/* * Copyright 2015 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include // For lrintf #include #include "libyuv/convert.h" #include "libyuv/convert_argb.h" #include "libyuv/convert_from.h" #include "libyuv/convert_from_argb.h" #include "libyuv/cpu_id.h" #include "libyuv/row.h" // For Sobel #include "../unit_test/unit_test.h" namespace libyuv { // TODO(fbarchard): Port high accuracy YUV to RGB to Neon. #if !defined(LIBYUV_DISABLE_NEON) && \ (defined(__aarch64__) || defined(__ARM_NEON__) || defined(LIBYUV_NEON)) #define MAX_CDIFF 2 #define ERROR_R 3 #define ERROR_G 3 #define ERROR_B 5 #define ERROR_FULL 7 #else #define MAX_CDIFF 0 #define ERROR_R 1 #define ERROR_G 1 #define ERROR_B 3 #define ERROR_FULL 5 #endif #define TESTCS(TESTNAME, YUVTOARGB, ARGBTOYUV, HS1, HS, HN, DIFF, CDIFF) \ TEST_F(libyuvTest, TESTNAME) { \ const int kPixels = benchmark_width_ * benchmark_height_; \ const int kHalfPixels = ((benchmark_width_ + 1) / 2) * \ ((benchmark_height_ + HS1) / HS); \ align_buffer_64(orig_y, kPixels); \ align_buffer_64(orig_u, kHalfPixels); \ align_buffer_64(orig_v, kHalfPixels); \ align_buffer_64(orig_pixels, kPixels * 4); \ align_buffer_64(temp_y, kPixels); \ align_buffer_64(temp_u, kHalfPixels); \ align_buffer_64(temp_v, kHalfPixels); \ align_buffer_64(dst_pixels_opt, kPixels * 4); \ align_buffer_64(dst_pixels_c, kPixels * 4); \ \ MemRandomize(orig_pixels, kPixels * 4); \ MemRandomize(orig_y, kPixels); \ MemRandomize(orig_u, kHalfPixels); \ MemRandomize(orig_v, kHalfPixels); \ MemRandomize(temp_y, kPixels); \ MemRandomize(temp_u, kHalfPixels); \ MemRandomize(temp_v, kHalfPixels); \ MemRandomize(dst_pixels_opt, kPixels * 4); \ MemRandomize(dst_pixels_c, kPixels * 4); \ \ /* The test is overall for color conversion matrix being reversible, so */ \ /* this initializes the pixel with 2x2 blocks to eliminate subsampling. */ \ uint8* p = orig_y; \ for (int y = 0; y < benchmark_height_ - HS1; y += HS) { \ for (int x = 0; x < benchmark_width_ - 1; x += 2) { \ uint8 r = static_cast(random()); \ p[0] = r; \ p[1] = r; \ p[HN] = r; \ p[HN + 1] = r; \ p += 2; \ } \ if (benchmark_width_ & 1) { \ uint8 r = static_cast(random()); \ p[0] = r; \ p[HN] = r; \ p += 1; \ } \ p += HN; \ } \ \ /* Start with YUV converted to ARGB. */ \ YUVTOARGB(orig_y, benchmark_width_, \ orig_u, (benchmark_width_ + 1) / 2, \ orig_v, (benchmark_width_ + 1) / 2, \ orig_pixels, benchmark_width_ * 4, \ benchmark_width_, benchmark_height_); \ \ ARGBTOYUV(orig_pixels, benchmark_width_ * 4, \ temp_y, benchmark_width_, \ temp_u, (benchmark_width_ + 1) / 2, \ temp_v, (benchmark_width_ + 1) / 2, \ benchmark_width_, benchmark_height_); \ \ MaskCpuFlags(0); \ YUVTOARGB(temp_y, benchmark_width_, \ temp_u, (benchmark_width_ + 1) / 2, \ temp_v, (benchmark_width_ + 1) / 2, \ dst_pixels_c, benchmark_width_ * 4, \ benchmark_width_, benchmark_height_); \ MaskCpuFlags(-1); \ \ for (int i = 0; i < benchmark_iterations_; ++i) { \ YUVTOARGB(temp_y, benchmark_width_, \ temp_u, (benchmark_width_ + 1) / 2, \ temp_v, (benchmark_width_ + 1) / 2, \ dst_pixels_opt, benchmark_width_ * 4, \ benchmark_width_, benchmark_height_); \ } \ /* Test C and SIMD match. */ \ for (int i = 0; i < kPixels * 4; ++i) { \ EXPECT_NEAR(dst_pixels_c[i], dst_pixels_opt[i], CDIFF); \ } \ /* Test SIMD is close to original. */ \ for (int i = 0; i < kPixels * 4; ++i) { \ EXPECT_NEAR(static_cast(orig_pixels[i]), \ static_cast(dst_pixels_opt[i]), DIFF); \ } \ \ free_aligned_buffer_64(orig_pixels); \ free_aligned_buffer_64(orig_y); \ free_aligned_buffer_64(orig_u); \ free_aligned_buffer_64(orig_v); \ free_aligned_buffer_64(temp_y); \ free_aligned_buffer_64(temp_u); \ free_aligned_buffer_64(temp_v); \ free_aligned_buffer_64(dst_pixels_opt); \ free_aligned_buffer_64(dst_pixels_c); \ } \ // TODO(fbarchard): Reduce C to Opt diff to 0. TESTCS(TestI420, I420ToARGB, ARGBToI420, 1, 2, benchmark_width_, ERROR_FULL, MAX_CDIFF) TESTCS(TestI422, I422ToARGB, ARGBToI422, 0, 1, 0, ERROR_FULL, MAX_CDIFF) TESTCS(TestJ420, J420ToARGB, ARGBToJ420, 1, 2, benchmark_width_, 3, 0) TESTCS(TestJ422, J422ToARGB, ARGBToJ422, 0, 1, 0, 4, 0) static void YUVToRGB(int y, int u, int v, int* r, int* g, int* b) { const int kWidth = 16; const int kHeight = 1; const int kPixels = kWidth * kHeight; const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2); SIMD_ALIGNED(uint8 orig_y[16]); SIMD_ALIGNED(uint8 orig_u[8]); SIMD_ALIGNED(uint8 orig_v[8]); SIMD_ALIGNED(uint8 orig_pixels[16 * 1 * 4]); memset(orig_y, y, kPixels); memset(orig_u, u, kHalfPixels); memset(orig_v, v, kHalfPixels); /* YUV converted to ARGB. */ I422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2, orig_pixels, kWidth * 4, kWidth, kHeight); *b = orig_pixels[0]; *g = orig_pixels[1]; *r = orig_pixels[2]; } static void YToRGB(int y, int* r, int* g, int* b) { const int kWidth = 16; const int kHeight = 1; const int kPixels = kWidth * kHeight; SIMD_ALIGNED(uint8 orig_y[16]); SIMD_ALIGNED(uint8 orig_pixels[16 * 1 * 4]); memset(orig_y, y, kPixels); /* YUV converted to ARGB. */ YToARGB(orig_y, kWidth, orig_pixels, kWidth * 4, kWidth, kHeight); *b = orig_pixels[0]; *g = orig_pixels[1]; *r = orig_pixels[2]; } static int RoundToByte(double f) { int i = lrintf(f); if (i < 0) { i = 0; } if (i > 255) { i = 255; } return i; } static void YUVToRGBReference(int y, int u, int v, int* r, int* g, int* b) { *r = RoundToByte((y - 16) * 1.164 + (v - 128) * 1.596); *g = RoundToByte((y - 16) * 1.164 + (u - 128) * -0.391 + (v - 128) * -0.813); *b = RoundToByte((y - 16) * 1.164 + (u - 128) * 2.018); } TEST_F(libyuvTest, TestYUV) { int r0, g0, b0, r1, g1, b1; // cyan (less red) YUVToRGBReference(240, 255, 0, &r0, &g0, &b0); EXPECT_EQ(56, r0); EXPECT_EQ(255, g0); EXPECT_EQ(255, b0); YUVToRGB(240, 255, 0, &r1, &g1, &b1); EXPECT_EQ(57, r1); EXPECT_EQ(255, g1); EXPECT_EQ(255, b1); // green (less red and blue) YUVToRGBReference(240, 0, 0, &r0, &g0, &b0); EXPECT_EQ(56, r0); EXPECT_EQ(255, g0); EXPECT_EQ(2, b0); YUVToRGB(240, 0, 0, &r1, &g1, &b1); EXPECT_EQ(57, r1); EXPECT_EQ(255, g1); EXPECT_EQ(5, b1); for (int i = 0; i < 256; ++i) { YUVToRGBReference(i, 128, 