/* * Copyright (c) 2011 The LibYuv project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/planar_functions.h" #include "libyuv/rotate.h" #include "rotate_priv.h" #include "libyuv/cpu_id.h" namespace libyuv { #if (defined(WIN32) || defined(__x86_64__) || defined(__i386__)) \ && !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) #if defined(_MSC_VER) #define TALIGN16(t, var) static __declspec(align(16)) t _ ## var #else #define TALIGN16(t, var) t var __attribute__((aligned(16))) #endif // Shuffle table for reversing the bytes. extern "C" TALIGN16(const uint8, kShuffleReverse[16]) = { 15u, 14u, 13u, 12u, 11u, 10u, 9u, 8u, 7u, 6u, 5u, 4u, 3u, 2u, 1u, 0u }; // Shuffle table for reversing the bytes of UV channels. extern "C" TALIGN16(const uint8, kShuffleReverseUV[16]) = { 14u, 12u, 10u, 8u, 6u, 4u, 2u, 0u, 15u, 13u, 11u, 9u, 7u, 5u, 3u, 1u }; #endif typedef void (*reverse_uv_func)(const uint8*, uint8*, uint8*, int); typedef void (*reverse_func)(const uint8*, uint8*, int); typedef void (*rotate_uv_wx8_func)(const uint8*, int, uint8*, int, uint8*, int, int); typedef void (*rotate_uv_wxh_func)(const uint8*, int, uint8*, int, uint8*, int, int, int); typedef void (*rotate_wx8_func)(const uint8*, int, uint8*, int, int); typedef void (*rotate_wxh_func)(const uint8*, int, uint8*, int, int, int); #ifdef __ARM_NEON__ extern "C" { void RestoreRegisters_NEON(unsigned long long *restore); void SaveRegisters_NEON(unsigned long long *store); #define HAS_REVERSE_LINE_NEON void ReverseLine_NEON(const uint8* src, uint8* dst, int width); #define HAS_REVERSE_LINE_UV_NEON void ReverseLineUV_NEON(const uint8* src, uint8* dst_a, uint8* dst_b, int width); #define HAS_TRANSPOSE_WX8_NEON void TransposeWx8_NEON(const uint8* src, int src_stride, uint8* dst, int dst_stride, int width); #define HAS_TRANSPOSE_UVWX8_NEON void TransposeUVWx8_NEON(const uint8* src, int src_stride, uint8* dst_a, int dst_stride_a, uint8* dst_b, int dst_stride_b, int width); } // extern "C" #endif #if defined(WIN32) && !defined(COVERAGE_ENABLED) #define HAS_TRANSPOSE_WX8_SSSE3 __declspec(naked) static void TransposeWx8_SSSE3(const uint8* src, int src_stride, uint8* dst, int dst_stride, int width) { __asm { push edi push esi push ebp mov eax, [esp + 12 + 4] // src mov edi, [esp + 12 + 8] // src_stride mov edx, [esp + 12 + 12] // dst mov esi, [esp + 12 + 16] // dst_stride mov ecx, [esp + 12 + 20] // width convertloop : // Read in the data from the source pointer. // First round of bit swap. movq xmm0, qword ptr [eax] lea ebp, [eax + 8] movq xmm1, qword ptr [eax + edi] lea eax, [eax + 2 * edi] punpcklbw xmm0, xmm1 movq xmm2, qword ptr [eax] movdqa xmm1, xmm0 palignr xmm1, xmm1, 8 movq xmm3, qword ptr [eax + edi] lea eax, [eax + 2 * edi] punpcklbw xmm2, xmm3 movdqa xmm3, xmm2 movq xmm4, qword ptr [eax] palignr xmm3, xmm3, 8 movq xmm5, qword ptr [eax + edi] punpcklbw xmm4, xmm5 lea eax, [eax + 2 * edi] movdqa xmm5, xmm4 movq xmm6, qword ptr [eax] palignr xmm5, xmm5, 8 movq xmm7, qword ptr [eax + edi] punpcklbw xmm6, xmm7 mov eax, ebp movdqa xmm7, xmm6 palignr xmm7, xmm7, 8 // Second round of bit swap. punpcklwd xmm0, xmm2 punpcklwd xmm1, xmm3 movdqa xmm2, xmm0 movdqa xmm3, xmm1 palignr xmm2, xmm2, 8 palignr xmm3, xmm3, 8 punpcklwd xmm4, xmm6 punpcklwd xmm5, xmm7 movdqa xmm6, xmm4 movdqa xmm7, xmm5 palignr xmm6, xmm6, 8 palignr xmm7, xmm7, 8 // Third round of bit swap. // Write to the destination pointer. punpckldq xmm0, xmm4 movq qword ptr [edx], xmm0 movdqa xmm4, xmm0 palignr xmm4, xmm4, 8 movq qword ptr [edx + esi], xmm4 lea edx, [edx + 2 * esi] punpckldq xmm2, xmm6 movdqa xmm6, xmm2 palignr xmm6, xmm6, 8 movq qword ptr [edx], xmm2 punpckldq xmm1, xmm5 movq qword ptr [edx + esi], xmm6 lea edx, [edx + 2 * esi] movdqa xmm5, xmm1 movq qword ptr [edx], xmm1 palignr xmm5, xmm5, 8 punpckldq xmm3, xmm7 movq qword ptr [edx + esi], xmm5 lea edx, [edx + 2 * esi] movq qword ptr [edx], xmm3 movdqa xmm7, xmm3 palignr xmm7, xmm7, 8 movq qword ptr [edx + esi], xmm7 lea edx, [edx + 2 * esi] sub ecx, 8 ja convertloop pop ebp pop esi pop edi ret } } #elif (defined(__i386__) || defined(__x86_64__)) && \ !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) #define HAS_TRANSPOSE_WX8_SSSE3 static void TransposeWx8_SSSE3(const uint8* src, int src_stride, uint8* dst, int dst_stride, int width) { asm volatile( "1:" // Read in the data from the source pointer. // First round of bit swap. "movq (%0),%%xmm0\n" "movq (%0,%3),%%xmm1\n" "lea (%0,%3,2),%0\n" "punpcklbw %%xmm1,%%xmm0\n" "movq (%0),%%xmm2\n" "movdqa %%xmm0,%%xmm1\n" "palignr $0x8,%%xmm1,%%xmm1\n" "movq (%0,%3),%%xmm3\n" "lea (%0,%3,2),%0\n" "punpcklbw %%xmm3,%%xmm2\n" "movdqa %%xmm2,%%xmm3\n" "movq (%0),%%xmm4\n" "palignr $0x8,%%xmm3,%%xmm3\n" "movq (%0,%3),%%xmm5\n" "lea (%0,%3,2),%0\n" "punpcklbw %%xmm5,%%xmm4\n" "movdqa %%xmm4,%%xmm5\n" "movq (%0),%%xmm6\n" "palignr $0x8,%%xmm5,%%xmm5\n" "movq (%0,%3),%%xmm7\n" "lea (%0,%3,2),%0\n" "punpcklbw %%xmm7,%%xmm6\n" "neg %3\n" "movdqa %%xmm6,%%xmm7\n" "lea 0x8(%0,%3,8),%0\n" "palignr $0x8,%%xmm7,%%xmm7\n" "neg %3\n" // Second round of bit swap. "punpcklwd %%xmm2,%%xmm0\n" "punpcklwd %%xmm3,%%xmm1\n" "movdqa %%xmm0,%%xmm2\n" "movdqa %%xmm1,%%xmm3\n" "palignr $0x8,%%xmm2,%%xmm2\n" "palignr $0x8,%%xmm3,%%xmm3\n" "punpcklwd %%xmm6,%%xmm4\n" "punpcklwd %%xmm7,%%xmm5\n" "movdqa %%xmm4,%%xmm6\n" "movdqa %%xmm5,%%xmm7\n" "palignr $0x8,%%xmm6,%%xmm6\n" "palignr $0x8,%%xmm7,%%xmm7\n" // Third round of bit swap. // Write to the destination pointer. "punpckldq %%xmm4,%%xmm0\n" "movq %%xmm0,(%1)\n" "movdqa %%xmm0,%%xmm4\n" "palignr $0x8,%%xmm4,%%xmm4\n" "movq %%xmm4,(%1,%4)\n" "lea (%1,%4,2),%1\n" "punpckldq %%xmm6,%%xmm2\n" "movdqa %%xmm2,%%xmm6\n" "movq %%xmm2,(%1)\n" "palignr $0x8,%%xmm6,%%xmm6\n" "punpckldq %%xmm5,%%xmm1\n" "movq %%xmm6,(%1,%4)\n" "lea (%1,%4,2),%1\n" "movdqa %%xmm1,%%xmm5\n" "movq %%xmm1,(%1)\n" "palignr $0x8,%%xmm5,%%xmm5\n" "movq %%xmm5,(%1,%4)\n" "lea (%1,%4,2),%1\n" "punpckldq %%xmm7,%%xmm3\n" "movq %%xmm3,(%1)\n" "movdqa %%xmm3,%%xmm7\n" "palignr $0x8,%%xmm7,%%xmm7\n" "movq %%xmm7,(%1,%4)\n" "lea (%1,%4,2),%1\n" "sub $0x8,%2\n" "ja 1b\n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width) // %2 : "r"(static_cast(src_stride)), // %3 "r"(static_cast(dst_stride)) // %4 : "memory" ); } #endif static void TransposeWx8_C(const uint8* src, int