/* * Copyright (c) 2011 The LibYuv project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/convert.h" //#define SCALEOPT //Currently for windows only. June 2010 #ifdef SCALEOPT #include // Not currently used #endif #include "libyuv/basic_types.h" #include "libyuv/cpu_id.h" #include "libyuv/format_conversion.h" #include "libyuv/planar_functions.h" #include "libyuv/rotate.h" #include "libyuv/video_common.h" #include "row.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif // YUY2 - Macro-pixel = 2 image pixels // Y0U0Y1V0....Y2U2Y3V2...Y4U4Y5V4.... #if defined(_M_IX86) && !defined(YUV_DISABLE_ASM) #define HAS_I42XTOYUY2ROW_SSE2 __declspec(naked) static void I42xToYUY2Row_SSE2(const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_frame, int width) { __asm { push esi push edi mov eax, [esp + 8 + 4] // src_y mov esi, [esp + 8 + 8] // src_u mov edx, [esp + 8 + 12] // src_v mov edi, [esp + 8 + 16] // dst_frame mov ecx, [esp + 8 + 20] // width sub edx, esi convertloop: movdqa xmm0, [eax] // Y lea eax, [eax + 16] movq xmm2, qword ptr [esi] // U movq xmm3, qword ptr [esi + edx] // V lea esi, [esi + 8] punpcklbw xmm2, xmm3 // UV movdqa xmm1, xmm0 punpcklbw xmm0, xmm2 // YUYV punpckhbw xmm1, xmm2 movdqa [edi], xmm0 movdqa [edi + 16], xmm1 lea edi, [edi + 32] sub ecx, 16 ja convertloop pop edi pop esi ret } } #elif (defined(__x86_64__) || defined(__i386__)) && !defined(YUV_DISABLE_ASM) #define HAS_I42XTOYUY2ROW_SSE2 static void I42xToYUY2Row_SSE2(const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_frame, int width) { asm volatile ( "sub %1,%2 \n" "1: \n" "movdqa (%0),%%xmm0 \n" "lea 0x10(%0),%0 \n" "movq (%1),%%xmm2 \n" "movq (%1,%2,1),%%xmm3 \n" "lea 0x8(%1),%1 \n" "punpcklbw %%xmm3,%%xmm2 \n" "movdqa %%xmm0,%%xmm1 \n" "punpcklbw %%xmm2,%%xmm0 \n" "punpckhbw %%xmm2,%%xmm1 \n" "movdqa %%xmm0,(%3) \n" "movdqa %%xmm1,0x10(%3) \n" "lea 0x20(%3),%3 \n" "sub $0x10,%4 \n" "ja 1b \n" : "+r"(src_y), // %0 "+r"(src_u), // %1 "+r"(src_v), // %2 "+r"(dst_frame), // %3 "+rm"(width) // %4 : : "memory", "cc" #if defined(__SSE2__) , "xmm0", "xmm1", "xmm2", "xmm3" #endif ); } #endif void I42xToYUY2Row_C(const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_frame, int width) { for (int x = 0; x < width - 1; x += 2) { dst_frame[0] = src_y[0]; dst_frame[1] = src_u[0]; dst_frame[2] = src_y[1]; dst_frame[3] = src_v[0]; dst_frame += 4; src_y += 2; src_u += 1; src_v += 1; } if (width & 1) { dst_frame[0] = src_y[0]; dst_frame[1] = src_u[0]; dst_frame[2] = src_y[0]; // duplicate last y dst_frame[3] = src_v[0]; } } int I422ToYUY2(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_frame = dst_frame + (height - 1) * dst_stride_frame; dst_stride_frame = -dst_stride_frame; } void (*I42xToYUY2Row)(const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_frame, int width); #if defined(HAS_I42XTOYUY2ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) && IS_ALIGNED(dst_frame, 16) && IS_ALIGNED(dst_stride_frame, 16)) { I42xToYUY2Row = I42xToYUY2Row_SSE2; } else #endif { I42xToYUY2Row = I42xToYUY2Row_C; } for (int y = 0; y < height; ++y) { I42xToYUY2Row(src_y, src_u, src_y, dst_frame, width); src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; dst_frame += dst_stride_frame; } return 0; } int I420ToYUY2(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_frame = dst_frame + (height - 1) * dst_stride_frame; dst_stride_frame = -dst_stride_frame; } void (*I42xToYUY2Row)(const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_frame, int width); #if defined(HAS_I42XTOYUY2ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16) && IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) && IS_ALIGNED(dst_frame, 16) && IS_ALIGNED(dst_stride_frame, 16)) { I42xToYUY2Row = I42xToYUY2Row_SSE2; } else #endif { I42xToYUY2Row = I42xToYUY2Row_C; } for (int y = 0; y < height - 1; y += 2) { I42xToYUY2Row(src_y, src_u, src_v, dst_frame, width); I42xToYUY2Row(src_y + src_stride_y, src_u, src_v, dst_frame + dst_stride_frame, width); src_y += src_stride_y * 2; src_u += src_stride_u; src_v += src_stride_v; dst_frame += dst_stride_frame * 2; } if (height & 1) { I42xToYUY2Row(src_y, src_u, src_v, dst_frame, width); } return 0; } int I420ToUYVY(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) { return -1; } int i = 0; const uint8* y1 = src_y; const uint8* y2 = y1 + src_stride_y; const uint8* u = src_u; const uint8* v = src_v; uint8* out1 = dst_frame; uint8* out2 = dst_frame + dst_stride_frame; // Macro-pixel = 2 image pixels // U0Y0V0Y1....U2Y2V2Y3...U4Y4V4Y5..... #ifndef SCALEOPT for (; i < ((height + 1) >> 1); i++) { for (int j = 0; j < ((width + 1) >> 1); j++) { out1[0] = *u; out1[1] = y1[0]; out1[2] = *v; out1[3] = y1[1]; out2[0] = *u; out2[1] = y2[0]; out2[2] = *v; out2[3] = y2[1]; out1 += 4; out2 += 4; u++; v++; y1 += 2; y2 += 2; } y1 += 2 * src_stride_y - width; y2 += 2 * src_stride_y - width; u += src_stride_u - ((width + 1) >> 1); v += src_stride_v - ((width + 1) >> 1); out1 += 2 * (dst_stride_frame - width); out2 += 2 * (dst_stride_frame - width); } #else for (; i < (height >> 1);i++) { int32 width__ = (width >> 4); _asm { ;pusha mov eax, DWORD PTR [in1] ;1939.33 mov ecx, DWORD PTR [in2] ;1939.33 mov ebx, DWORD PTR [src_u] ;1939.33 mov edx, DWORD PTR [src_v] ;1939.33 loop0: movq xmm6, QWORD PTR [ebx] ;src_u movq xmm0, QWORD PTR [edx] ;src_v punpcklbw xmm6, xmm0 ;src_u, src_v mix movdqa xmm1, xmm6 movdqa xmm2, xmm6 movdqa xmm4, xmm6 movdqu xmm3, XMMWORD PTR [eax] ;in1 punpcklbw xmm1, xmm3 ;src_u, in1, src_v mov esi, DWORD PTR [out1] movdqu XMMWORD PTR [esi], xmm1 ;write to out1 movdqu xmm5, XMMWORD PTR [ecx] ;in2 punpcklbw xmm2, xmm5 ;src_u, in2, src_v mov edi, DWORD PTR [out2] movdqu XMMWORD PTR [edi], xmm2 ;write to out2 punpckhbw xmm4, xmm3 ;src_u, in1, src_v again movdqu XMMWORD PTR [esi+16], xmm4 ;write to out1 again add esi, 32 mov DWORD PTR [out1], esi punpckhbw xmm6, xmm5 ;src_u, in2, src_v again movdqu XMMWORD PTR [edi+16], xmm6 ;write to out2 again add edi, 32 mov DWORD PTR [out2], edi add ebx, 8 add edx, 8 add eax, 16 add ecx, 16 mov esi, DWORD PTR [width__] sub esi, 1 mov DWORD PTR [width__], esi jg loop0 mov DWORD PTR [in1], eax ;1939.33 mov DWORD PTR [in2], ecx ;1939.33 mov DWORD PTR [src_u], ebx ;1939.33 mov DWORD PTR [src_v], edx ;1939.33 ;popa emms } in1 += width; in2 += width; out1 += 2 * (dst_stride_frame - width); out2 += 2 * (dst_stride_frame - width); } #endif return 0; } // TODO(fbarchard): Deprecated - this is same as BG24ToARGB with -height int RGB24ToARGB(const uint8* src_frame, int src_stride_frame, uint8* dst_frame, int dst_stride_frame, int width, int height) { if (src_frame == NULL || dst_frame == NULL) { return -1; } int i, j, offset; uint8* outFrame = dst_frame; const uint8* inFrame = src_frame; outFrame += dst_stride_frame * (height - 1) * 4; for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { offset = j * 4; outFrame[0 + offset] = inFrame[0]; outFrame[1 + offset] = inFrame[1]; outFrame[2 + offset] = inFrame[2]; outFrame[3 + offset] = 0xff; inFrame += 3; } outFrame -= 4 * (dst_stride_frame - width); inFrame += src_stride_frame - width; } return 0; } // Test if over reading on source is safe. // TODO(fbarchard): Find more efficient solution to safely do odd sizes. // Macros to control read policy, from slowest to fastest: // READSAFE_NEVER - disables read ahead on systems with strict memory reads // READSAFE_ODDHEIGHT - last row of odd height done with C. // This policy assumes that the caller handles the last row of an odd height // image using C. // READSAFE_PAGE - enable read ahead within same page. // A page is 4096 bytes. When reading ahead, if the last pixel is near