128, &r0, &g0, &b0); YUVToRGB(i, 128, 128, &r1, &g1, &b1); EXPECT_NEAR(r0, r1, ERROR_R); EXPECT_NEAR(g0, g1, ERROR_G); EXPECT_NEAR(b0, b1, ERROR_B); YUVToRGBReference(i, 0, 0, &r0, &g0, &b0); YUVToRGB(i, 0, 0, &r1, &g1, &b1); EXPECT_NEAR(r0, r1, ERROR_R); EXPECT_NEAR(g0, g1, ERROR_G); EXPECT_NEAR(b0, b1, ERROR_B); YUVToRGBReference(i, 0, 255, &r0, &g0, &b0); YUVToRGB(i, 0, 255, &r1, &g1, &b1); EXPECT_NEAR(r0, r1, ERROR_R); EXPECT_NEAR(g0, g1, ERROR_G); EXPECT_NEAR(b0, b1, ERROR_B); } } TEST_F(libyuvTest, TestGreyYUV) { int r0, g0, b0, r1, g1, b1, r2, g2, b2; // black YUVToRGBReference(16, 128, 128, &r0, &g0, &b0); EXPECT_EQ(0, r0); EXPECT_EQ(0, g0); EXPECT_EQ(0, b0); YUVToRGB(16, 128, 128, &r1, &g1, &b1); EXPECT_EQ(0, r1); EXPECT_EQ(0, g1); EXPECT_EQ(0, b1); // white YUVToRGBReference(240, 128, 128, &r0, &g0, &b0); EXPECT_EQ(255, r0); EXPECT_EQ(255, g0); EXPECT_EQ(255, b0); YUVToRGB(240, 128, 128, &r1, &g1, &b1); EXPECT_EQ(255, r1); EXPECT_EQ(255, g1); EXPECT_EQ(255, b1); // grey YUVToRGBReference(128, 128, 128, &r0, &g0, &b0); EXPECT_EQ(130, r0); EXPECT_EQ(130, g0); EXPECT_EQ(130, b0); YUVToRGB(128, 128, 128, &r1, &g1, &b1); EXPECT_EQ(130, r1); EXPECT_EQ(130, g1); EXPECT_EQ(130, b1); for (int y = 0; y < 256; ++y) { YUVToRGBReference(y, 128, 128, &r0, &g0, &b0); YUVToRGB(y, 128, 128, &r1, &g1, &b1); YToRGB(y, &r2, &g2, &b2); EXPECT_EQ(r0, r1); EXPECT_EQ(g0, g1); EXPECT_EQ(b0, b1); EXPECT_EQ(r0, r2); EXPECT_EQ(g0, g2); EXPECT_EQ(b0, b2); } } // This full test should be run occassionally to test all values are accurate. TEST_F(libyuvTest, TestFullYUV) { int i; // If using small image, step faster. int step = benchmark_width_ <= 128 ? 5 : 1; int r0, g0, b0, r1, g1, b1; int rn[256] = { 0, }, gn[256] = { 0, }, bn[256] = { 0, }, rx[256] = { 0, }, gx[256] = { 0, }, bx[256] = { 0, }; int rh[256] = { 0, }, gh[256] = { 0, }, bh[256] = { 0, }; for (int y = 0; y < 256; y += step) { for (int u = 0; u < 256; u += step) { for (int v = 0; v < 256; v += step) { YUVToRGBReference(y, u, v, &r0, &g0, &b0); YUVToRGB(y, u, v, &r1, &g1, &b1); EXPECT_NEAR(r0, r1, ERROR_R); EXPECT_NEAR(g0, g1, ERROR_G); EXPECT_NEAR(b0, b1, ERROR_B); int rd = r1 - r0; int gd = g1 - g0; int bd = b1 - b0; ++rh[rd + 128]; ++gh[gd + 128]; ++bh[bd + 128]; if (rd < rn[r0]) { rn[r0] = rd; } if (gd < gn[g0]) { gn[g0] = gd; } if (bd < bn[b0]) { bn[b0] = bd; } if (rd > rx[r0]) { rx[r0] = rd; } if (gd > gx[g0]) { gx[g0] = gd; } if (bd > bx[b0]) { bx[b0] = bd; } } } } if (step == 1) { for (i = 0; i < 256; ++i) { printf("red %2d %2d, green %2d %2d, blue %2d %2d\n", rn[i], rx[i], gn[i], gx[i], bn[i], bx[i]); } } printf("hist\t"); for (i = 0; i < 256; ++i) { if (rh[i] || gh[i] || bh[i]) { printf("\t%8d", i - 128); } } printf("\nred\t"); for (i = 0; i < 256; ++i) { if (rh[i] || gh[i] || bh[i]) { printf("\t%8d", rh[i]); } } printf("\ngreen\t"); for (i = 0; i < 256; ++i) { if (rh[i] || gh[i] || bh[i]) { printf("\t%8d", gh[i]); } } printf("\nblue\t"); for (i = 0; i < 256; ++i) { if (rh[i] || gh[i] || bh[i]) { printf("\t%8d", bh[i]); } } printf("\n"); } } // namespace libyuv