgggggbbbbb */ \ "lsl z0.h, z1.h, #3 \n" /* rrrgggggbbbbb000 */ \ "lsl z2.h, z3.h, #3 \n" /* rrrgggggbbbbb000 */ \ "asr z1.h, z1.h, #7 \n" /* aaaaaaaarrrrrggg */ \ "asr z3.h, z3.h, #7 \n" /* aaaaaaaarrrrrggg */ \ "lsl z0.b, p0/m, z0.b, z4.b \n" /* ggggg000bbbbb000 */ \ "lsl z2.b, p0/m, z2.b, z4.b \n" /* ggggg000bbbbb000 */ \ "sri z1.b, z1.b, #5 \n" /* aaaaaaaarrrrrrrr */ \ "sri z3.b, z3.b, #5 \n" /* aaaaaaaarrrrrrrr */ \ "sri z0.b, z0.b, #5 \n" /* ggggggggbbbbbbbb */ \ "sri z2.b, z2.b, #5 \n" /* ggggggggbbbbbbbb */ void ARGB1555ToARGBRow_SVE2(const uint8_t* src_argb1555, uint8_t* dst_argb, int width) { uint64_t vl; asm volatile ( "mov z4.h, #0x0300 \n" "ptrue p0.b \n" "cnth %x[vl] \n" "subs %w[width], %w[width], %w[vl], lsl #1 \n" "b.lt 2f \n" "1: \n" "ld1h {z1.h}, p0/z, [%[src]] \n" "ld1h {z3.h}, p0/z, [%[src], #1, mul vl] \n" "incb %[src], all, mul #2 \n" ARGB1555TOARGB "subs %w[width], %w[width], %w[vl], lsl #1 \n" "st2h {z0.h, z1.h}, p0, [%[dst]] \n" "st2h {z2.h, z3.h}, p0, [%[dst], #2, mul vl] \n" "incb %[dst], all, mul #4 \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl], lsl #1 \n" "b.eq 99f \n" "whilelt p1.h, wzr, %w[width] \n" "whilelt p2.h, %w[vl], %w[width] \n" "ld1h {z1.h}, p1/z, [%[src]] \n" "ld1h {z3.h}, p2/z, [%[src], #1, mul vl] \n" ARGB1555TOARGB "st2h {z0.h, z1.h}, p1, [%[dst]] \n" "st2h {z2.h, z3.h}, p2, [%[dst], #2, mul vl] \n" "99: \n" : [src] "+r"(src_argb1555), // %[src] [dst] "+r"(dst_argb), // %[dst] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : : "cc", "memory", "z0", "z1", "z2", "z3", "z4", "p0", "p1", "p2"); } // clang-format off #define AYUVTOUV_SVE(zU0, zV0, zU1, zV1) /* e.g. */ \ "ld2h {z0.h, z1.h}, p0/z, [%[src0]] \n" /* VUVU.. YAYA.. */ \ "ld2h {z1.h, z2.h}, p1/z, [%[src0], #2, mul vl] \n" /* VUVU.. YAYA.. */ \ "ld2h {z2.h, z3.h}, p0/z, [%[src1]] \n" /* VUVU.. YAYA.. */ \ "ld2h {z3.h, z4.h}, p1/z, [%[src1], #2, mul vl] \n" /* VUVU.. YAYA.. */ \ "incb %[src0], all, mul #4 \n" \ "incb %[src1], all, mul #4 \n" \ "uaddlb z4.h, z0.b, z2.b \n" /* V */ \ "uaddlt z5.h, z0.b, z2.b \n" /* U */ \ "uaddlb z6.h, z1.b, z3.b \n" /* V */ \ "uaddlt z7.h, z1.b, z3.b \n" /* U */ \ "addp " #zU0 ".h, p0/m, " #zU0 ".h, " #zV0 ".h \n" /* UV */ \ "addp " #zU1 ".h, p1/m, " #zU1 ".h, " #zV1 ".h \n" /* UV */ \ "subs %w[width], %w[width], %w[vl] \n" \ "urshr " #zU0 ".h, p0/m, " #zU0 ".h, #2 \n" /* U0V0 */ \ "urshr " #zU1 ".h, p1/m, " #zU1 ".h, #2 \n" /* U0V0 */ \ "st1b {" #zU0 ".h}, p0, [%[dst]] \n" \ "st1b {" #zU1 ".h}, p1, [%[dst], #1, mul vl] \n" \ "incb %[dst] \n" // clang-format on // Filter 2 rows of AYUV UV's (444) into UV (420). // AYUV is VUYA in memory. UV for NV12 is UV order in memory. void AYUVToUVRow_SVE2(const