the // end the page, and a read spans the page into the next page, a memory // exception can occur if that page has not been allocated, or is a guard // page. This setting ensures the overread is within the same page. // READSAFE_ALWAYS - enables read ahead on systems without memory exceptions // or where buffers are padded by 64 bytes. #define READSAFE_ODDHEIGHT static bool TestReadSafe(const uint8* src_yuy2, int src_stride_yuy2, int width, int height, int bpp, int overread) { if (width > kMaxStride) { return false; } #if defined(READSAFE_ALWAYS) return true; #elif defined(READSAFE_NEVER) return false; #elif defined(READSAFE_ODDHEIGHT) if (!(width & 15) || (src_stride_yuy2 >= 0 && (height & 1) && width * bpp >= overread)) { return true; } return false; #elif defined(READSAFE_PAGE) if (src_stride_yuy2 >= 0) { src_yuy2 += (height - 1) * src_stride_yuy2; } uintptr_t last_adr = (uintptr_t)(src_yuy2) + width * bpp - 1; uintptr_t last_read_adr = last_adr + overread - 1; if (((last_adr ^ last_read_adr) & ~4095) == 0) { return true; } return false; #endif } // Convert YUY2 to I420. int YUY2ToI420(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; src_stride_yuy2 = -src_stride_yuy2; } void (*YUY2ToUVRow)(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_u, uint8* dst_v, int pix); void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int pix); YUY2ToYRow = YUY2ToYRow_C; YUY2ToUVRow = YUY2ToUVRow_C; #if defined(HAS_YUY2TOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { YUY2ToUVRow = YUY2ToUVRow_Any_SSE2; YUY2ToYRow = YUY2ToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { YUY2ToUVRow = YUY2ToUVRow_Unaligned_SSE2; YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) { YUY2ToUVRow = YUY2ToUVRow_SSE2; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { YUY2ToYRow = YUY2ToYRow_SSE2; } } } } #endif for (int y = 0; y < height - 1; y += 2) { YUY2ToUVRow(src_yuy2, src_stride_yuy2, dst_u, dst_v, width); YUY2ToYRow(src_yuy2, dst_y, width); YUY2ToYRow(src_yuy2 + src_stride_yuy2, dst_y + dst_stride_y, width); src_yuy2 += src_stride_yuy2 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { YUY2ToUVRow(src_yuy2, 0, dst_u, dst_v, width); YUY2ToYRow(src_yuy2, dst_y, width); } return 0; } // Convert UYVY to I420. int UYVYToI420(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; src_stride_uyvy = -src_stride_uyvy; } void (*UYVYToUVRow)(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_u, uint8* dst_v, int pix); void (*UYVYToYRow)(const uint8* src_uyvy, uint8* dst_y, int pix); UYVYToYRow = UYVYToYRow_C; UYVYToUVRow = UYVYToUVRow_C; #if defined(HAS_UYVYTOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { UYVYToUVRow = UYVYToUVRow_Any_SSE2; UYVYToYRow = UYVYToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { UYVYToUVRow = UYVYToUVRow_Unaligned_SSE2; UYVYToYRow = UYVYToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_uyvy, 16) && IS_ALIGNED(src_stride_uyvy, 16)) { UYVYToUVRow = UYVYToUVRow_SSE2; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { UYVYToYRow = UYVYToYRow_SSE2; } } } } #endif for (int y = 0; y < height - 1; y += 2) { UYVYToUVRow(src_uyvy, src_stride_uyvy, dst_u, dst_v, width); UYVYToYRow(src_uyvy, dst_y, width); UYVYToYRow(src_uyvy + src_stride_uyvy, dst_y + dst_stride_y, width); src_uyvy += src_stride_uyvy * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { UYVYToUVRow(src_uyvy, 0, dst_u, dst_v, width); UYVYToYRow(src_uyvy, dst_y, width); } return 0; } // gcc provided macros #if defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && defined(__BIG_ENDIAN) #if __BYTE_ORDER == __LITTLE_ENDIAN #define LIBYUV_LITTLE_ENDIAN #endif // Visual C for x86 defines these #elif defined(_M_X64) || defined(_M_IX86) #define LIBYUV_LITTLE_ENDIAN #endif #ifdef LIBYUV_LITTLE_ENDIAN #define READWORD(p) (*((uint32*) (p))) #else