src_stride, uint8* dst, int dst_stride, int w) { int i, j; for (i = 0; i < w; ++i) for (j = 0; j < 8; ++j) dst[i * dst_stride + j] = src[j * src_stride + i]; } static void TransposeWxH_C(const uint8* src, int src_stride, uint8* dst, int dst_stride, int width, int height) { int i, j; for (i = 0; i < width; ++i) for (j = 0; j < height; ++j) dst[i * dst_stride + j] = src[j * src_stride + i]; } void TransposePlane(const uint8* src, int src_stride, uint8* dst, int dst_stride, int width, int height) { int i = height; rotate_wx8_func TransposeWx8; rotate_wxh_func TransposeWxH; #if defined(HAS_TRANSPOSE_WX8_NEON) if (libyuv::TestCpuFlag(libyuv::kCpuHasNEON) && (width % 8 == 0) && IS_ALIGNED(src, 16) && (src_stride % 8 == 0) && IS_ALIGNED(dst, 16) && (dst_stride % 8 == 0)) { TransposeWx8 = TransposeWx8_NEON; TransposeWxH = TransposeWxH_C; } else #endif #if defined(HAS_TRANSPOSE_WX8_SSSE3) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) && (width % 8 == 0) && IS_ALIGNED(src, 16) && (src_stride % 8 == 0) && IS_ALIGNED(dst, 16) && (dst_stride % 8 == 0)) { TransposeWx8 = TransposeWx8_SSSE3; TransposeWxH = TransposeWxH_C; } else #endif { TransposeWx8 = TransposeWx8_C; TransposeWxH = TransposeWxH_C; } // work across the source in 8x8 tiles while (i >= 8) { TransposeWx8(src, src_stride, dst, dst_stride, width); src += 8 * src_stride; // go down 8 rows dst += 8; // move over 8 columns i -= 8; } TransposeWxH(src, src_stride, dst, dst_stride, width, i); } void RotatePlane90(const uint8* src, int src_stride, uint8* dst, int dst_stride, int width, int height) { // Rotate by 90 is a transpose with the source read // from bottom to top. So set the source pointer to the end // of the buffer and flip the sign of the source stride. src += src_stride * (height - 1); src_stride = -src_stride; TransposePlane(src, src_stride, dst, dst_stride, width, height); } void RotatePlane270(const uint8* src, int src_stride, uint8* dst, int dst_stride, int width, int height) { // Rotate by 270 is a transpose with the destination written // from bottom to top. So set the destination pointer to the end // of the buffer and flip the sign of the destination stride. dst += dst_stride * (width - 1); dst_stride = -dst_stride; TransposePlane(src, src_stride, dst, dst_stride, width, height); } static void ReverseLine_C(const uint8* src, uint8* dst, int width) { int i; src += width; for (i = 0; i < width; ++i) { --src; dst[i] = src[0]; } } #if defined(WIN32) && !defined(COVERAGE_ENABLED) #define HAS_REVERSE_LINE_SSSE3 __declspec(naked) static void ReverseLine_SSSE3(const uint8* src, uint8* dst, int width) { __asm { mov eax, [esp + 4] // src mov edx, [esp + 8] // dst mov ecx, [esp + 12] // width movdqa xmm7, _kShuffleReverse lea eax, [eax + ecx - 16] convertloop : movdqa xmm0, [eax] lea eax, [eax - 16] pshufb xmm0, xmm7 movdqa [edx], xmm0 lea edx, [edx + 16] sub ecx, 16 ja convertloop ret } } #elif (defined(__i386__) || defined(__x86_64__)) && \ !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) #define HAS_REVERSE_LINE_SSSE3 static void ReverseLine_SSSE3(const uint8* src, uint8* dst, int width) { intptr_t temp_width = static_cast(width); asm volatile( "movdqa (%3),%%xmm7\n" "lea -0x10(%0,%2,1),%0\n" "1:" "movdqa (%0),%%xmm0\n" "lea -0x10(%0),%0\n" "pshufb %%xmm7,%%xmm0\n" "movdqa %%xmm0,(%1)\n" "lea 0x10(%1),%1\n" "sub $0x10,%2\n" "ja 1b\n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(temp_width) // %2 : "r"(kShuffleReverse) // %3 : "memory" ); } #endif void RotatePlane180(const uint8* src, int src_stride, uint8* dst, int dst_stride, int width, int height) { int i; reverse_func ReverseLine; #if defined(HAS_REVERSE_LINE_NEON) if (libyuv::TestCpuFlag(libyuv::kCpuHasNEON) && (width % 16 == 0) && IS_ALIGNED(src, 16) && (src_stride % 16 == 0) && IS_ALIGNED(dst, 16) && (dst_stride % 16 == 0)) { ReverseLine = ReverseLine_NEON; } else #endif #if defined(HAS_REVERSE_LINE_SSSE3) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) && (width % 16 == 0) && IS_ALIGNED(src, 16) && (src_stride % 16 == 0) && IS_ALIGNED(dst, 16) && (dst_stride % 16 == 0)) { ReverseLine = ReverseLine_SSSE3; } else #endif { ReverseLine = ReverseLine_C; } // Rotate by 180 is a mirror with the destination // written in reverse. dst += dst_stride * (height - 1); for (i = 0; i < height; ++i) { ReverseLine(src, dst, width); src += src_stride; dst -= dst_stride; } } static void TransposeUVWx8_C(const uint8* src, int src_stride, uint8* dst_a, int dst_stride_a, uint8* dst_b, int dst_stride_b, int w) { int i, j; for (i = 0; i < w * 2; i += 2) for (j = 0; j < 8; ++j) { dst_a[j + ((i >> 1) * dst_stride_a)] = src[i + (j * src_stride)]; dst_b[j + ((i >> 1) * dst_stride_b)] = src[i + (j * src_stride) + 1]; } } static void TransposeUVWxH_C(const uint8* src, int src_stride, uint8* dst_a, int dst_stride_a, uint8* dst_b, int dst_stride_b, int w, int h) { int i, j; for (i = 0; i < w*2; i += 2) for (j = 0; j < h; ++j) { dst_a[j + ((i >> 1) * dst_stride_a)] = src[i + (j * src_stride)]; dst_b[j + ((i >> 1) * dst_stride_b)] = src[i + (j * src_stride) + 1]; } } void TransposeUV(const uint8* src, int src_stride, uint8* dst_a, int dst_stride_a, uint8* dst_b, int dst_stride_b, int width, int height) { int i = height; rotate_uv_wx8_func TransposeWx8; rotate_uv_wxh_func TransposeWxH; #if defined(HAS_TRANSPOSE_UVWX8_NEON) if (libyuv::TestCpuFlag(libyuv::kCpuHasNEON) && (width % 8 == 0) && IS_ALIGNED(src, 16) && (src_stride % 8 == 0) && IS_ALIGNED(dst_a, 16) && (dst_stride_a % 8 == 0) && IS_ALIGNED(dst_b, 16) && (dst_stride_b % 8 == 0)) { unsigned long long store_reg[8]; SaveRegisters_NEON(store_reg); TransposeWx8 = TransposeUVWx8_NEON; TransposeWxH = TransposeUVWxH_C; } else #endif #if defined(HAS_TRANSPOSE_UVWX8_SSE2) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) && (width % 8 == 0) && IS_ALIGNED(src, 16) && (src_stride % 8 == 0) && IS_ALIGNED(dst_a, 16) && (dst_stride_a % 8 == 0) && IS_ALIGNED(dst_b, 16) && (dst_stride_b % 8 == 0)) { TransposeWx8 = TransposeUVWx8_SSE2; TransposeWxH = TransposeUVWxH_C; } else #endif { TransposeWx8 = TransposeUVWx8_C; TransposeWxH = TransposeUVWxH_C; } // work through the source in 8x8 tiles while (i >= 8) { TransposeWx8(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b, width); src += 8 * src_stride; // go down 8 rows dst_a += 8; // move over 8 columns dst_b += 8; // move over 8 columns i -= 8; } TransposeWxH(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b, width, i); #if defined(HAS_TRANSPOSE_UVWX8_NEON) if (libyuv::TestCpuFlag(libyuv::kCpuHasNEON)) { RestoreRegisters_NEON(store_reg); } #endif } void RotateUV90(const uint8* src, int src_stride, uint8* dst_a, int dst_stride_a, uint8* dst_b, int dst_stride_b, int width, int height) { src += src_stride * (height - 1); src_stride = -src_stride; TransposeUV(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b, width, height); } void RotateUV270(const uint8* src, int src_stride, uint8* dst_a, int dst_stride_a, uint8* dst_b, int dst_stride_b, int width, int height) { dst_a += dst_stride_a * (width - 1); dst_b += dst_stride_b * (width - 1); dst_stride_a = -dst_stride_a; dst_stride_b = -dst_stride_b; TransposeUV(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b, width, height); } #if defined(WIN32) && !defined(COVERAGE_ENABLED) #define HAS_REVERSE_LINE_UV_SSSE3 __declspec(naked) void ReverseLineUV_SSSE3(const uint8* src, uint8* dst_a, uint8* dst_b, int width) { __asm { push edi mov eax, [esp + 4 + 4] // src mov edx, [esp + 4 + 8] // dst_a mov edi, [esp + 4 + 12] // dst_b mov ecx, [esp + 4 + 16] // width movdqa xmm7, _kShuffleReverseUV lea eax, [eax + 2 * ecx - 16] convertloop : movdqa xmm0, [eax] lea eax, [eax - 16] pshufb xmm0, xmm7 movlpd qword ptr [edx], xmm0 lea edx, [edx + 8] movhpd qword ptr [edi], xmm0 lea edi, [edi + 8] sub ecx, 8 ja convertloop pop edi ret } } #elif (defined(__i386__) || defined(__x86_64__)) && \ !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) #define HAS_REVERSE_LINE_UV_SSSE3 void ReverseLineUV_SSSE3(const uint8* src, uint8* dst_a, uint8* dst_b, int width) { intptr_t temp_width = static_cast(width); asm volatile( "movdqa (%4),%%xmm7\n" "lea -0x10(%0,%3,2),%0\n" "1:" "movdqa (%0),%%xmm0\n" "lea -0x10(%0),%0\n" "pshufb %%xmm7,%%xmm0\n" "movlpd %%xmm0,(%1)\n" "lea 0x8(%1),%1\n" "movhpd %%xmm0,(%2)\n" "lea 0x8(%2),%2\n" "sub $0x8,%3\n" "ja 1b\n" : "+r"(src), // %0 "+r"(dst_a), // %1 "+r"(dst_b), // %2 "+r"(temp_width) // %3 : "r"(kShuffleReverseUV) // %4 : "memory" ); } #endif static void ReverseLineUV_C(const uint8* src, uint8* dst_a, uint8* dst_b, int width) { int i; src += width << 1; for (i = 0; i < width; ++i) { src -= 2; dst_a[i] = src[0]; dst_b[i] = src[1]; } } void RotateUV180(const uint8* src, int src_stride, uint8* dst_a, int dst_stride_a, uint8* dst_b, int dst_stride_b, int width, int height) { int i; reverse_uv_func ReverseLine; // TODO(frkoenig) : do processor detection here. #if defined(HAS_REVERSE_LINE_UV_NEON) if (libyuv::TestCpuFlag(libyuv::kCpuHasNEON) && (width % 16 == 0) && IS_ALIGNED(src, 16) && (src_stride % 16 == 0) && IS_ALIGNED(dst_a, 16) && (dst_stride_a % 8 == 0) && IS_ALIGNED(dst_b, 16) && (dst_stride_b % 8 == 0) ) { ReverseLine = ReverseLineUV_NEON; } else #endif #if defined(HAS_REVERSE_LINE_UV_SSSE3) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) && (width % 16 == 0) && IS_ALIGNED(src, 16) && (src_stride % 16 == 0) && IS_ALIGNED(dst_a, 16) && (dst_stride_a % 8 == 0) && IS_ALIGNED(dst_b, 16) && (dst_stride_b % 8 == 0) ) { ReverseLine = ReverseLineUV_SSSE3; } else #endif { ReverseLine = ReverseLineUV_C; } dst_a += dst_stride_a * (height - 1); dst_b += dst_stride_b * (height - 1); for (i = 0; i < height; ++i) { ReverseLine(src, dst_a, dst_b, width); src += src_stride; // down one line at a time dst_a -= dst_stride_a; // nominally up one line at a time dst_b -= dst_stride_b; // nominally up one line at a time } } int I420Rotate(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height, RotationMode mode) { int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; // Negative height means invert the image. if (height < 0) { height = -height; halfheight = (height + 1) >> 1; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (halfheight - 1) * src_stride_u; src_v = src_v + (halfheight - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } switch (mode) { case kRotateNone: // copy frame return I420Copy(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v, dst_y, dst_stride_y, dst_u, dst_stride_u, dst_v, dst_stride_v, width, height); case kRotateClockwise: RotatePlane90(src_y, src_stride_y, dst_y, dst_stride_y, width, height); RotatePlane90(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); RotatePlane90(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); return 0; case kRotateCounterClockwise: RotatePlane270(src_y, src_stride_y, dst_y, dst_stride_y, width, height); RotatePlane270(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); RotatePlane270(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); return 0; case kRotate180: RotatePlane180(src_y, src_stride_y, dst_y, dst_stride_y, width, height); RotatePlane180(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); RotatePlane180(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); return 0; default: break; } return -1; } int NV12ToI420Rotate(const uint8* src_y, int src_stride_y, const uint8* src_uv, int src_stride_uv, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height, RotationMode mode) { int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; // Negative height means invert the image. if (height < 0) { height = -height; halfheight = (height + 1) >> 1; src_y = src_y + (height - 1) * src_stride_y; src_uv = src_uv + (halfheight - 1) * src_stride_uv; src_stride_y = -src_stride_y; src_stride_uv = -src_stride_uv; } switch (mode) { case kRotateNone: // copy frame return NV12ToI420(src_y, src_uv, src_stride_y, dst_y, dst_stride_y, dst_u, dst_stride_u, dst_v, dst_stride_v, width, height); case kRotateClockwise: RotatePlane90(src_y, src_stride_y, dst_y, dst_stride_y, width, height); RotateUV90(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v, dst_stride_v, halfwidth, halfheight); return 0; case kRotateCounterClockwise: RotatePlane270(src_y, src_stride_y, dst_y, dst_stride_y, width, height); RotateUV270(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v, dst_stride_v, halfwidth, halfheight); return 0; case kRotate180: RotatePlane180(src_y, src_stride_y, dst_y, dst_stride_y, width, height); RotateUV180(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v, dst_stride_v, halfwidth, halfheight); return 0; default: break; } return -1; } } // namespace libyuv