uint8_t* src_ayuv, int src_stride_ayuv, uint8_t* dst_uv, int width) { // Output a row of UV values, filtering 2x2 rows of AYUV. const uint8_t* src_ayuv1 = src_ayuv + src_stride_ayuv; int vl; asm volatile ( "cntb %x[vl] \n" "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" "ptrue p0.h \n" "ptrue p1.h \n" "1: \n" AYUVTOUV_SVE(z5, z4, z7, z6) "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" "cnth %x[vl] \n" "whilelt p0.h, wzr, %w[width] \n" // first row "whilelt p1.h, %w[vl], %w[width] \n" // second row AYUVTOUV_SVE(z5, z4, z7, z6) "99: \n" : [src0]"+r"(src_ayuv), // %[src0] [src1]"+r"(src_ayuv1), // %[src1] [dst]"+r"(dst_uv), // %[dst] [width]"+r"(width), // %[width] [vl]"=&r"(vl) // %[vl] : : "cc", "memory", "z0", "z1", "z2", "z3", "z4", "z5", "z6", "z7", "p0", "p1"); } // Filter 2 rows of AYUV UV's (444) into VU (420). void AYUVToVURow_SVE2(const uint8_t* src_ayuv, int src_stride_ayuv, uint8_t* dst_vu, int width) { // Output a row of VU values, filtering 2x2 rows of AYUV. const uint8_t* src_ayuv1 = src_ayuv + src_stride_ayuv; int vl; asm volatile ( "cntb %x[vl] \n" "cmp %w[width], %w[vl] \n" "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" "ptrue p0.h \n" "ptrue p1.h \n" "1: \n" AYUVTOUV_SVE(z4, z5, z6, z7) "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" "cnth %x[vl] \n" "whilelt p0.h, wzr, %w[width] \n" // first row "whilelt p1.h, %w[vl], %w[width] \n" // second row AYUVTOUV_SVE(z4, z5, z6, z7) "99: \n" : [src0]"+r"(src_ayuv), // %[src0] [src1]"+r"(src_ayuv1), // %[src1] [dst]"+r"(dst_vu), // %[dst] [width]"+r"(width), // %[width] [vl]"=&r"(vl) // %[vl] : : "cc", "memory", "z0", "z1", "z2", "z3", "z4", "z5", "z6", "z7", "p0", "p1"); } void YUY2ToARGBRow_SVE2(const uint8_t* src_yuy2, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { uint32_t nv_uv_start = 0x03010301U; uint32_t nv_uv_step = 0x04040404U; uint64_t vl; asm("cnth %0" : "=r"(vl)); int width_last_y = width & (vl - 1); int width_last_uv = width_last_y + (width_last_y & 1); asm volatile( "ptrue p0.b \n" "index z22.s, %w[nv_uv_start], %w[nv_uv_step] \n" "dup z19.b, #255 \n" // A YUVTORGB_SVE_SETUP "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" // Run bulk of computation with an all-true predicate to avoid predicate // generation overhead. "ptrue p1.h \n" "ptrue p2.h \n" "1: \n" // READYUY2_SVE NVTORGB_SVE RGBTOARGB8_SVE "subs %w[width], %w[width], %w[vl] \n" "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "add %[dst_argb], %[dst_argb], %[vl], lsl #2 \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" // Calculate a predicate for the final iteration to deal with the tail. "whilelt p1.h, wzr, %w[width_last_y] \n" "whilelt