uint32 READWORD(const uint8* p) { return (uint32) p[0] | ((uint32) (p[1]) << 8) | ((uint32) (p[2]) << 16) | ((uint32) (p[3]) << 24); } #endif // Must be multiple of 6 pixels. Will over convert to handle remainder. // https://developer.apple.com/quicktime/icefloe/dispatch019.html#v210 void V210ToUYVYRow_C(const uint8* src_v210, uint8* dst_uyvy, int width) { for (int x = 0; x < width; x += 6) { uint32 w = READWORD(src_v210 + 0); dst_uyvy[0] = (w >> 2) & 0xff; dst_uyvy[1] = (w >> 12) & 0xff; dst_uyvy[2] = (w >> 22) & 0xff; w = READWORD(src_v210 + 4); dst_uyvy[3] = (w >> 2) & 0xff; dst_uyvy[4] = (w >> 12) & 0xff; dst_uyvy[5] = (w >> 22) & 0xff; w = READWORD(src_v210 + 8); dst_uyvy[6] = (w >> 2) & 0xff; dst_uyvy[7] = (w >> 12) & 0xff; dst_uyvy[8] = (w >> 22) & 0xff; w = READWORD(src_v210 + 12); dst_uyvy[9] = (w >> 2) & 0xff; dst_uyvy[10] = (w >> 12) & 0xff; dst_uyvy[11] = (w >> 22) & 0xff; dst_uyvy += 12; src_v210 += 16; } } // Convert V210 to I420. // V210 is 10 bit version of UYVY. 16 bytes to store 6 pixels. // With is multiple of 48. int V210ToI420(const uint8* src_v210, int src_stride_v210, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 16 / 6 > kMaxStride) { // row buffer is required return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_v210 = src_v210 + (height - 1) * src_stride_v210; src_stride_v210 = -src_stride_v210; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*V210ToUYVYRow)(const uint8* src_v210, uint8* dst_uyvy, int pix); V210ToUYVYRow = V210ToUYVYRow_C; void (*UYVYToUVRow)(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_u, uint8* dst_v, int pix); void (*UYVYToYRow)(const uint8* src_uyvy, uint8* dst_y, int pix); UYVYToYRow = UYVYToYRow_C; UYVYToUVRow = UYVYToUVRow_C; #if defined(HAS_UYVYTOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16)) { UYVYToUVRow = UYVYToUVRow_SSE2; UYVYToYRow = UYVYToYRow_Unaligned_SSE2; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { UYVYToYRow = UYVYToYRow_SSE2; } } #endif for (int y = 0; y < height - 1; y += 2) { V210ToUYVYRow(src_v210, row, width); V210ToUYVYRow(src_v210 + src_stride_v210, row + kMaxStride, width); UYVYToUVRow(row, kMaxStride, dst_u, dst_v, width); UYVYToYRow(row, dst_y, width); UYVYToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_v210 += src_stride_v210 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { V210ToUYVYRow(src_v210, row, width); UYVYToUVRow(row, 0, dst_u, dst_v, width); UYVYToYRow(row, dst_y, width); } return 0; } int ARGBToI420(const uint8* src_argb, int src_stride_argb, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; ARGBToYRow = ARGBToYRow_Any_SSSE3; } if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_Unaligned_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } } #endif for (int y = 0; y < height - 1; y += 2) { ARGBToUVRow(src_argb, src_stride_argb, dst_u, dst_v, width); ARGBToYRow(src_argb, dst_y, width); ARGBToYRow(src_argb + src_stride_argb, dst_y + dst_stride_y, width); src_argb += src_stride_argb * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGBToUVRow(src_argb, 0, dst_u, dst_v, width); ARGBToYRow(src_argb, dst_y, width); } return 0; } int BGRAToI420(const uint8* src_bgra, int src_stride_bgra, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (height < 0) { height = -height; src_bgra = src_bgra + (height - 1) * src_stride_bgra; src_stride_bgra = -src_stride_bgra; } void (*BGRAToYRow)(const uint8* src_bgra, uint8* dst_y, int pix); void (*BGRAToUVRow)(const uint8* src_bgra0, int src_stride_bgra, uint8* dst_u, uint8* dst_v, int width); BGRAToYRow = BGRAToYRow_C; BGRAToUVRow = BGRAToUVRow_C; #if defined(HAS_BGRATOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { BGRAToUVRow = BGRAToUVRow_Any_SSSE3; BGRAToYRow = BGRAToYRow_Any_SSSE3; } if (IS_ALIGNED(width, 16)) { BGRAToUVRow = BGRAToUVRow_Unaligned_SSSE3; BGRAToYRow = BGRAToYRow_Unaligned_SSSE3; if (IS_ALIGNED(src_bgra, 16) && IS_ALIGNED(src_stride_bgra, 16)) { BGRAToUVRow = BGRAToUVRow_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { BGRAToYRow = BGRAToYRow_SSSE3; } } } } #endif for (int y = 0; y < height - 1; y += 2) { BGRAToUVRow(src_bgra, src_stride_bgra, dst_u, dst_v, width); BGRAToYRow(src_bgra, dst_y, width); BGRAToYRow(src_bgra + src_stride_bgra, dst_y + dst_stride_y, width); src_bgra += src_stride_bgra * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { BGRAToUVRow(src_bgra, 0, dst_u, dst_v, width); BGRAToYRow(src_bgra, dst_y, width); } return 0; } int ABGRToI420(const uint8* src_abgr, int src_stride_abgr, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (height < 0) { height = -height; src_abgr = src_abgr + (height - 1) * src_stride_abgr; src_stride_abgr = -src_stride_abgr; } void (*ABGRToYRow)(const uint8* src_abgr, uint8* dst_y, int pix); void (*ABGRToUVRow)(const uint8* src_abgr0, int src_stride_abgr, uint8* dst_u, uint8* dst_v, int width); ABGRToYRow = ABGRToYRow_C; ABGRToUVRow = ABGRToUVRow_C; #if defined(HAS_ABGRTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ABGRToUVRow = ABGRToUVRow_Any_SSSE3; ABGRToYRow = ABGRToYRow_Any_SSSE3; } if (IS_ALIGNED(width, 16)) { ABGRToUVRow = ABGRToUVRow_Unaligned_SSSE3; ABGRToYRow = ABGRToYRow_Unaligned_SSSE3; if (IS_ALIGNED(src_abgr, 16) && IS_ALIGNED(src_stride_abgr, 16)) { ABGRToUVRow = ABGRToUVRow_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ABGRToYRow = ABGRToYRow_SSSE3; } } } } #endif for (int y = 0; y < height - 1; y += 2) { ABGRToUVRow(src_abgr, src_stride_abgr, dst_u, dst_v, width); ABGRToYRow(src_abgr, dst_y, width); ABGRToYRow(src_abgr + src_stride_abgr, dst_y + dst_stride_y, width); src_abgr += src_stride_abgr * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ABGRToUVRow(src_abgr, 0, dst_u, dst_v, width); ABGRToYRow(src_abgr, dst_y, width); } return 0; } int RGB24ToI420(const uint8* src_rgb24, int src_stride_rgb24, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 4 > kMaxStride) { // row buffer is required return -1; } if (height < 0) { height = -height; src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24; src_stride_rgb24 = -src_stride_rgb24; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*RGB24ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix); RGB24ToARGBRow = RGB24ToARGBRow_C; #if defined(HAS_RGB24TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && TestReadSafe(src_rgb24, src_stride_rgb24, width, height, 3, 48)) { RGB24ToARGBRow = RGB24ToARGBRow_SSSE3; } #endif void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; } ARGBToYRow = ARGBToYRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { RGB24ToARGBRow(src_rgb24, row, width); RGB24ToARGBRow(src_rgb24 + src_stride_rgb24, row + kMaxStride, width); ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_rgb24 += src_stride_rgb24 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { RGB24ToARGBRow_C(src_rgb24, row, width); ARGBToUVRow(row, 0, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); } return 0; } int RAWToI420(const uint8* src_raw, int src_stride_raw, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 4 > kMaxStride) { // row buffer is required return -1; } if (height < 0) { height = -height; src_raw = src_raw + (height - 1) * src_stride_raw; src_stride_raw = -src_stride_raw; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*RAWToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix); RAWToARGBRow = RAWToARGBRow_C; #if defined(HAS_RAWTOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && TestReadSafe(src_raw, src_stride_raw, width, height, 3, 48)) { RAWToARGBRow = RAWToARGBRow_SSSE3; } #endif void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; } ARGBToYRow = ARGBToYRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { RAWToARGBRow(src_raw, row, width); RAWToARGBRow(src_raw + src_stride_raw, row + kMaxStride, width); ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_raw += src_stride_raw * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { RAWToARGBRow_C(src_raw, row, width); ARGBToUVRow(row, 0, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); } return 0; } int RGB565ToI420(const uint8* src_rgb565, int src_stride_rgb565, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 4 > kMaxStride) { // row buffer is required return -1; } if (height < 0) { height = -height; src_rgb565 = src_rgb565 + (height - 1) * src_stride_rgb565; src_stride_rgb565 = -src_stride_rgb565; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*RGB565ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix); RGB565ToARGBRow = RGB565ToARGBRow_C; #if defined(HAS_RGB565TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && TestReadSafe(src_rgb565, src_stride_rgb565, width, height, 2, 16)) { RGB565ToARGBRow = RGB565ToARGBRow_SSE2; } #endif void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; } ARGBToYRow = ARGBToYRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { RGB565ToARGBRow(src_rgb565, row, width); RGB565ToARGBRow(src_rgb565 + src_stride_rgb565, row + kMaxStride, width); ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_rgb565 += src_stride_rgb565 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { RGB565ToARGBRow_C(src_rgb565, row, width); ARGBToUVRow(row, 0, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); } return 0; } int ARGB1555ToI420(const uint8* src_argb1555, int src_stride_argb1555, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 4 > kMaxStride) { // row buffer is required return -1; } if (height < 0) { height = -height; src_argb1555 = src_argb1555 + (height - 1) * src_stride_argb1555; src_stride_argb1555 = -src_stride_argb1555; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*ARGB1555ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix); ARGB1555ToARGBRow = ARGB1555ToARGBRow_C; #if defined(HAS_ARGB1555TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && TestReadSafe(src_argb1555, src_stride_argb1555, width, height, 2, 16)) { ARGB1555ToARGBRow = ARGB1555ToARGBRow_SSE2; } #endif void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; } ARGBToYRow = ARGBToYRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { ARGB1555ToARGBRow(src_argb1555, row, width); ARGB1555ToARGBRow(src_argb1555 + src_stride_argb1555, row + kMaxStride, width); ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_argb1555 += src_stride_argb1555 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGB1555ToARGBRow_C(src_argb1555, row, width); ARGBToUVRow(row, 0, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); } return 0; } int ARGB4444ToI420(const uint8* src_argb4444, int src_stride_argb4444, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (width * 4 > kMaxStride) { // row buffer is required return -1; } if (height < 0) { height = -height; src_argb4444 = src_argb4444 + (height - 1) * src_stride_argb4444; src_stride_argb4444 = -src_stride_argb4444; } SIMD_ALIGNED(uint8 row[kMaxStride * 2]); void (*ARGB4444ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int pix); ARGB4444ToARGBRow = ARGB4444ToARGBRow_C; #if defined(HAS_ARGB4444TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && TestReadSafe(src_argb4444, src_stride_argb4444, width, height, 2, 16)) { ARGB4444ToARGBRow = ARGB4444ToARGBRow_SSE2; } #endif void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width); ARGBToYRow = ARGBToYRow_C; ARGBToUVRow = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; } ARGBToYRow = ARGBToYRow_Any_SSSE3; if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { ARGB4444ToARGBRow(src_argb4444, row, width); ARGB4444ToARGBRow(src_argb4444 + src_stride_argb4444, row + kMaxStride, width); ARGBToUVRow(row, kMaxStride, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); ARGBToYRow(row + kMaxStride, dst_y + dst_stride_y, width); src_argb4444 += src_stride_argb4444 * 2; dst_y += dst_stride_y * 2; dst_u += dst_stride_u; dst_v += dst_stride_v; } if (height & 1) { ARGB4444ToARGBRow_C(src_argb4444, row, width); ARGBToUVRow(row, 0, dst_u, dst_v, width); ARGBToYRow(row, dst_y, width); } return 0; } // Convert camera sample to I420 with cropping, rotation and vertical flip. // src_width is used for source stride computation // src_height is used to compute location of planes, and indicate inversion // TODO(fbarchard): sample_size should be used to ensure the low levels do // not read outside the buffer provided. It is measured in bytes and is the // size of the frame. With MJPEG it is the compressed size of the frame. int ConvertToI420(const uint8* sample, size_t sample_size, uint8* y, int y_stride, uint8* u, int u_stride, uint8* v, int v_stride, int crop_x, int crop_y, int src_width, int src_height, int dst_width, int dst_height, RotationMode rotation, uint32 format) { if (y == NULL || u == NULL || v == NULL || sample == NULL) { return -1; } int aligned_src_width = (src_width + 1) & ~1; const uint8* src; const uint8* src_uv; int abs_src_height = (src_height < 0) ? -src_height : src_height; int inv_dst_height = (dst_height < 0) ? -dst_height : dst_height; if (src_height < 0) { inv_dst_height = -inv_dst_height; } switch (format) { // Single plane formats case FOURCC_YUY2: src = sample + (aligned_src_width * crop_y + crop_x) * 2 ; YUY2ToI420(src, aligned_src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_UYVY: src = sample + (aligned_src_width * crop_y + crop_x) * 2; UYVYToI420(src, aligned_src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_V210: // TODO(fbarchard): Confirm stride is 16 bytes per 6 pixels. src = sample + (aligned_src_width * crop_y + crop_x) * 16 / 6; V210ToI420(src, aligned_src_width * 16 / 6, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_24BG: src = sample + (src_width * crop_y + crop_x) * 3; RGB24ToI420(src, src_width * 3, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_RAW: src = sample + (src_width * crop_y + crop_x) * 3; RAWToI420(src, src_width * 3, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_ARGB: src = sample + (src_width * crop_y + crop_x) * 4; ARGBToI420(src, src_width * 4, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_BGRA: src = sample + (src_width * crop_y + crop_x) * 4; BGRAToI420(src, src_width * 4, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_ABGR: src = sample + (src_width * crop_y + crop_x) * 4; ABGRToI420(src, src_width * 4, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_RGBP: src = sample + (src_width * crop_y + crop_x) * 2; RGB565ToI420(src, src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; // V4L2_PIX_FMT_RGB555 'RGBO' // Byte 0 Byte 1 // Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 // g2 g1 g0 b4 b3 b2 b1 b0 a r4 r3 r2 r1 r0 g4 g3 // Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 // a r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0 case FOURCC_RGBO: src = sample + (src_width * crop_y + crop_x) * 2; ARGB1555ToI420(src, src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; // V4L2_PIX_FMT_RGB444 'R444' // Byte 0 Byte 1 // Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 // g3 g2 g1 g0 b3 b2 b1 b0 a3 a2 a1 a0 r3 r2 r1 r0 // Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 // a3 a2 a1 a0 r3 r2 r1 r0 g3 g2 g1 g0 b3 b2 b1 b0 case FOURCC_R444: src = sample + (src_width * crop_y + crop_x) * 2; ARGB4444ToI420(src, src_width * 2, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; // TODO(fbarchard): Support cropping Bayer by odd numbers // by adjusting