/* * Copyright (c) 2011 The LibYuv project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/compare.h" #include #include #include "libyuv/basic_types.h" #include "libyuv/cpu_id.h" #include "row.h" namespace libyuv { #if defined(__ARM_NEON__) && !defined(YUV_DISABLE_ASM) #define HAS_SUMSQUAREERROR_NEON static uint32 SumSquareError_NEON(const uint8* src_a, const uint8* src_b, int count) { volatile uint32 sse; asm volatile ( "vmov.u8 q7, #0 \n" "vmov.u8 q9, #0 \n" "vmov.u8 q8, #0 \n" "vmov.u8 q10, #0 \n" "1: \n" "vld1.u8 {q0}, [%0]! \n" "vld1.u8 {q1}, [%1]! \n" "vsubl.u8 q2, d0, d2 \n" "vsubl.u8 q3, d1, d3 \n" "vmlal.s16 q7, d4, d4 \n" "vmlal.s16 q8, d6, d6 \n" "vmlal.s16 q8, d5, d5 \n" "vmlal.s16 q10, d7, d7 \n" "subs %2, %2, #16 \n" "bhi 1b \n" "vadd.u32 q7, q7, q8 \n" "vadd.u32 q9, q9, q10 \n" "vadd.u32 q10, q7, q9 \n" "vpaddl.u32 q1, q10 \n" "vadd.u64 d0, d2, d3 \n" "vmov.32 %3, d0[0] \n" : "+r"(src_a), "+r"(src_b), "+r"(count), "=r"(sse) : : "memory", "cc", "q0", "q1", "q2", "q3", "q7", "q8", "q9", "q10" ); return sse; } #elif defined(_M_IX86) && !defined(YUV_DISABLE_ASM) #define HAS_SUMSQUAREERROR_SSE2 __declspec(naked) static uint32 SumSquareError_SSE2(const uint8* src_a, const uint8* src_b, int count) { __asm { mov eax, [esp + 4] // src_a mov edx, [esp + 8] // src_b mov ecx, [esp + 12] // count pxor xmm0, xmm0 pxor xmm5, xmm5 sub edx, eax wloop: movdqa xmm1, [eax] movdqa xmm2, [eax + edx] lea eax, [eax + 16] movdqa xmm3, xmm1 psubusb xmm1, xmm2 psubusb xmm2, xmm3 por xmm1, xmm2 movdqa xmm2, xmm1 punpcklbw xmm1, xmm5 punpckhbw xmm2, xmm5 pmaddwd xmm1, xmm1 pmaddwd xmm2, xmm2 paddd xmm0, xmm1 paddd xmm0, xmm2 sub ecx, 16 ja wloop pshufd xmm1, xmm0, 0EEh paddd xmm0, xmm1 pshufd xmm1, xmm0, 01h paddd xmm0, xmm1 movd eax, xmm0 ret } } #elif (defined(__x86_64__) || defined(__i386__)) && !defined(YUV_DISABLE_ASM) #define HAS_SUMSQUAREERROR_SSE2 static uint32 SumSquareError_SSE2(const uint8* src_a, const uint8* src_b, int count) { uint32 sse; asm volatile ( "pxor %%xmm0,%%xmm0 \n" "pxor %%xmm5,%%xmm5 \n" "sub %0,%1 \n" "1: \n" "movdqa (%0),%%xmm1 \n" "movdqa (%0,%1,1),%%xmm2 \n" "lea 0x10(%0),%0 \n" "movdqa %%xmm1,%%xmm3 \n" "psubusb %%xmm2,%%xmm1 \n" "psubusb %%xmm3,%%xmm2 \n" "por %%xmm2,%%xmm1 \n" "movdqa %%xmm1,%%xmm2 \n" "punpcklbw %%xmm5,%%xmm1 \n" "punpckhbw %%xmm5,%%xmm2 \n" "pmaddwd %%xmm1,%%xmm1 \n" "pmaddwd %%xmm2,%%xmm2 \n" "paddd %%xmm1,%%xmm0 \n" "paddd %%xmm2,%%xmm0 \n" "sub $0x10,%2 \n" "ja 1b \n" "pshufd $0xee,%%xmm0,%%xmm1 \n" "paddd %%xmm1,%%xmm0 \n" "pshufd $0x1,%%xmm0,%%xmm1 \n" "paddd %%xmm1,%%xmm0 \n" "movd %%xmm0,%3 \n" : "+r"(src_a), // %0 "+r"(src_b), // %1 "+r"(count), // %2 "=g"(sse) // %3 : : "memory", "cc" #if defined(__SSE2__) , "xmm0", "xmm1", "xmm2", "xmm5" #endif ); return sse; } #endif static uint32 SumSquareError_C(const uint8* src_a, const uint8* src_b, int count) { uint32 sse = 0u; for (int x = 0; x < count; ++x) { int diff = src_a[0] - src_b[0]; sse += static_cast(diff * diff); src_a += 1; src_b += 1; } return sse; } uint64 ComputeSumSquareError(const uint8* src_a, const uint8* src_b, int count) { uint32 (*SumSquareError)(const uint8* src_a, const uint8* src_b, int count); #if defined(HAS_SUMSQUAREERROR_NEON) if (TestCpuFlag(kCpuHasNEON)) { SumSquareError = SumSquareError_NEON; } else #elif defined(HAS_SUMSQUAREERROR_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_a, 16) && IS_ALIGNED(src_b, 16)) { SumSquareError = SumSquareError_SSE2; } else #endif { SumSquareError = SumSquareError_C; } const int kBlockSize = 32768; uint64 sse = 0; while (count >= kBlockSize) { sse += SumSquareError(src_a, src_b, kBlockSize); src_a += kBlockSize; src_b += kBlockSize; count -= kBlockSize; } int remainder = count & ~15; if (remainder) { sse += SumSquareError(src_a, src_b, remainder); src_a += remainder; src_b += remainder; count -= remainder; } if (count) { sse += SumSquareError_C(src_a, src_b, count); } return sse; } uint64 ComputeSumSquareErrorPlane(const uint8* src_a, int stride_a, const uint8* src_b, int stride_b, int width, int height) { uint32 (*SumSquareError)(const uint8* src_a, const uint8* src_b, int count); #if defined(HAS_SUMSQUAREERROR_NEON) if (TestCpuFlag(kCpuHasNEON) && (width % 16 == 0)) { SumSquareError = SumSquareError_NEON; } else #endif { SumSquareError = SumSquareError_C; } uint64 sse = 0; for (int h = 0; h < height; ++h) { sse += SumSquareError(src_a, src_b, width); src_a += stride_a; src_b += stride_b; } return sse; } double Sse2Psnr(double samples, double sse) { double psnr; if (sse > 0.0) psnr = 10.0 * log10(255.0 * 255.0 * samples / sse); else psnr = kMaxPsnr; // Limit to prevent divide by 0 if (psnr > kMaxPsnr) psnr = kMaxPsnr; return psnr; } double Sse2Psnr(uint64 samples, uint64 sse) { double psnr; if (sse > 0) { double mse = static_cast(samples) / static_cast(sse); psnr = 10.0 * log10(255.0 * 255.0 * mse); } else { psnr = kMaxPsnr; // Limit to prevent divide by 0 } if (psnr > kMaxPsnr) psnr = kMaxPsnr; return psnr; } double CalcFramePsnr(const uint8* src_a, int stride_a, const uint8* src_b, int stride_b, int width, int height) { const uint64 samples = width * height; const uint64 sse = ComputeSumSquareErrorPlane(src_a, stride_a, src_b, stride_b, width, height); return Sse2Psnr(samples, sse); } double I420Psnr(const uint8* src_y_a, int stride_y_a, const uint8* src_u_a, int stride_u_a, const uint8* src_v_a, int stride_v_a, const uint8* src_y_b, int stride_y_b, const uint8* src_u_b, int stride_u_b, const uint8* src_v_b, int stride_v_b, int width, int height) { const uint64 sse_y = ComputeSumSquareErrorPlane(src_y_a, stride_y_a, src_y_b, stride_y_b, width, height); const int width_uv = (width + 1) >> 1; const int height_uv = (height + 1) >> 1; const uint64 sse_u = ComputeSumSquareErrorPlane(src_u_a, stride_u_a, src_u_b, stride_u_b, width_uv, height_uv); const uint64 sse_v = ComputeSumSquareErrorPlane(src_v_a, stride_v_a, src_v_b, stride_v_b, width_uv, height_uv); const uint64 samples = width * height + 2 * (width_uv * height_uv); const uint64 sse = sse_y + sse_u + sse_v; return Sse2Psnr(samples, sse); } static const int64 cc1 = 26634; // (64^2*(.01*255)^2 static const int64 cc2 = 239708; // (64^2*(.03*255)^2 static double Ssim8x8_C(const uint8* src_a, int stride_a, const uint8* src_b, int stride_b) { int64 sum_a = 0; int64 sum_b = 0; int64 sum_sq_a = 0; int64 sum_sq_b = 0; int64 sum_axb = 0; for (int i = 0; i < 8; ++i) { for (int j = 0; j < 8; ++j) { sum_a += src_a[j]; sum_b += src_b[j]; sum_sq_a += src_a[j] * src_a[j]; sum_sq_b += src_b[j] * src_b[j]; sum_axb += src_a[j] * src_b[j]; } src_a += stride_a; src_b += stride_b; } const int64 count = 64; // scale the constants by number of pixels const int64 c1 = (cc1 * count * count) >> 12; const int64 c2 = (cc2 * count * count) >> 12; const int64 sum_a_x_sum_b = sum_a * sum_b; const int64 ssim_n = (2 * sum_a_x_sum_b + c1) * (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2); const int64 sum_a_sq = sum_a*sum_a; const int64 sum_b_sq = sum_b*sum_b; const int64 ssim_d = (sum_a_sq + sum_b_sq + c1) * (count * sum_sq_a - sum_a_sq + count * sum_sq_b - sum_b_sq + c2); if (ssim_d == 0.0) return DBL_MAX; return ssim_n * 1.0 / ssim_d; } // We are using a 8x8 moving window with starting location of each 8x8 window // on the 4x4 pixel grid. Such arrangement allows the windows to overlap // block boundaries to penalize blocking artifacts. double CalcFrameSsim(const uint8* src_a, int stride_a, const uint8* src_b, int stride_b, int width, int height) { int samples = 0; double ssim_total = 0; double (*Ssim8x8)(const uint8* src_a, int stride_a, const uint8* src_b, int stride_b); Ssim8x8 = Ssim8x8_C; // sample point start with each 4x4 location for (int i = 0; i < height - 8; i += 4) { for (int j = 0; j < width - 8; j += 4) { ssim_total += Ssim8x8(src_a + j, stride_a, src_b + j, stride_b); samples++; } src_a += stride_a * 4; src_b += stride_b * 4; } ssim_total /= samples; return ssim_total; } double I420Ssim(const uint8* src_y_a, int stride_y_a, const uint8* src_u_a, int stride_u_a, const uint8* src_v_a, int stride_v_a, const uint8* src_y_b, int stride_y_b, const uint8* src_u_b, int stride_u_b, const uint8* src_v_b, int stride_v_b, int width, int height) { const double ssim_y = CalcFrameSsim(src_y_a, stride_y_a, src_y_b, stride_y_b, width, height); const int width_uv = (width + 1) >> 1; const int height_uv = (height + 1) >> 1; const double ssim_u = CalcFrameSsim(src_u_a, stride_u_a, src_u_b, stride_u_b, width_uv, height_uv); const double ssim_v = CalcFrameSsim(src_v_a, stride_v_a, src_v_b, stride_v_b, width_uv, height_uv); return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v); } } // namespace libyuv