p2.h, wzr, %w[width_last_uv] \n" // READYUY2_SVE NVTORGB_SVE RGBTOARGB8_SVE "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "99: \n" : [src_yuy2] "+r"(src_yuy2), // %[src_yuy2] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [vl] "r"(vl), // %[vl] [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [nv_uv_start] "r"(nv_uv_start), // %[nv_uv_start] [nv_uv_step] "r"(nv_uv_step), // %[nv_uv_step] [width_last_y] "r"(width_last_y), // %[width_last_y] [width_last_uv] "r"(width_last_uv) // %[width_last_uv] : "cc", "memory", YUVTORGB_SVE_REGS, "p2"); } void UYVYToARGBRow_SVE2(const uint8_t* src_uyvy, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { uint32_t nv_uv_start = 0x02000200U; uint32_t nv_uv_step = 0x04040404U; uint64_t vl; asm("cnth %0" : "=r"(vl)); int width_last_y = width & (vl - 1); int width_last_uv = width_last_y + (width_last_y & 1); asm volatile( "ptrue p0.b \n" "index z22.s, %w[nv_uv_start], %w[nv_uv_step] \n" "dup z19.b, #255 \n" // A YUVTORGB_SVE_SETUP "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" // Run bulk of computation with an all-true predicate to avoid predicate // generation overhead. "ptrue p1.h \n" "ptrue p2.h \n" "1: \n" // READUYVY_SVE NVTORGB_SVE RGBTOARGB8_SVE "subs %w[width], %w[width], %w[vl] \n" "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "add %[dst_argb], %[dst_argb], %[vl], lsl #2 \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" // Calculate a predicate for the final iteration to deal with the tail. "2: \n" "whilelt p1.h, wzr, %w[width_last_y] \n" "whilelt p2.h, wzr, %w[width_last_uv] \n" // READUYVY_SVE NVTORGB_SVE RGBTOARGB8_SVE "st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "99: \n" : [src_uyvy] "+r"(src_uyvy), // %[src_yuy2] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [vl] "r"(vl), // %[vl] [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [nv_uv_start] "r"(nv_uv_start), // %[nv_uv_start] [nv_uv_step] "r"(nv_uv_step), // %[nv_uv_step] [width_last_y] "r"(width_last_y), // %[width_last_y] [width_last_uv] "r"(width_last_uv) // %[width_last_uv] : "cc", "memory", YUVTORGB_SVE_REGS, "p2"); } static inline void RAWToWXYZRow_SVE2(const uint8_t* src_raw, uint8_t* dst_wxyz, int width, uint32_t idx_start, uint32_t idx_step, uint32_t alpha) { uint32_t vl; asm("cntw %x0" : "=r"(vl)); uint32_t vl_mul3 = vl * 3; uint32_t rem_mul3; asm volatile( "index z31.s, %w[idx_start], %w[idx_step] \n" "dup z30.s, %w[alpha] \n" "subs %w[width], %w[width], %w[vl], lsl #1 \n" "b.lt 2f \n" // Run bulk of computation with the same predicates to avoid predicate // generation overhead. We set up p1 to only load 3/4 of a vector. "ptrue p0.s \n" "whilelt p1.b, wzr, %w[vl_mul3] \n" "1: \n" "ld1b {z0.b}, p1/z, [%[src]] \n" "add %[src], %[src], %x[vl_mul3] \n" "ld1b {z1.b}, p1/z, [%[src]] \n" "add %[src], %[src], %x[vl_mul3] \n" "tbl z0.b, {z0.b}, z31.b \n" "tbl z1.b, {z1.b}, z31.b \n" "subs %w[width], %w[width], %w[vl], lsl #1 \n" "orr z0.d, z0.d, z30.d \n" "orr z1.d, z1.d, z30.d \n" "st1w {z0.s}, p0, [%[dst]] \n" "st1w {z1.s}, p0, [%[dst], #1, mul vl] \n" "incb %[dst], all, mul #2 \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl], lsl #1 \n" "b.eq 99f \n" // Calculate a pair of predicates for the final iteration to deal with // the tail. "3: \n" "add %w[rem_mul3], %w[width], %w[width], lsl #1 \n" "whilelt p0.s, wzr, %w[width] \n" "whilelt p1.b, wzr, %w[rem_mul3] \n" "ld1b {z0.b}, p1/z, [%[src]] \n" "add %[src], %[src], %x[vl_mul3] \n" "tbl z0.b, {z0.b}, z31.b \n" "subs %w[width], %w[width], %w[vl] \n" "orr z0.d, z0.d, z30.d \n" "st1w {z0.s}, p0, [%[dst]] \n" "incb %[dst] \n" "b.gt 3b \n" "99: \n" : [src] "+r"(src_raw), // %[src] [dst] "+r"(dst_wxyz), // %[dst] [width] "+r"(width), // %[width] [vl_mul3] "+r"(vl_mul3), // %[vl_mul3] [rem_mul3] "=&r"(rem_mul3) // %[rem_mul3] : [idx_start] "r"(idx_start), // %[idx_start] [idx_step] "r"(idx_step), // %[idx_step] [alpha] "r"(alpha), // %[alpha] [vl] "r"(vl) // %[vl] : "cc", "memory", "z0", "z1", "z30", "z31", "p0", "p1"); } void RAWToARGBRow_SVE2(const uint8_t* src_raw, uint8_t* dst_argb, int width) { RAWToWXYZRow_SVE2(src_raw, dst_argb, width, 0xff000102U, 0x00030303U, 0xff000000U); } void RAWToRGBARow_SVE2(const uint8_t* src_raw, uint8_t* dst_rgba, int width) { RAWToWXYZRow_SVE2(src_raw, dst_rgba, width, 0x000102ffU, 0x03030300U, 0x000000ffU); } void RGB24ToARGBRow_SVE2(const uint8_t* src_rgb24, uint8_t* dst_argb, int width) { RAWToWXYZRow_SVE2(src_rgb24, dst_argb, width, 0xff020100U, 0x00030303U, 0xff000000U); } static const uint8_t kRAWToRGB24Indices[] = { 2, 1, 0, 5, 4, 3, 8, 7, 6, 11, 10, 9, 14, 13, 12, 17, 16, 15, 20, 19, 18, 23, 22, 21, 26, 25, 24, 29, 28, 27, 32, 31, 30, 35, 34, 33, 38, 37, 36, 41, 40, 39, 44, 43, 42, 47, 46, 45, 50, 49, 48, 53, 52, 51, 56, 55, 54, 59, 58, 57, 62, 61, 60, 65, 64, 63, 68, 67, 66, 71, 70, 69, 74, 73, 72, 77, 76, 75, 80, 79, 78, 83, 82, 81, 86, 85, 84, 89, 88, 87, 92, 91, 90, 95, 94, 93, 98, 97, 96, 101, 100, 99, 104, 103, 102, 107, 106, 105, 110, 109, 108, 113, 112, 111, 116, 115, 114, 119, 118, 117, 122, 121, 120, 125, 124, 123, 128, 127, 126, 131, 130, 129, 134, 133, 132, 137, 136, 135, 140, 139, 138, 143, 142, 141, 146, 145, 144, 149, 148, 147, 152, 151, 150, 155, 154, 153, 158, 157, 156, 161, 160, 159, 164, 163, 162, 167, 166, 165, 170, 169, 168, 173, 172, 171, 176, 175, 174, 179, 178, 177, 182, 181, 180, 185, 184, 183, 188, 187, 186, 191, 