fourcc. case FOURCC_BGGR: src = sample + (src_width * crop_y + crop_x); BayerBGGRToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_GBRG: src = sample + (src_width * crop_y + crop_x); BayerGBRGToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_GRBG: src = sample + (src_width * crop_y + crop_x); BayerGRBGToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_RGGB: src = sample + (src_width * crop_y + crop_x); BayerRGGBToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_I400: src = sample + src_width * crop_y + crop_x; I400ToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; // Biplanar formats case FOURCC_NV12: src = sample + (src_width * crop_y + crop_x); src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x; NV12ToI420Rotate(src, src_width, src_uv, aligned_src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height, rotation); break; case FOURCC_NV21: src = sample + (src_width * crop_y + crop_x); src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x; // Call NV12 but with u and v parameters swapped. NV12ToI420Rotate(src, src_width, src_uv, aligned_src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height, rotation); break; case FOURCC_M420: src = sample + (src_width * crop_y) * 12 / 8 + crop_x; M420ToI420(src, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; case FOURCC_Q420: src = sample + (src_width + aligned_src_width * 2) * crop_y + crop_x; src_uv = sample + (src_width + aligned_src_width * 2) * crop_y + src_width + crop_x * 2; Q420ToI420(src, src_width * 3, src_uv, src_width * 3, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; // Triplanar formats case FOURCC_I420: case FOURCC_YV12: { const uint8* src_y = sample + (src_width * crop_y + crop_x); const uint8* src_u; const uint8* src_v; int halfwidth = (src_width + 1) / 2; int halfheight = (abs_src_height + 1) / 2; if (format == FOURCC_I420) { src_u = sample + src_width * abs_src_height + (halfwidth * crop_y + crop_x) / 2; src_v = sample + src_width * abs_src_height + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; } else { src_v = sample + src_width * abs_src_height + (halfwidth * crop_y + crop_x) / 2; src_u = sample + src_width * abs_src_height + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; } I420Rotate(src_y, src_width, src_u, halfwidth, src_v, halfwidth, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height, rotation); break; } case FOURCC_I422: case FOURCC_YV16: { const uint8* src_y = sample + src_width * crop_y + crop_x; const uint8* src_u; const uint8* src_v; int halfwidth = (src_width + 1) / 2; if (format == FOURCC_I422) { src_u = sample + src_width * abs_src_height + halfwidth * crop_y + crop_x / 2; src_v = sample + src_width * abs_src_height + halfwidth * (abs_src_height + crop_y) + crop_x / 2; } else { src_v = sample + src_width * abs_src_height + halfwidth * crop_y + crop_x / 2; src_u = sample + src_width * abs_src_height + halfwidth * (abs_src_height + crop_y) + crop_x / 2; } I422ToI420(src_y, src_width, src_u, halfwidth, src_v, halfwidth, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; } case FOURCC_I444: case FOURCC_YV24: { const uint8* src_y = sample + src_width * crop_y + crop_x; const uint8* src_u; const uint8* src_v; if (format == FOURCC_I444) { src_u = sample + src_width * (abs_src_height + crop_y) + crop_x; src_v = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; } else { src_v = sample + src_width * (abs_src_height + crop_y) + crop_x; src_u = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; } I444ToI420(src_y, src_width, src_u, src_width, src_v, src_width, y, y_stride, u, u_stride, v, v_stride, dst_width, inv_dst_height); break; } // Formats not supported case FOURCC_MJPG: default: return -1; // unknown fourcc - return failure code. } return 0; } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif