/* * Copyright (c) 2011 The LibYuv project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/convert.h" //#define SCALEOPT //Currently for windows only. June 2010 #ifdef SCALEOPT #include #endif #include "conversion_tables.h" #include "libyuv/basic_types.h" #include "libyuv/cpu_id.h" #include "libyuv/format_conversion.h" #include "libyuv/planar_functions.h" #include "libyuv/rotate.h" #include "row.h" #include "video_common.h" namespace libyuv { static inline uint8 Clip(int32 val) { if (val < 0) { return (uint8) 0; } else if (val > 255){ return (uint8) 255; } return (uint8) val; } int I420ToRGB24(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) { return -1; } // RGB orientation - bottom up // TODO(fbarchard): support inversion uint8* out = dst_frame + dst_stride_frame * height - dst_stride_frame; uint8* out2 = out - dst_stride_frame; int h, w; int tmp_r, tmp_g, tmp_b; const uint8 *y1, *y2 ,*u, *v; y1 = src_y; y2 = y1 + src_stride_y; u = src_u; v = src_v; for (h = ((height + 1) >> 1); h > 0; h--){ // 2 rows at a time, 2 y's at a time for (w = 0; w < ((width + 1) >> 1); w++){ // Vertical and horizontal sub-sampling tmp_r = (int32)((mapYc[y1[0]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y1[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y1[0]] + mapUcb[u[0]] + 128) >> 8); out[0] = Clip(tmp_b); out[1] = Clip(tmp_g); out[2] = Clip(tmp_r); tmp_r = (int32)((mapYc[y1[1]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y1[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y1[1]] + mapUcb[u[0]] + 128) >> 8); out[3] = Clip(tmp_b); out[4] = Clip(tmp_g); out[5] = Clip(tmp_r); tmp_r = (int32)((mapYc[y2[0]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y2[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y2[0]] + mapUcb[u[0]] + 128) >> 8); out2[0] = Clip(tmp_b); out2[1] = Clip(tmp_g); out2[2] = Clip(tmp_r); tmp_r = (int32)((mapYc[y2[1]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y2[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y2[1]] + mapUcb[u[0]] + 128) >> 8); out2[3] = Clip(tmp_b); out2[4] = Clip(tmp_g); out2[5] = Clip(tmp_r); out += 6; out2 += 6; y1 += 2; y2 += 2; u++; v++; } y1 += src_stride_y + src_stride_y - width; y2 += src_stride_y + src_stride_y - width; u += src_stride_u - ((width + 1) >> 1); v += src_stride_v - ((width + 1) >> 1); out -= dst_stride_frame * 3; out2 -= dst_stride_frame * 3; } // end height for return 0; } // Little Endian... int I420ToARGB4444(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) { return -1; } // RGB orientation - bottom up uint8* out = dst_frame + dst_stride_frame * (height - 1); uint8* out2 = out - dst_stride_frame; int tmp_r, tmp_g, tmp_b; const uint8 *y1,*y2, *u, *v; y1 = src_y; y2 = y1 + src_stride_y; u = src_u; v = src_v; int h, w; for (h = ((height + 1) >> 1); h > 0; h--) { // 2 rows at a time, 2 y's at a time for (w = 0; w < ((width + 1) >> 1); w++) { // Vertical and horizontal sub-sampling // Convert to RGB888 and re-scale to 4 bits tmp_r = (int32)((mapYc[y1[0]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y1[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y1[0]] + mapUcb[u[0]] + 128) >> 8); out[0] =(uint8)((Clip(tmp_g) & 0xf0) + (Clip(tmp_b) >> 4)); out[1] = (uint8)(0xf0 + (Clip(tmp_r) >> 4)); tmp_r = (int32)((mapYc[y1[1]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y1[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y1[1]] + mapUcb[u[0]] + 128) >> 8); out[2] = (uint8)((Clip(tmp_g) & 0xf0 ) + (Clip(tmp_b) >> 4)); out[3] = (uint8)(0xf0 + (Clip(tmp_r) >> 4)); tmp_r = (int32)((mapYc[y2[0]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y2[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y2[0]] + mapUcb[u[0]] + 128) >> 8); out2[0] = (uint8)((Clip(tmp_g) & 0xf0 ) + (Clip(tmp_b) >> 4)); out2[1] = (uint8) (0xf0 + (Clip(tmp_r) >> 4)); tmp_r = (int32)((mapYc[y2[1]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y2[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y2[1]] + mapUcb[u[0]] + 128) >> 8); out2[2] = (uint8)((Clip(tmp_g) & 0xf0 ) + (Clip(tmp_b) >> 4)); out2[3] = (uint8)(0xf0 + (Clip(tmp_r) >> 4)); out += 4; out2 += 4; y1 += 2; y2 += 2; u++; v++; } y1 += 2 * src_stride_y - width; y2 += 2 * src_stride_y - width; u += src_stride_u - ((width + 1) >> 1); v += src_stride_v - ((width + 1) >> 1); out -= (dst_stride_frame + width) * 2; out2 -= (dst_stride_frame + width) * 2; } // end height for return 0; } int I420ToRGB565(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (height - 1) * src_stride_u; src_v = src_v + (height - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } uint16* out = (uint16*)(dst_frame) + dst_stride_frame * (height - 1); uint16* out2 = out - dst_stride_frame; int tmp_r, tmp_g, tmp_b; const uint8* y1,* y2, * u, * v; y1 = src_y; y2 = y1 + src_stride_y; u = src_u; v = src_v; int h, w; for (h = ((height + 1) >> 1); h > 0; h--){ // 2 rows at a time, 2 y's at a time for (w = 0; w < ((width + 1) >> 1); w++){ // Vertical and horizontal sub-sampling // 1. Convert to RGB888 // 2. Shift to adequate location (in the 16 bit word) - RGB 565 tmp_r = (int32)((mapYc[y1[0]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y1[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y1[0]] + mapUcb[u[0]] + 128) >> 8); out[0] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g) & 0xfc) << 3) + (Clip(tmp_b) >> 3); tmp_r = (int32)((mapYc[y1[1]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y1[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y1[1]] + mapUcb[u[0]] + 128) >> 8); out[1] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g) & 0xfc) << 3) + (Clip(tmp_b ) >> 3); tmp_r = (int32)((mapYc[y2[0]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y2[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y2[0]] + mapUcb[u[0]] + 128) >> 8); out2[0] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g) & 0xfc) << 3) + (Clip(tmp_b) >> 3); tmp_r = (int32)((mapYc[y2[1]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y2[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y2[1]] + mapUcb[u[0]] + 128) >> 8); out2[1] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g) & 0xfc) << 3) + (Clip(tmp_b) >> 3); y1 += 2; y2 += 2; out += 2; out2 += 2; u++; v++; } y1 += 2 * src_stride_y - width; y2 += 2 * src_stride_y - width; u += src_stride_u - ((width + 1) >> 1); v += src_stride_v - ((width + 1) >> 1); out -= 2 * dst_stride_frame + width; out2 -= 2 * dst_stride_frame + width; } return 0; } int I420ToARGB1555(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) { return -1; } uint16* out = (uint16*)(dst_frame) + dst_stride_frame * (height - 1); uint16* out2 = out - dst_stride_frame ; int32 tmp_r, tmp_g, tmp_b; const uint8 *y1,*y2, *u, *v; int h, w; y1 = src_y; y2 = y1 + src_stride_y; u = src_u; v = src_v; for (h = ((height + 1) >> 1); h > 0; h--){ // 2 rows at a time, 2 y's at a time for (w = 0; w < ((width + 1) >> 1); w++){ // Vertical and horizontal sub-sampling // 1. Convert to RGB888 // 2. Shift to adequate location (in the 16 bit word) - RGB 555 // 3. Add 1 for alpha value tmp_r = (int32)((mapYc[y1[0]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y1[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y1[0]] + mapUcb[u[0]] + 128) >> 8); out[0] = (uint16)(0x8000 + ((Clip(tmp_r) & 0xf8) << 10) + ((Clip(tmp_g) & 0xf8) << 3) + (Clip(tmp_b) >> 3)); tmp_r = (int32)((mapYc[y1[1]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y1[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y1[1]] + mapUcb[u[0]] + 128) >> 8); out[1] = (uint16)(0x8000 + ((Clip(tmp_r) & 0xf8) << 10) + ((Clip(tmp_g) & 0xf8) << 3) + (Clip(tmp_b) >> 3)); tmp_r = (int32)((mapYc[y2[0]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y2[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y2[0]] + mapUcb[u[0]] + 128) >> 8); out2[0] = (uint16)(0x8000 + ((Clip(tmp_r) & 0xf8) << 10) + ((Clip(tmp_g) & 0xf8) << 3) + (Clip(tmp_b) >> 3)); tmp_r = (int32)((mapYc[y2[1]] + mapVcr[v[0]] + 128) >> 8); tmp_g = (int32)((mapYc[y2[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8); tmp_b = (int32)((mapYc[y2[1]] + mapUcb[u[0]] + 128) >> 8); out2[1] = (uint16)(0x8000 + ((Clip(tmp_r) & 0xf8) << 10) + ((Clip(tmp_g) & 0xf8) << 3) + (Clip(tmp_b) >> 3)); y1 += 2; y2 += 2; out += 2; out2 += 2; u++; v++; } y1 += 2 * src_stride_y - width; y2 += 2 * src_stride_y - width; u += src_stride_u - ((width + 1) >> 1); v += src_stride_v - ((width + 1) >> 1); out -= 2 * dst_stride_frame + width; out2 -= 2 * dst_stride_frame + width; } return 0; } // YUY2 - Macro-pixel = 2 image pixels // Y0U0Y1V0....Y2U2Y3V2...Y4U4Y5V4.... #if defined(_M_IX86) && !defined(YUV_DISABLE_ASM) #define HAS_I42XTOYUY2ROW_SSE2 __declspec(naked) static void I42xToYUY2Row_SSE2(const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_frame, int width) { __asm { push esi push edi mov eax, [esp + 8 + 4] // src_y mov esi, [esp + 8 + 8] // src_u mov edx, [esp + 8 + 12] // src_v mov edi, [esp + 8 + 16] // dst_frame mov ecx, [esp + 8 + 20] // width sub edx, esi convertloop: movdqa xmm0, [eax] // Y lea eax, [eax + 16] movq xmm2, qword ptr [esi] // U movq xmm3, qword ptr [esi + edx] // V lea esi, [esi + 8] punpcklbw xmm2, xmm3 // UV movdqa xmm1, xmm0 punpcklbw xmm0, xmm2 // YUYV punpckhbw xmm1, xmm2 movdqa [edi], xmm0 movdqa [edi + 16], xmm1 lea edi, [edi + 32] sub ecx, 16 ja convertloop pop edi pop esi ret } } #elif (defined(__x86_64__) || defined(__i386__)) && !defined(YUV_DISABLE_ASM) #define HAS_I42XTOYUY2ROW_SSE2 static void I42xToYUY2Row_SSE2(const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_frame, int width) { asm volatile ( "sub %1,%2 \n" "1: \n" "movdqa (%0),%%xmm0 \n" "lea 0x10(%0),%0 \n" "movq (%1),%%xmm2 \n" "movq (%1,%2,1),%%xmm3 \n" "lea 0x8(%1),%1 \n" "punpcklbw %%xmm3,%%xmm2 \n" "movdqa %%xmm0,%%xmm1 \n" "punpcklbw %%xmm2,%%xmm0 \n" "punpckhbw %%xmm2,%%xmm1 \n" "movdqa %%xmm0,(%3) \n" "movdqa %%xmm1,0x10(%3) \n" "lea 0x20(%3),%3 \n" "sub $0x10,%4 \n" "ja 1b \n" : "+r"(src_y), // %0 "+r"(src_u), // %1 "+r"(src_v), // %2 "+r"(dst_frame), // %3 "+rm"(width) // %4 : : "memory", "cc" #if defined(__SSE2__) , "xmm0", "xmm1", "xmm2", "xmm3" #endif ); } #endif void I42xToYUY2Row_C(const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_frame, int width) { for (int x = 0; x < width - 1; x += 2) { dst_frame[0] = src_y[0]; dst_frame[1] = src_u[0]; dst_frame[2] = src_y[1]; dst_frame[3] = src_v[0]; dst_frame += 4; src_y += 2; src_u += 1; src_v += 1; } if (width & 1) { dst_frame[0] = src_y[0]; dst_frame[1] = src_u[0]; dst_frame[2] = src_y[0]; // duplicate last y dst_frame[3] = src_v[0]; } } int I422ToYUY2(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_frame = dst_frame + (height - 1) * dst_stride_frame; dst_stride_frame = -dst_stride_frame; } void (*I42xToYUY2Row)(const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_frame, int width); #if defined(HAS_I42XTOYUY2ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) && IS_ALIGNED(dst_frame, 16) && IS_ALIGNED(dst_stride_frame, 16)) { I42xToYUY2Row = I42xToYUY2Row_SSE2; } else #endif { I42xToYUY2Row = I42xToYUY2Row_C; } for (int y = 0; y < height; ++y) { I42xToYUY2Row(src_y, src_u, src_y, dst_frame, width); src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; dst_frame += dst_stride_frame; } return 0; } int I420ToYUY2(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_frame = dst_frame + (height - 1) * dst_stride_frame; dst_stride_frame = -dst_stride_frame; } void (*I42xToYUY2Row)(const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_frame, int width); #if defined(HAS_I42XTOYUY2ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) && IS_ALIGNED(dst_frame, 16) && IS_ALIGNED(dst_stride_frame, 16)) { I42xToYUY2Row = I42xToYUY2Row_SSE2; } else #endif { I42xToYUY2Row = I42xToYUY2Row_C; } for (int y = 0; y < height - 1; y += 2) { I42xToYUY2Row(src_y, src_u, src_v, dst_frame, width); I42xToYUY2Row(src_y + src_stride_y, src_u, src_v, dst_frame + dst_stride_frame, width); src_y += src_stride_y * 2; src_u += src_stride_u; src_v += src_stride_v; dst_frame += dst_stride_frame * 2; } if (height & 1) { I42xToYUY2Row(src_y, src_u, src_v, dst_frame, width); } return 0; } int I420ToUYVY(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) { return -1; } int i = 0; const uint8* y1 = src_y; const uint8* y2 = y1 + src_stride_y; const uint8* u = src_u; const uint8* v = src_v; uint8* out1 = dst_frame; uint8* out2 = dst_frame + dst_stride_frame; // Macro-pixel = 2 image pixels // U0Y0V0Y1....U2Y2V2Y3...U4Y4V4Y5..... #ifndef SCALEOPT for (; i < ((height + 1) >> 1); i++) { for (int j = 0; j < ((width + 1) >> 1); j++) { out1[0] = *u; out1[1] = y1[0]; out1[2] = *v; out1[3] = y1[1]; out2[0] = *u; out2[1] = y2[0]; out2[2] = *v; out2[3] = y2[1]; out1 += 4; out2 += 4; u++; v++; y1 += 2; y2 += 2; } y1 += 2 * src_stride_y - width; y2 += 2 * src_stride_y - width; u += src_stride_u - ((width + 1) >> 1); v += src_stride_v - ((width + 1) >> 1); out1 += 2 * (dst_stride_frame - width); out2 += 2 * (dst_stride_frame - width); } #else for (; i < (height >> 1);i++) { int32 width__ = (width >> 4); _asm { ;pusha mov eax, DWORD PTR [in1] ;1939.33 mov ecx, DWORD PTR [in2] ;1939.33 mov ebx, DWORD PTR [src_u] ;1939.33 mov edx, DWORD PTR [src_v] ;1939.33 loop0: movq xmm6, QWORD PTR [ebx] ;src_u movq xmm0, QWORD PTR [edx] ;src_v punpcklbw xmm6, xmm0 ;src_u, src_v mix movdqa xmm1, xmm6 movdqa xmm2, xmm6 movdqa xmm4, xmm6 movdqu xmm3, XMMWORD PTR [eax] ;in1 punpcklbw xmm1, xmm3 ;src_u, in1, src_v mov esi, DWORD PTR [out1] movdqu XMMWORD PTR [esi], xmm1 ;write to out1 movdqu xmm5, XMMWORD PTR [ecx] ;in2 punpcklbw xmm2, xmm5 ;src_u, in2, src_v mov edi, DWORD PTR [out2] movdqu XMMWORD PTR [edi], xmm2 ;write to out2 punpckhbw xmm4, xmm3 ;src_u, in1, src_v again movdqu XMMWORD PTR [esi+16], xmm4 ;write to out1 again add esi, 32 mov DWORD PTR [out1], esi punpckhbw xmm6, xmm5 ;src_u, in2, src_v again movdqu XMMWORD PTR [edi+16], xmm6 ;write to out2 again add edi, 32 mov DWORD PTR [out2], edi add ebx, 8 add edx, 8 add eax, 16 add ecx, 16 mov esi, DWORD PTR [width__] sub esi, 1 mov DWORD PTR [width__], esi jg loop0 mov DWORD PTR [in1], eax ;1939.33 mov DWORD PTR [in2], ecx ;1939.33 mov DWORD PTR [src_u], ebx ;1939.33 mov DWORD PTR [src_v], edx ;1939.33 ;popa emms } in1 += width; in2 += width; out1 += 2 * (dst_stride_frame - width); out2 += 2 * (dst_stride_frame - width); } #endif return 0; } int NV12ToRGB565(const uint8* src_y, int src_stride_y, const uint8* src_uv, int src_stride_uv, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_uv == NULL || dst_frame == NULL) { return -1; } // Bi-Planar: Y plane followed by an interlaced U and V plane const uint8* interlacedSrc = src_uv; uint16* out = (uint16*)(src_y) + dst_stride_frame * (height - 1); uint16* out2 = out - dst_stride_frame; int32 tmp_r, tmp_g, tmp_b; const uint8 *y1,*y2; y1 = src_y; y2 = y1 + src_stride_y; int h, w; for (h = ((height + 1) >> 1); h > 0; h--) { // 2 rows at a time, 2 y's at a time for (w = 0; w < ((width + 1) >> 1); w++) { // Vertical and horizontal sub-sampling // 1. Convert to RGB888 // 2. Shift to adequate location (in the 16 bit word) - RGB 565 tmp_r = (int32)((mapYc[y1[0]] + mapVcr[interlacedSrc[1]] + 128) >> 8); tmp_g = (int32)((mapYc[y1[0]] + mapUcg[interlacedSrc[0]] + mapVcg[interlacedSrc[1]] + 128) >> 8); tmp_b = (int32)((mapYc[y1[0]] + mapUcb[interlacedSrc[0]] + 128) >> 8); out[0] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g) & 0xfc) << 3) + (Clip(tmp_b) >> 3); tmp_r = (int32)((mapYc[y1[1]] + mapVcr[interlacedSrc[1]] + 128) >> 8); tmp_g = (int32)((mapYc[y1[1]] + mapUcg[interlacedSrc[0]] + mapVcg[interlacedSrc[1]] + 128) >> 8); tmp_b = (int32)((mapYc[y1[1]] + mapUcb[interlacedSrc[0]] + 128) >> 8); out[1] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g) & 0xfc) << 3) + (Clip(tmp_b ) >> 3); tmp_r = (int32)((mapYc[y2[0]] + mapVcr[interlacedSrc[1]] + 128) >> 8); tmp_g = (int32)((mapYc[y2[0]] + mapUcg[interlacedSrc[0]] + mapVcg[interlacedSrc[1]] + 128) >> 8); tmp_b = (int32)((mapYc[y2[0]] + mapUcb[interlacedSrc[0]] + 128) >> 8); out2[0] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g) & 0xfc) << 3) + (Clip(tmp_b) >> 3); tmp_r = (int32)((mapYc[y2[1]] + mapVcr[interlacedSrc[1]] + 128) >> 8); tmp_g = (int32)((mapYc[y2[1]] + mapUcg[interlacedSrc[0]] + mapVcg[interlacedSrc[1]] + 128) >> 8); tmp_b = (int32)((mapYc[y2[1]] + mapUcb[interlacedSrc[0]] + 128) >> 8); out2[1] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g) & 0xfc) << 3) + (Clip(tmp_b) >> 3); y1 += 2; y2 += 2; out += 2; out2 += 2; interlacedSrc += 2; } y1 += 2 * src_stride_y - width; y2 += 2 * src_stride_y - width; interlacedSrc += src_stride_uv - ((width + 1) >> 1); out -= 3 * dst_stride_frame + dst_stride_frame - width; out2 -= 3 * dst_stride_frame + dst_stride_frame - width; } return 0; } // TODO(fbarchard): Deprecated - this is same as BG24ToARGB with -height int RGB24ToARGB(const uint8* src_frame, int src_stride_frame, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_frame == NULL || dst_frame == NULL) { return -1; } int i, j, offset; uint8* outFrame = dst_frame; const uint8* inFrame = src_frame; outFrame += dst_stride_frame * (height - 1) * 4; for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { offset = j * 4; outFrame[0 + offset] = inFrame[0]; outFrame[1 + offset] = inFrame[1]; outFrame[2 + offset] = inFrame[2]; outFrame[3 + offset] = 0xff; inFrame += 3; } outFrame -= 4 * (dst_stride_frame - width); inFrame += src_stride_frame - width; } return 0; } int ARGBToI420(const uint8* src_frame, int src_stride_frame, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (height < 0) { height = -height; src_frame = src_frame + (height - 1) * src_stride_frame; src_stride_frame = -src_stride_frame; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } else #endif { ARGBToYRow = ARGBToYRow_C; } #if defined(HAS_ARGBTOUVROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) && IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) && IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) { ARGBToUVRow = ARGBToUVRow_SSSE3; } else #endif { ARGBToUVRow = ARGBToUVRow_C; } for (int y = 0; y < (height - 1); y += 2) { ARGBToUVRow(src_frame, src_stride_frame, dst_u, dst_v, width); ARGBToYRow(src_frame, dst_y, width); ARGBToYRow(src_frame + src_stride_frame, dst_y + dst_stride_y, width); src_frame += src_stride_frame * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGBToUVRow(src_frame, 0, dst_u, dst_v, width); ARGBToYRow(src_frame, dst_y, width); } return 0; } int BGRAToI420(const uint8* src_frame, int src_stride_frame, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (height < 0) { height = -height; src_frame = src_frame + (height - 1) * src_stride_frame; src_stride_frame = -src_stride_frame; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); #if defined(HAS_BGRATOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = BGRAToYRow_SSSE3; } else #endif { ARGBToYRow = BGRAToYRow_C; } #if defined(HAS_BGRATOUVROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) && IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) && IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) { ARGBToUVRow = BGRAToUVRow_SSSE3; } else #endif { ARGBToUVRow = BGRAToUVRow_C; } for (int y = 0; y < (height - 1); y += 2) { ARGBToUVRow(src_frame, src_stride_frame, dst_u, dst_v, width); ARGBToYRow(src_frame, dst_y, width); ARGBToYRow(src_frame + src_stride_frame, dst_y + dst_stride_y, width); src_frame += src_stride_frame * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGBToUVRow(src_frame, 0, dst_u, dst_v, width); ARGBToYRow(src_frame, dst_y, width); } return 0; } int ABGRToI420(const uint8* src_frame, int src_stride_frame, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (height < 0) { height = -height; src_frame = src_frame + (height - 1) * src_stride_frame; src_stride_frame = -src_stride_frame; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); #if defined(HAS_ABGRTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ABGRToYRow_SSSE3; } else #endif { ARGBToYRow = ABGRToYRow_C; } #if defined(HAS_ABGRTOUVROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) && IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) && IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) { ARGBToUVRow = ABGRToUVRow_SSSE3; } else #endif { ARGBToUVRow = ABGRToUVRow_C; } for (int y = 0; y < (height - 1); y += 2) { ARGBToUVRow(src_frame, src_stride_frame, dst_u, dst_v, width); ARGBToYRow(src_frame, dst_y, width); ARGBToYRow(src_frame + src_stride_frame, dst_y + dst_stride_y, width); src_frame += src_stride_frame * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGBToUVRow(src_frame, 0, dst_u, dst_v, width); ARGBToYRow(src_frame, dst_y, width); } return 0; } int RGB24ToI420(const uint8* src_frame, int src_stride_frame, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (height < 0) { height = -height; src_frame = src_frame + (height - 1) * src_stride_frame; src_stride_frame = -src_stride_frame; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); #if defined(HAS_RGB24TOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = RGB24ToYRow_SSSE3; } else #endif { ARGBToYRow = RGB24ToYRow_C; } #if defined(HAS_RGB24TOUVROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) && IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) && IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) { ARGBToUVRow = RGB24ToUVRow_SSSE3; } else #endif { ARGBToUVRow = RGB24ToUVRow_C; } for (int y = 0; y < (height - 1); y += 2) { ARGBToUVRow(src_frame, src_stride_frame, dst_u, dst_v, width); ARGBToYRow(src_frame, dst_y, width); ARGBToYRow(src_frame + src_stride_frame, dst_y + dst_stride_y, width); src_frame += src_stride_frame * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGBToUVRow(src_frame, 0, dst_u, dst_v, width); ARGBToYRow(src_frame, dst_y, width); } return 0; } int RAWToI420(const uint8* src_frame, int src_stride_frame, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (height < 0) { height = -height; src_frame = src_frame + (height - 1) * src_stride_frame; src_stride_frame = -src_stride_frame; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); #if defined(HAS_RAWTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = RAWToYRow_SSSE3; } else #endif { ARGBToYRow = RAWToYRow_C; } #if defined(HAS_RAWTOUVROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) && IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) && IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) { ARGBToUVRow = RAWToUVRow_SSSE3; } else #endif { ARGBToUVRow = RAWToUVRow_C; } for (int y = 0; y < (height - 1); y += 2) { ARGBToUVRow(src_frame, src_stride_frame, dst_u, dst_v, width); ARGBToYRow(src_frame, dst_y, width); ARGBToYRow(src_frame + src_stride_frame, dst_y + dst_stride_y, width); src_frame += src_stride_frame * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGBToUVRow(src_frame, 0, dst_u, dst_v, width); ARGBToYRow(src_frame, dst_y, width); } return 0; } // Convert camera sample to I420 with cropping, rotation and vertical flip. // src_width is used for source stride computation // src_height is used to compute location of planes, and indicate inversion int ConvertToI420(const uint8* sample, size_t sample_size, uint8* y, int y_stride, uint8* u, int u_stride, uint8* v, int v_stride, int crop_x, int crop_y, int src_width, int src_height, int dst_width, int dst_height, RotationMode rotation, uint32 format) { if (y == NULL || u == NULL || v == NULL || sample == NULL) { return -1; } int aligned_src_width = (src_width + 1) & ~1; const uint8* src; const uint8* src_uv; int abs_src_height = (src_height < 0) ? -src_height : src_height; int inv_dst_height = (dst_height < 0) ? -dst_height : dst_height; if (src_height < 0) { inv_dst_height = -inv_dst_height; } switch (format) { // Single plane formats case FOURCC_YUY2: src = sample + (aligned_src_width * crop_y + crop_x) * 2 ; YUY2ToI420(src, aligned_src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_UYVY: src = sample + (aligned_src_width * crop_y + crop_x) * 2; UYVYToI420(src, aligned_src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_24BG: src = sample + (src_width * crop_y + crop_x) * 3; RGB24ToI420(src, src_width * 3, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_RAW: src = sample + (src_width * crop_y + crop_x) * 3; RAWToI420(src, src_width * 3, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_ARGB: src = sample + (src_width * crop_y + crop_x) * 4; ARGBToI420(src, src_width * 4, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_BGRA: src = sample + (src_width * crop_y + crop_x) * 4; BGRAToI420(src, src_width * 4, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_ABGR: src = sample + (src_width * crop_y + crop_x) * 4; ABGRToI420(src, src_width * 4, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_BGGR: case FOURCC_RGGB: case FOURCC_GRBG: case FOURCC_GBRG: // TODO(fbarchard): Support cropping by odd numbers by adjusting fourcc. src = sample + (src_width * crop_y + crop_x); BayerRGBToI420(src, src_width, format, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; // Biplanar formats case FOURCC_NV12: src = sample + (src_width * crop_y + crop_x); src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x; NV12ToI420Rotate(src, src_width, src_uv, aligned_src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height, rotation); break; case FOURCC_NV21: src = sample + (src_width * crop_y + crop_x); src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x; // Call NV12 but with u and v parameters swapped. NV12ToI420Rotate(src, src_width, src_uv, aligned_src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height, rotation); break; case FOURCC_M420: src = sample + (src_width * crop_y) * 12 / 8 + crop_x; M420ToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_Q420: src = sample + (src_width + aligned_src_width * 2) * crop_y + crop_x; src_uv = sample + (src_width + aligned_src_width * 2) * crop_y + src_width + crop_x * 2; Q420ToI420(src, src_width * 3, src_uv, src_width * 3, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; // Triplanar formats case FOURCC_I420: case FOURCC_YV12: { const uint8* src_y = sample + (src_width * crop_y + crop_x); const uint8* src_u; const uint8* src_v; int halfwidth = (src_width + 1) / 2; int halfheight = (abs_src_height + 1) / 2; if (format == FOURCC_I420) { src_u = sample + src_width * abs_src_height + (halfwidth * crop_y + crop_x) / 2; src_v = sample + src_width * abs_src_height + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; } else { src_v = sample + src_width * abs_src_height + (halfwidth * crop_y + crop_x) / 2; src_u = sample + src_width * abs_src_height + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; } I420Rotate(src_y, src_width, src_u, halfwidth, src_v, halfwidth, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height, rotation); break; } case FOURCC_I422: case FOURCC_YV16: { const uint8* src_y = sample + src_width * crop_y + crop_x; const uint8* src_u; const uint8* src_v; int halfwidth = (src_width + 1) / 2; if (format == FOURCC_I422) { src_u = sample + src_width * abs_src_height + halfwidth * crop_y + crop_x / 2; src_v = sample + src_width * abs_src_height + halfwidth * (abs_src_height + crop_y) + crop_x / 2; } else { src_v = sample + src_width * abs_src_height + halfwidth * crop_y + crop_x / 2; src_u = sample + src_width * abs_src_height + halfwidth * (abs_src_height + crop_y) + crop_x / 2; } I422ToI420(src_y, src_width, src_u, halfwidth, src_v, halfwidth, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; } case FOURCC_I444: case FOURCC_YV24: { const uint8* src_y = sample + src_width * crop_y + crop_x; const uint8* src_u; const uint8* src_v; if (format == FOURCC_I444) { src_u = sample + src_width * (abs_src_height + crop_y) + crop_x; src_v = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; } else { src_v = sample + src_width * (abs_src_height + crop_y) + crop_x; src_u = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; } I444ToI420(src_y, src_width, src_u, halfwidth, src_v, halfwidth, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; } // Formats not supported case FOURCC_MJPG: default: return -1; // unknown fourcc - return failure code. } return 0; } } // namespace libyuv