190, 189, 194, 193, 192, 197, 196, 195, 200, 199, 198, 203, 202, 201, 206, 205, 204, 209, 208, 207, 212, 211, 210, 215, 214, 213, 218, 217, 216, 221, 220, 219, 224, 223, 222, 227, 226, 225, 230, 229, 228, 233, 232, 231, 236, 235, 234, 239, 238, 237, 242, 241, 240, 245, 244, 243, 248, 247, 246, 251, 250, 249, 254, 253, 252}; void RAWToRGB24Row_SVE2(const uint8_t* src_raw, uint8_t* dst_rgb24, int width) { // width is in elements, convert to bytes. width *= 3; // we use the mul3 predicate pattern throughout to use the largest multiple // of three number of lanes, for instance with a vector length of 16 bytes // only the first 15 bytes will be used for load/store instructions. uint32_t vl; asm volatile( "cntb %x[vl], mul3 \n" "ptrue p0.b, mul3 \n" "ld1b {z31.b}, p0/z, [%[kIndices]] \n" "subs %w[width], %w[width], %w[vl] \n" "b.lt 2f \n" // Run bulk of computation with the same predicate to avoid predicate // generation overhead. "1: \n" "ld1b {z0.b}, p0/z, [%[src]] \n" "add %[src], %[src], %x[vl] \n" "tbl z0.b, {z0.b}, z31.b \n" "subs %w[width], %w[width], %w[vl] \n" "st1b {z0.b}, p0, [%[dst]] \n" "add %[dst], %[dst], %x[vl] \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl] \n" "b.eq 99f \n" // Calculate a predicate for the final iteration to deal with the tail. "whilelt p0.b, wzr, %w[width] \n" "ld1b {z0.b}, p0/z, [%[src]] \n" "tbl z0.b, {z0.b}, z31.b \n" "st1b {z0.b}, p0, [%[dst]] \n" "99: \n" : [src] "+r"(src_raw), // %[src] [dst] "+r"(dst_rgb24), // %[dst] [width] "+r"(width), // %[width] [vl] "=&r"(vl) // %[vl] : [kIndices] "r"(kRAWToRGB24Indices) // %[kIndices] : "cc", "memory", "z0", "z31", "p0"); } static inline void ARGBToXYZRow_SVE2(const uint8_t* src_argb, uint8_t* dst_xyz, int width, const uint8_t* indices) { uint32_t vl; asm("cntw %x0" : "=r"(vl)); uint32_t vl_mul3 = vl * 3; uint32_t rem_mul3; asm volatile( "whilelt p1.b, wzr, %w[vl_mul3] \n" "ld1b {z31.b}, p1/z, [%[indices]] \n" "subs %w[width], %w[width], %w[vl], lsl #1 \n" "b.lt 2f \n" // Run bulk of computation with the same predicates to avoid predicate // generation overhead. We set up p1 to only store 3/4 of a vector. "ptrue p0.s \n" "1: \n" "ld1w {z0.s}, p0/z, [%[src]] \n" "ld1w {z1.s}, p0/z, [%[src], #1, mul vl] \n" "incb %[src], all, mul #2 \n" "tbl z0.b, {z0.b}, z31.b \n" "tbl z1.b, {z1.b}, z31.b \n" "subs %w[width], %w[width], %w[vl], lsl #1 \n" "st1b {z0.b}, p1, [%[dst]] \n" "add %[dst], %[dst], %x[vl_mul3] \n" "st1b {z1.b}, p1, [%[dst]] \n" "add %[dst], %[dst], %x[vl_mul3] \n" "b.ge 1b \n" "2: \n" "adds %w[width], %w[width], %w[vl], lsl #1 \n" "b.eq 99f \n" // Calculate predicates for the final iteration to deal with the tail. "add %w[rem_mul3], %w[width], %w[width], lsl #1 \n" "whilelt p0.s, wzr, %w[width] \n" "whilelt p1.b, wzr, %w[rem_mul3] \n" "whilelt p2.s, %w[vl], %w[width] \n" "whilelt p3.b, %w[vl_mul3], %w[rem_mul3] \n" "ld1w {z0.s}, p0/z, [%[src]] \n" "ld1w {z1.s}, p2/z, [%[src], #1, mul vl] \n" "tbl z0.b, {z0.b}, z31.b \n" "tbl z1.b, {z1.b}, z31.b \n" "st1b {z0.b}, p1, [%[dst]] \n" "add %[dst], %[dst], %x[vl_mul3] \n" "st1b {z1.b}, p3, [%[dst]] \n" "99: \n" : [src] "+r"(src_argb), // %[src] [dst] "+r"(dst_xyz), // %[dst] [width] "+r"(width), // %[width] [rem_mul3] "=&r"(rem_mul3) // %[rem_mul3] : [indices] "r"(indices), // %[indices] [vl_mul3] "r"(vl_mul3), // %[vl_mul3] [vl] "r"(vl) // %[vl] : "cc", "memory", "z0", "z1", "z31", "p0", "p1", "p2", "p3"); } static const uint8_t kARGBToRGB24RowIndices[] = { 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110, 112, 113, 114, 116, 117, 118, 120, 121, 122, 124, 125, 126, 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 148, 149, 150, 152, 153, 154, 156, 157, 158, 160, 161, 162, 164, 165, 166, 168, 169, 170, 172, 173, 174, 176, 177, 178, 180, 181, 182, 184, 185, 186, 188, 189, 190, 192, 193, 194, 196, 197, 198, 200, 201, 202, 204, 205, 206, 208, 209, 210, 212, 213, 214, 216, 217, 218, 220, 221, 222, 224, 225, 226, 228, 229, 230, 232, 233, 234, 236, 237, 238, 240, 241, 242, 244, 245, 246, 248, 249, 250, 252, 253, 254, }; static const uint8_t kARGBToRAWRowIndices[] = { 2, 1, 0, 6, 5, 4, 10, 9, 8, 14, 13, 12, 18, 17, 16, 22, 21, 20, 26, 25, 24, 30, 29, 28, 34, 33, 32, 38, 37, 36, 42, 41, 40, 46, 45, 44, 50, 49, 48, 54, 53, 52, 58, 57, 56, 62, 61, 60, 66, 65, 64, 70, 69, 68, 74, 73, 72, 78, 77, 76, 82, 81, 80, 86, 85, 84, 90, 89, 88, 94, 93, 92, 98, 97, 96, 102, 101, 100, 106, 105, 104, 110, 109, 108, 114, 113, 112, 118, 117, 116, 122, 121, 120, 126, 125, 124, 130, 129, 128, 134, 133, 132, 138, 137, 136, 142, 141, 140, 146, 145, 144, 150, 149, 148, 154, 153, 152, 158, 157, 156, 162, 161, 160, 166, 165, 164, 170, 169, 168, 174, 173, 172, 178, 177, 176, 182, 181, 180, 186, 185, 184, 190, 189, 188, 194, 193, 192, 198, 197, 196, 202, 201, 200, 206, 205, 204, 210, 209, 208, 214, 213, 212, 218, 217, 216, 222, 221, 220, 226, 225, 224, 230, 229, 228, 234, 233, 232, 238, 237, 236, 242, 241, 240, 246, 245, 244, 250, 249, 248, 254, 253, 252, }; void ARGBToRGB24Row_SVE2(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { ARGBToXYZRow_SVE2(src_argb, dst_rgb, width, kARGBToRGB24RowIndices); } void ARGBToRAWRow_SVE2(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { ARGBToXYZRow_SVE2(src_argb, dst_rgb, width, kARGBToRAWRowIndices); } #endif // !defined(LIBYUV_DISABLE_SVE) && defined(__aarch64__) #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif