/* * Copyright (c) 2011 The LibYuv project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/planar_functions.h" #include // for memset() #include "libyuv/cpu_id.h" #ifdef HAVE_JPEG #include "libyuv/mjpeg_decoder.h" #endif #include "source/row.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif // Copy a plane of data void CopyPlane(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, int width, int height) { void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C; #if defined(HAS_COPYROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 64)) { CopyRow = CopyRow_NEON; } #endif #if defined(HAS_COPYROW_X86) if (TestCpuFlag(kCpuHasX86) && IS_ALIGNED(width, 4)) { CopyRow = CopyRow_X86; } #endif #if defined(HAS_COPYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32) && IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { CopyRow = CopyRow_SSE2; } #endif // Copy plane for (int y = 0; y < height; ++y) { CopyRow(src_y, dst_y, width); src_y += src_stride_y; dst_y += dst_stride_y; } } // Convert I420 to I400. (calls CopyPlane ignoring u/v) int I420ToI400(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, uint8*, int, uint8*, int, int width, int height) { if (!src_y || !dst_y || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); return 0; } // Mirror a plane of data void MirrorPlane(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, int width, int height) { void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C; #if defined(HAS_MIRRORROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16)) { MirrorRow = MirrorRow_NEON; } #endif #if defined(HAS_MIRRORROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16)) { MirrorRow = MirrorRow_SSE2; #if defined(HAS_MIRRORROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16)) { MirrorRow = MirrorRow_SSSE3; } #endif } #endif // Mirror plane for (int y = 0; y < height; ++y) { MirrorRow(src_y, dst_y, width); src_y += src_stride_y; dst_y += dst_stride_y; } } // Mirror I420 with optional flipping int I420Mirror(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; int halfheight = (height + 1) >> 1; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (halfheight - 1) * src_stride_u; src_v = src_v + (halfheight - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; if (dst_y) { MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); } MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); return 0; } // Copy ARGB with optional flipping int ARGBCopy(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_argb || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } CopyPlane(src_argb, src_stride_argb, dst_argb, dst_stride_argb, width * 4, height); return 0; } // Get a blender that optimized for the CPU, alignment and pixel count. // As there are 6 blenders to choose from, the caller should try to use // the same blend function for all pixels if possible. ARGBBlendRow GetARGBBlend() { void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1, uint8* dst_argb, int width) = ARGBBlendRow_C; #if defined(HAS_ARGBBLENDROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { ARGBBlendRow = ARGBBlendRow_SSSE3; return ARGBBlendRow; } #endif #if defined(HAS_ARGBBLENDROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ARGBBlendRow = ARGBBlendRow_SSE2; } #endif return ARGBBlendRow; } // Alpha Blend 2 ARGB images and store to destination. int ARGBBlend(const uint8* src_argb0, int src_stride_argb0, const uint8* src_argb1, int src_stride_argb1, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1, uint8* dst_argb, int width) = GetARGBBlend(); for (int y = 0; y < height; ++y) { ARGBBlendRow(src_argb0, src_argb1, dst_argb, width); src_argb0 += src_stride_argb0; src_argb1 += src_stride_argb1; dst_argb += dst_stride_argb; } return 0; } // Convert I444 to ARGB. int I444ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*I444ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) = I444ToARGBRow_C; #if defined(HAS_I444TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I444ToARGBRow = I444ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { I444ToARGBRow = I444ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I444ToARGBRow = I444ToARGBRow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { I444ToARGBRow(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } return 0; } // Convert I422 to ARGB. int I422ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*I422ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) = I422ToARGBRow_C; #if defined(HAS_I422TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { I422ToARGBRow = I422ToARGBRow_Any_NEON; if (IS_ALIGNED(width, 16)) { I422ToARGBRow = I422ToARGBRow_NEON; } } #elif defined(HAS_I422TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I422ToARGBRow = I422ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { I422ToARGBRow = I422ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I422ToARGBRow = I422ToARGBRow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { I422ToARGBRow(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } return 0; } // Convert I411 to ARGB. int I411ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*I411ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) = I411ToARGBRow_C; #if defined(HAS_I411TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I411ToARGBRow = I411ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { I411ToARGBRow = I411ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I411ToARGBRow = I411ToARGBRow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { I411ToARGBRow(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } return 0; } // Convert I400 to ARGB. int I400ToARGB_Reference(const uint8* src_y, int src_stride_y, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*YToARGBRow)(const uint8* y_buf, uint8* rgb_buf, int width) = YToARGBRow_C; #if defined(HAS_YTOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { YToARGBRow = YToARGBRow_SSE2; } #endif for (int y = 0; y < height; ++y) { YToARGBRow(src_y, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; } return 0; } // Convert I400 to ARGB. int I400ToARGB(const uint8* src_y, int src_stride_y, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } void (*I400ToARGBRow)(const uint8* src_y, uint8* dst_argb, int pix) = I400ToARGBRow_C; #if defined(HAS_I400TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 8) && IS_ALIGNED(src_y, 8) && IS_ALIGNED(src_stride_y, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I400ToARGBRow = I400ToARGBRow_SSE2; } #endif for (int y = 0; y < height; ++y) { I400ToARGBRow(src_y, dst_argb, width); src_y += src_stride_y; dst_argb += dst_stride_argb; } return 0; } // Convert ARGB to I400. int ARGBToI400(const uint8* src_argb, int src_stride_argb, uint8* dst_y, int dst_stride_y, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix) = ARGBToYRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { ARGBToYRow(src_argb, dst_y, width); src_argb += src_stride_argb; dst_y += dst_stride_y; } return 0; } // ARGB little endian (bgra in memory) to I422 // same as I420 except UV plane is full height int ARGBToI422(const uint8* src_argb, int src_stride_argb, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix) = ARGBToYRow_C; void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; #if defined(HAS_ARGBTOYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (width > 16) { ARGBToUVRow = ARGBToUVRow_Any_SSSE3; ARGBToYRow = ARGBToYRow_Any_SSSE3; } if (IS_ALIGNED(width, 16)) { ARGBToUVRow = ARGBToUVRow_Unaligned_SSSE3; ARGBToYRow = ARGBToYRow_Unaligned_SSSE3; if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { ARGBToUVRow = ARGBToUVRow_SSSE3; if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { ARGBToYRow = ARGBToYRow_SSSE3; } } } } #endif for (int y = 0; y < height; ++y) { ARGBToUVRow(src_argb, 0, dst_u, dst_v, width); ARGBToYRow(src_argb, dst_y, width); src_argb += src_stride_argb; dst_y += dst_stride_y; dst_u += dst_stride_u; dst_v += dst_stride_v; } return 0; } int ABGRToARGB(const uint8* src_abgr, int src_stride_abgr, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_abgr = src_abgr + (height - 1) * src_stride_abgr; src_stride_abgr = -src_stride_abgr; } void (*ABGRToARGBRow)(const uint8* src_abgr, uint8* dst_argb, int pix) = ABGRToARGBRow_C; #if defined(HAS_ABGRTOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_abgr, 16) && IS_ALIGNED(src_stride_abgr, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ABGRToARGBRow = ABGRToARGBRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { ABGRToARGBRow(src_abgr, dst_argb, width); src_abgr += src_stride_abgr; dst_argb += dst_stride_argb; } return 0; } // Convert BGRA to ARGB. int BGRAToARGB(const uint8* src_bgra, int src_stride_bgra, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_bgra = src_bgra + (height - 1) * src_stride_bgra; src_stride_bgra = -src_stride_bgra; } void (*BGRAToARGBRow)(const uint8* src_bgra, uint8* dst_argb, int pix) = BGRAToARGBRow_C; #if defined(HAS_BGRATOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_bgra, 16) && IS_ALIGNED(src_stride_bgra, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { BGRAToARGBRow = BGRAToARGBRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { BGRAToARGBRow(src_bgra, dst_argb, width); src_bgra += src_stride_bgra; dst_argb += dst_stride_argb; } return 0; } // Convert RAW to ARGB. int RAWToARGB(const uint8* src_raw, int src_stride_raw, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_raw = src_raw + (height - 1) * src_stride_raw; src_stride_raw = -src_stride_raw; } void (*RAWToARGBRow)(const uint8* src_raw, uint8* dst_argb, int pix) = RAWToARGBRow_C; #if defined(HAS_RAWTOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { RAWToARGBRow = RAWToARGBRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { RAWToARGBRow(src_raw, dst_argb, width); src_raw += src_stride_raw; dst_argb += dst_stride_argb; } return 0; } // Convert RGB24 to ARGB. int RGB24ToARGB(const uint8* src_rgb24, int src_stride_rgb24, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24; src_stride_rgb24 = -src_stride_rgb24; } void (*RGB24ToARGBRow)(const uint8* src_rgb24, uint8* dst_argb, int pix) = RGB24ToARGBRow_C; #if defined(HAS_RGB24TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { RGB24ToARGBRow = RGB24ToARGBRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { RGB24ToARGBRow(src_rgb24, dst_argb, width); src_rgb24 += src_stride_rgb24; dst_argb += dst_stride_argb; } return 0; } // Convert RGB565 to ARGB. int RGB565ToARGB(const uint8* src_rgb565, int src_stride_rgb565, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_rgb565 = src_rgb565 + (height - 1) * src_stride_rgb565; src_stride_rgb565 = -src_stride_rgb565; } void (*RGB565ToARGBRow)(const uint8* src_rgb565, uint8* dst_argb, int pix) = RGB565ToARGBRow_C; #if defined(HAS_RGB565TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { RGB565ToARGBRow = RGB565ToARGBRow_SSE2; } #endif for (int y = 0; y < height; ++y) { RGB565ToARGBRow(src_rgb565, dst_argb, width); src_rgb565 += src_stride_rgb565; dst_argb += dst_stride_argb; } return 0; } // Convert ARGB1555 to ARGB. int ARGB1555ToARGB(const uint8* src_argb1555, int src_stride_argb1555, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_argb1555 = src_argb1555 + (height - 1) * src_stride_argb1555; src_stride_argb1555 = -src_stride_argb1555; } void (*ARGB1555ToARGBRow)(const uint8* src_argb1555, uint8* dst_argb, int pix) = ARGB1555ToARGBRow_C; #if defined(HAS_ARGB1555TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGB1555ToARGBRow = ARGB1555ToARGBRow_SSE2; } #endif for (int y = 0; y < height; ++y) { ARGB1555ToARGBRow(src_argb1555, dst_argb, width); src_argb1555 += src_stride_argb1555; dst_argb += dst_stride_argb; } return 0; } // Convert ARGB4444 to ARGB. int ARGB4444ToARGB(const uint8* src_argb4444, int src_stride_argb4444, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_argb4444 = src_argb4444 + (height - 1) * src_stride_argb4444; src_stride_argb4444 = -src_stride_argb4444; } void (*ARGB4444ToARGBRow)(const uint8* src_argb4444, uint8* dst_argb, int pix) = ARGB4444ToARGBRow_C; #if defined(HAS_ARGB4444TOARGBROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGB4444ToARGBRow = ARGB4444ToARGBRow_SSE2; } #endif for (int y = 0; y < height; ++y) { ARGB4444ToARGBRow(src_argb4444, dst_argb, width); src_argb4444 += src_stride_argb4444; dst_argb += dst_stride_argb; } return 0; } // Convert ARGB To RGB24. int ARGBToRGB24(const uint8* src_argb, int src_stride_argb, uint8* dst_rgb24, int dst_stride_rgb24, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToRGB24Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToRGB24Row_C; #if defined(HAS_ARGBTORGB24ROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { if (width * 3 <= kMaxStride) { ARGBToRGB24Row = ARGBToRGB24Row_Any_SSSE3; } if (IS_ALIGNED(width, 16) && IS_ALIGNED(dst_rgb24, 16) && IS_ALIGNED(dst_stride_rgb24, 16)) { ARGBToRGB24Row = ARGBToRGB24Row_SSSE3; } } #endif for (int y = 0; y < height; ++y) { ARGBToRGB24Row(src_argb, dst_rgb24, width); src_argb += src_stride_argb; dst_rgb24 += dst_stride_rgb24; } return 0; } // Convert ARGB To RAW. int ARGBToRAW(const uint8* src_argb, int src_stride_argb, uint8* dst_raw, int dst_stride_raw, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToRAWRow)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToRAWRow_C; #if defined(HAS_ARGBTORAWROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { if (width * 3 <= kMaxStride) { ARGBToRAWRow = ARGBToRAWRow_Any_SSSE3; } if (IS_ALIGNED(width, 16) && IS_ALIGNED(dst_raw, 16) && IS_ALIGNED(dst_stride_raw, 16)) { ARGBToRAWRow = ARGBToRAWRow_SSSE3; } } #endif for (int y = 0; y < height; ++y) { ARGBToRAWRow(src_argb, dst_raw, width); src_argb += src_stride_argb; dst_raw += dst_stride_raw; } return 0; } // Convert ARGB To RGB565. int ARGBToRGB565(const uint8* src_argb, int src_stride_argb, uint8* dst_rgb565, int dst_stride_rgb565, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToRGB565Row_C; #if defined(HAS_ARGBTORGB565ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { if (width * 2 <= kMaxStride) { ARGBToRGB565Row = ARGBToRGB565Row_Any_SSE2; } if (IS_ALIGNED(width, 4)) { ARGBToRGB565Row = ARGBToRGB565Row_SSE2; } } #endif for (int y = 0; y < height; ++y) { ARGBToRGB565Row(src_argb, dst_rgb565, width); src_argb += src_stride_argb; dst_rgb565 += dst_stride_rgb565; } return 0; } // Convert ARGB To ARGB1555. int ARGBToARGB1555(const uint8* src_argb, int src_stride_argb, uint8* dst_argb1555, int dst_stride_argb1555, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToARGB1555Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToARGB1555Row_C; #if defined(HAS_ARGBTOARGB1555ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { if (width * 2 <= kMaxStride) { ARGBToARGB1555Row = ARGBToARGB1555Row_Any_SSE2; } if (IS_ALIGNED(width, 4)) { ARGBToARGB1555Row = ARGBToARGB1555Row_SSE2; } } #endif for (int y = 0; y < height; ++y) { ARGBToARGB1555Row(src_argb, dst_argb1555, width); src_argb += src_stride_argb; dst_argb1555 += dst_stride_argb1555; } return 0; } // Convert ARGB To ARGB4444. int ARGBToARGB4444(const uint8* src_argb, int src_stride_argb, uint8* dst_argb4444, int dst_stride_argb4444, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToARGB4444Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToARGB4444Row_C; #if defined(HAS_ARGBTOARGB4444ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) { if (width * 2 <= kMaxStride) { ARGBToARGB4444Row = ARGBToARGB4444Row_Any_SSE2; } if (IS_ALIGNED(width, 4)) { ARGBToARGB4444Row = ARGBToARGB4444Row_SSE2; } } #endif for (int y = 0; y < height; ++y) { ARGBToARGB4444Row(src_argb, dst_argb4444, width); src_argb += src_stride_argb; dst_argb4444 += dst_stride_argb4444; } return 0; } // Convert NV12 to ARGB. int NV12ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_uv, int src_stride_uv, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*NV12ToARGBRow)(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, int width) = NV12ToARGBRow_C; #if defined(HAS_NV12TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { NV12ToARGBRow = NV12ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { NV12ToARGBRow = NV12ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { NV12ToARGBRow = NV12ToARGBRow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { NV12ToARGBRow(src_y, src_uv, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; if (y & 1) { src_uv += src_stride_uv; } } return 0; } // Convert NV21 to ARGB. int NV21ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_vu, int src_stride_vu, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*NV21ToARGBRow)(const uint8* y_buf, const uint8* vu_buf, uint8* rgb_buf, int width) = NV21ToARGBRow_C; #if defined(HAS_NV21TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { NV21ToARGBRow = NV21ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { NV21ToARGBRow = NV21ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { NV21ToARGBRow = NV21ToARGBRow_SSSE3; } } } #endif for (int y = 0; y < height; ++y) { NV21ToARGBRow(src_y, src_vu, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; if (y & 1) { src_vu += src_stride_vu; } } return 0; } // Convert M420 to ARGB. int M420ToARGB(const uint8* src_m420, int src_stride_m420, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } void (*NV12ToARGBRow)(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, int width) = NV12ToARGBRow_C; #if defined(HAS_NV12TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { NV12ToARGBRow = NV12ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8)) { NV12ToARGBRow = NV12ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { NV12ToARGBRow = NV12ToARGBRow_SSSE3; } } } #endif for (int y = 0; y < height - 1; y += 2) { NV12ToARGBRow(src_m420, src_m420 + src_stride_m420 * 2, dst_argb, width); NV12ToARGBRow(src_m420 + src_stride_m420, src_m420 + src_stride_m420 * 2, dst_argb + dst_stride_argb, width); dst_argb += dst_stride_argb * 2; src_m420 += src_stride_m420 * 3; } if (height & 1) { NV12ToARGBRow(src_m420, src_m420 + src_stride_m420 * 2, dst_argb, width); } return 0; } // Convert NV12 to RGB565. // TODO(fbarchard): (Re) Optimize for Neon. int NV12ToRGB565(const uint8* src_y, int src_stride_y, const uint8* src_uv, int src_stride_uv, uint8* dst_rgb565, int dst_stride_rgb565, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565; dst_stride_rgb565 = -dst_stride_rgb565; } void (*NV12ToARGBRow)(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, int width) = NV12ToARGBRow_C; #if defined(HAS_NV12TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width * 4 <= kMaxStride) { NV12ToARGBRow = NV12ToARGBRow_SSSE3; } #endif SIMD_ALIGNED(uint8 row[kMaxStride]); void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToRGB565Row_C; #if defined(HAS_ARGBTORGB565ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) { ARGBToRGB565Row = ARGBToRGB565Row_SSE2; } #endif for (int y = 0; y < height; ++y) { NV12ToARGBRow(src_y, src_uv, row, width); ARGBToRGB565Row(row, dst_rgb565, width); dst_rgb565 += dst_stride_rgb565; src_y += src_stride_y; if (y & 1) { src_uv += src_stride_uv; } } return 0; } // Convert NV21 to RGB565. int NV21ToRGB565(const uint8* src_y, int src_stride_y, const uint8* src_vu, int src_stride_vu, uint8* dst_rgb565, int dst_stride_rgb565, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565; dst_stride_rgb565 = -dst_stride_rgb565; } void (*NV21ToARGBRow)(const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, int width) = NV21ToARGBRow_C; #if defined(HAS_NV21TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width * 4 <= kMaxStride) { NV21ToARGBRow = NV21ToARGBRow_SSSE3; } #endif SIMD_ALIGNED(uint8 row[kMaxStride]); void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int pix) = ARGBToRGB565Row_C; #if defined(HAS_ARGBTORGB565ROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) { ARGBToRGB565Row = ARGBToRGB565Row_SSE2; } #endif for (int y = 0; y < height; ++y) { NV21ToARGBRow(src_y, src_vu, row, width); ARGBToRGB565Row(row, dst_rgb565, width); dst_rgb565 += dst_stride_rgb565; src_y += src_stride_y; if (y & 1) { src_vu += src_stride_vu; } } return 0; } // Convert YUY2 to ARGB. int YUY2ToARGB(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; src_stride_yuy2 = -src_stride_yuy2; } void (*YUY2ToUVRow)(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_u, uint8* dst_v, int pix) = YUY2ToUVRow_C; void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int pix) = YUY2ToYRow_C; #if defined(HAS_YUY2TOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { YUY2ToUVRow = YUY2ToUVRow_Any_SSE2; YUY2ToYRow = YUY2ToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { YUY2ToUVRow = YUY2ToUVRow_Unaligned_SSE2; YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) { YUY2ToUVRow = YUY2ToUVRow_SSE2; YUY2ToYRow = YUY2ToYRow_SSE2; } } } #endif void (*I422ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* argb_buf, int width) = I422ToARGBRow_C; #if defined(HAS_I422TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { I422ToARGBRow = I422ToARGBRow_Any_NEON; if (IS_ALIGNED(width, 16)) { I422ToARGBRow = I422ToARGBRow_NEON; } } #elif defined(HAS_I422TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I422ToARGBRow = I422ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I422ToARGBRow = I422ToARGBRow_SSSE3; } } #endif SIMD_ALIGNED(uint8 rowy[kMaxStride]); SIMD_ALIGNED(uint8 rowu[kMaxStride]); SIMD_ALIGNED(uint8 rowv[kMaxStride]); for (int y = 0; y < height; ++y) { YUY2ToUVRow(src_yuy2, src_stride_yuy2, rowu, rowv, width); YUY2ToYRow(src_yuy2, rowy, width); I422ToARGBRow(rowy, rowu, rowv, dst_argb, width); src_yuy2 += src_stride_yuy2; dst_argb += dst_stride_argb; } return 0; } // Convert UYVY to ARGB. int UYVYToARGB(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; src_stride_uyvy = -src_stride_uyvy; } void (*UYVYToUVRow)(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_u, uint8* dst_v, int pix) = UYVYToUVRow_C; void (*UYVYToYRow)(const uint8* src_uyvy, uint8* dst_y, int pix) = UYVYToYRow_C; #if defined(HAS_UYVYTOYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { if (width > 16) { UYVYToUVRow = UYVYToUVRow_Any_SSE2; UYVYToYRow = UYVYToYRow_Any_SSE2; } if (IS_ALIGNED(width, 16)) { UYVYToUVRow = UYVYToUVRow_Unaligned_SSE2; UYVYToYRow = UYVYToYRow_Unaligned_SSE2; if (IS_ALIGNED(src_uyvy, 16) && IS_ALIGNED(src_stride_uyvy, 16)) { UYVYToUVRow = UYVYToUVRow_SSE2; UYVYToYRow = UYVYToYRow_SSE2; } } } #endif void (*I422ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* argb_buf, int width) = I422ToARGBRow_C; #if defined(HAS_I422TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { I422ToARGBRow = I422ToARGBRow_Any_NEON; if (IS_ALIGNED(width, 16)) { I422ToARGBRow = I422ToARGBRow_NEON; } } #elif defined(HAS_I422TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) { I422ToARGBRow = I422ToARGBRow_Any_SSSE3; if (IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I422ToARGBRow = I422ToARGBRow_SSSE3; } } #endif SIMD_ALIGNED(uint8 rowy[kMaxStride]); SIMD_ALIGNED(uint8 rowu[kMaxStride]); SIMD_ALIGNED(uint8 rowv[kMaxStride]); for (int y = 0; y < height; ++y) { UYVYToUVRow(src_uyvy, src_stride_uyvy, rowu, rowv, width); UYVYToYRow(src_uyvy, rowy, width); I422ToARGBRow(rowy, rowu, rowv, dst_argb, width); src_uyvy += src_stride_uyvy; dst_argb += dst_stride_argb; } return 0; } // SetRow8 writes 'count' bytes using a 32 bit value repeated // SetRow32 writes 'count' words using a 32 bit value repeated #if !defined(YUV_DISABLE_ASM) && defined(__ARM_NEON__) #define HAS_SETROW_NEON static void SetRow8_NEON(uint8* dst, uint32 v32, int count) { asm volatile ( "vdup.u32 q0, %2 \n" // duplicate 4 ints "1: \n" "subs %1, %1, #16 \n" // 16 bytes per loop "vst1.u32 {q0}, [%0]! \n" // store "bgt 1b \n" : "+r"(dst), // %0 "+r"(count) // %1 : "r"(v32) // %2 : "q0", "memory", "cc"); } // TODO(fbarchard): Make fully assembler static void SetRows32_NEON(uint8* dst, uint32 v32, int width, int dst_stride, int height) { for (int y = 0; y < height; ++y) { SetRow8_NEON(dst, v32, width << 2); dst += dst_stride; } } #elif !defined(YUV_DISABLE_ASM) && defined(_M_IX86) #define HAS_SETROW_X86 __declspec(naked) __declspec(align(16)) static void SetRow8_X86(uint8* dst, uint32 v32, int count) { __asm { mov edx, edi mov edi, [esp + 4] // dst mov eax, [esp + 8] // v32 mov ecx, [esp + 12] // count shr ecx, 2 rep stosd mov edi, edx ret } } __declspec(naked) __declspec(align(16)) static void SetRows32_X86(uint8* dst, uint32 v32, int width, int dst_stride, int height) { __asm { push esi push edi push ebp mov edi, [esp + 12 + 4] // dst mov eax, [esp + 12 + 8] // v32 mov ebp, [esp + 12 + 12] // width mov edx, [esp + 12 + 16] // dst_stride mov esi, [esp + 12 + 20] // height lea ecx, [ebp * 4] sub edx, ecx // stride - width * 4 align 16 convertloop: mov ecx, ebp rep stosd add edi, edx sub esi, 1 jg convertloop pop ebp pop edi pop esi ret } } #elif !defined(YUV_DISABLE_ASM) && (defined(__x86_64__) || defined(__i386__)) #define HAS_SETROW_X86 static void SetRow8_X86(uint8* dst, uint32 v32, int width) { size_t width_tmp = static_cast(width); asm volatile ( "shr $0x2,%1 \n" "rep stosl \n" : "+D"(dst), // %0 "+c"(width_tmp) // %1 : "a"(v32) // %2 : "memory", "cc"); } static void SetRows32_X86(uint8* dst, uint32 v32, int width, int dst_stride, int height) { for (int y = 0; y < height; ++y) { size_t width_tmp = static_cast(width); uint32* d = reinterpret_cast(dst); asm volatile ( "rep stosl \n" : "+D"(d), // %0 "+c"(width_tmp) // %1 : "a"(v32) // %2 : "memory", "cc"); dst += dst_stride; } } #endif static void SetRow8_C(uint8* dst, uint32 v8, int count) { #ifdef _MSC_VER for (int x = 0; x < count; ++x) { dst[x] = v8; } #else memset(dst, v8, count); #endif } static void SetRows32_C(uint8* dst, uint32 v32, int width, int dst_stride, int height) { for (int y = 0; y < height; ++y) { uint32* d = reinterpret_cast(dst); for (int x = 0; x < width; ++x) { d[x] = v32; } dst += dst_stride; } } void SetPlane(uint8* dst_y, int dst_stride_y, int width, int height, uint32 value) { void (*SetRow)(uint8* dst, uint32 value, int pix) = SetRow8_C; #if defined(HAS_SETROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { SetRow = SetRow8_NEON; } #endif #if defined(HAS_SETROW_X86) if (TestCpuFlag(kCpuHasX86) && IS_ALIGNED(width, 4)) { SetRow = SetRow8_X86; } #endif #if defined(HAS_SETROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16) && IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) { SetRow = SetRow8_SSE2; } #endif uint32 v32 = value | (value << 8) | (value << 16) | (value << 24); // Set plane for (int y = 0; y < height; ++y) { SetRow(dst_y, v32, width); dst_y += dst_stride_y; } } // Draw a rectangle into I420 int I420Rect(uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int x, int y, int width, int height, int value_y, int value_u, int value_v) { if (!dst_y || !dst_u || !dst_v || width <= 0 || height <= 0 || x < 0 || y < 0 || value_y < 0 || value_y > 255 || value_u < 0 || value_u > 255 || value_v < 0 || value_v > 255) { return -1; } int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; uint8* start_y = dst_y + y * dst_stride_y + x; uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2); uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2); SetPlane(start_y, dst_stride_y, width, height, value_y); SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u); SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v); return 0; } // Draw a rectangle into ARGB int ARGBRect(uint8* dst_argb, int dst_stride_argb, int dst_x, int dst_y, int width, int height, uint32 value) { if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; #if defined(HAS_SETROW_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16) && IS_ALIGNED(dst, 16) && IS_ALIGNED(dst_stride_argb, 16)) { SetRows32_NEON(dst, value, width, dst_stride_argb, height); return 0; } #endif #if defined(HAS_SETROW_X86) if (TestCpuFlag(kCpuHasX86)) { SetRows32_X86(dst, value, width, dst_stride_argb, height); return 0; } #endif SetRows32_C(dst, value, width, dst_stride_argb, height); return 0; } // Convert unattentuated ARGB to preattenuated ARGB. // An unattenutated ARGB alpha blend uses the formula // p = a * f + (1 - a) * b // where // p is output pixel // f is foreground pixel // b is background pixel // a is alpha value from foreground pixel // An preattenutated ARGB alpha blend uses the formula // p = f + (1 - a) * b // where // f is foreground pixel premultiplied by alpha int ARGBAttenuate(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBAttenuateRow_C; #if defined(HAS_ARGBATTENUATE_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBAttenuateRow = ARGBAttenuateRow_SSE2; } #endif #if defined(HAS_ARGBATTENUATE_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBAttenuateRow = ARGBAttenuateRow_SSSE3; } #endif for (int y = 0; y < height; ++y) { ARGBAttenuateRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Convert preattentuated ARGB to unattenuated ARGB. int ARGBUnattenuate(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBUnattenuateRow)(const uint8* src_argb, uint8* dst_argb, int width) = ARGBUnattenuateRow_C; #if defined(HAS_ARGBUNATTENUATE_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2; } #endif for (int y = 0; y < height; ++y) { ARGBUnattenuateRow(src_argb, dst_argb, width); src_argb += src_stride_argb; dst_argb += dst_stride_argb; } return 0; } // Make a rectangle of ARGB gray scale. int ARGBGray(uint8* dst_argb, int dst_stride_argb, int dst_x, int dst_y, int width, int height) { if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } void (*ARGBGrayRow)(uint8* dst_argb, int width) = ARGBGrayRow_C; #if defined(HAS_ARGBGRAYROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBGrayRow = ARGBGrayRow_SSSE3; } #endif uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; for (int y = 0; y < height; ++y) { ARGBGrayRow(dst, width); dst += dst_stride_argb; } return 0; } // Make a rectangle of ARGB Sepia tone. int ARGBSepia(uint8* dst_argb, int dst_stride_argb, int dst_x, int dst_y, int width, int height) { if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } void (*ARGBSepiaRow)(uint8* dst_argb, int width) = ARGBSepiaRow_C; #if defined(HAS_ARGBSEPIAROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBSepiaRow = ARGBSepiaRow_SSSE3; } #endif uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; for (int y = 0; y < height; ++y) { ARGBSepiaRow(dst, width); dst += dst_stride_argb; } return 0; } // Apply a 4x3 matrix rotation to each ARGB pixel. int ARGBColorMatrix(uint8* dst_argb, int dst_stride_argb, const int8* matrix_argb, int dst_x, int dst_y, int width, int height) { if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } void (*ARGBColorMatrixRow)(uint8* dst_argb, const int8* matrix_argb, int width) = ARGBColorMatrixRow_C; #if defined(HAS_ARGBCOLORMATRIXROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { ARGBColorMatrixRow = ARGBColorMatrixRow_SSSE3; } #endif uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; for (int y = 0; y < height; ++y) { ARGBColorMatrixRow(dst, matrix_argb, width); dst += dst_stride_argb; } return 0; } // Apply a color table each ARGB pixel. // Table contains 256 ARGB values. int ARGBColorTable(uint8* dst_argb, int dst_stride_argb, const uint8* table_argb, int dst_x, int dst_y, int width, int height) { if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { return -1; } void (*ARGBColorTableRow)(uint8* dst_argb, const uint8* table_argb, int width) = ARGBColorTableRow_C; #if defined(HAS_ARGBCOLORTABLEROW_X86) if (TestCpuFlag(kCpuHasX86)) { ARGBColorTableRow = ARGBColorTableRow_X86; } #endif uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; for (int y = 0; y < height; ++y) { ARGBColorTableRow(dst, table_argb, width); dst += dst_stride_argb; } return 0; } #ifdef HAVE_JPEG struct ARGBBuffers { uint8* argb; int argb_stride; int w; int h; }; static void JpegI420ToARGB(void* opaque, const uint8* const* data, const int* strides, int rows) { ARGBBuffers* dest = static_cast(opaque); I420ToARGB(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->argb, dest->argb_stride, dest->w, rows); dest->argb += rows * dest->argb_stride; dest->h -= rows; } static void JpegI422ToARGB(void* opaque, const uint8* const* data, const int* strides, int rows) { ARGBBuffers* dest = static_cast(opaque); I422ToARGB(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->argb, dest->argb_stride, dest->w, rows); dest->argb += rows * dest->argb_stride; dest->h -= rows; } static void JpegI444ToARGB(void* opaque, const uint8* const* data, const int* strides, int rows) { ARGBBuffers* dest = static_cast(opaque); I444ToARGB(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->argb, dest->argb_stride, dest->w, rows); dest->argb += rows * dest->argb_stride; dest->h -= rows; } static void JpegI411ToARGB(void* opaque, const uint8* const* data, const int* strides, int rows) { ARGBBuffers* dest = static_cast(opaque); I411ToARGB(data[0], strides[0], data[1], strides[1], data[2], strides[2], dest->argb, dest->argb_stride, dest->w, rows); dest->argb += rows * dest->argb_stride; dest->h -= rows; } static void JpegI400ToARGB(void* opaque, const uint8* const* data, const int* strides, int rows) { ARGBBuffers* dest = static_cast(opaque); I400ToARGB(data[0], strides[0], dest->argb, dest->argb_stride, dest->w, rows); dest->argb += rows * dest->argb_stride; dest->h -= rows; } // MJPG (Motion JPeg) to ARGB // TODO(fbarchard): review w and h requirement. dw and dh may be enough. int MJPGToARGB(const uint8* sample, size_t sample_size, uint8* argb, int argb_stride, int w, int h, int dw, int dh) { if (sample_size == kUnknownDataSize) { // ERROR: MJPEG frame size unknown return -1; } // TODO(fbarchard): Port to C MJpegDecoder mjpeg_decoder; bool ret = mjpeg_decoder.LoadFrame(sample, sample_size); if (ret && (mjpeg_decoder.GetWidth() != w || mjpeg_decoder.GetHeight() != h)) { // ERROR: MJPEG frame has unexpected dimensions mjpeg_decoder.UnloadFrame(); return 1; // runtime failure } if (ret) { ARGBBuffers bufs = { argb, argb_stride, dw, dh }; // YUV420 if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 2 && mjpeg_decoder.GetHorizSampFactor(0) == 2 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI420ToARGB, &bufs, dw, dh); // YUV422 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 2 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI422ToARGB, &bufs, dw, dh); // YUV444 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 1 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI444ToARGB, &bufs, dw, dh); // YUV411 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceYCbCr && mjpeg_decoder.GetNumComponents() == 3 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 4 && mjpeg_decoder.GetVertSampFactor(1) == 1 && mjpeg_decoder.GetHorizSampFactor(1) == 1 && mjpeg_decoder.GetVertSampFactor(2) == 1 && mjpeg_decoder.GetHorizSampFactor(2) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI411ToARGB, &bufs, dw, dh); // YUV400 } else if (mjpeg_decoder.GetColorSpace() == MJpegDecoder::kColorSpaceGrayscale && mjpeg_decoder.GetNumComponents() == 1 && mjpeg_decoder.GetVertSampFactor(0) == 1 && mjpeg_decoder.GetHorizSampFactor(0) == 1) { ret = mjpeg_decoder.DecodeToCallback(&JpegI400ToARGB, &bufs, dw, dh); } else { // TODO(fbarchard): Implement conversion for any other colorspace/sample // factors that occur in practice. 411 is supported by libjpeg // ERROR: Unable to convert MJPEG frame because format is not supported mjpeg_decoder.UnloadFrame(); return 1; } } return 0; } #endif // Computes table of cumulative sum for image where the value is the sum // of all values above and to the left of the entry. Used by ARGBBlur. int ARGBComputeCumulativeSum(const uint8* src_argb, int src_stride_argb, int32* dst_cumsum, int dst_stride32_cumsum, int width, int height) { if (!dst_cumsum || !src_argb || width <= 0 || height <= 0) { return -1; } void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum, const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C; #if defined(HAS_CUMULATIVESUMTOAVERAGE_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2; } #endif memset(dst_cumsum, 0, width * sizeof(dst_cumsum[0]) * 4); // 4 int per pixel. int32* previous_cumsum = dst_cumsum; for (int y = 0; y < height; ++y) { ComputeCumulativeSumRow(src_argb, dst_cumsum, previous_cumsum, width); previous_cumsum = dst_cumsum; dst_cumsum += dst_stride32_cumsum; src_argb += src_stride_argb; } return 0; } // Blur ARGB image. // Caller should allocate CumulativeSum table of width * height * 16 bytes // aligned to 16 byte boundary. height can be radius * 2 + 2 to save memory // as the buffer is treated as circular. int ARGBBlur(const uint8* src_argb, int src_stride_argb, uint8* dst_argb, int dst_stride_argb, int32* dst_cumsum, int dst_stride32_cumsum, int width, int height, int radius) { void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum, const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C; void (*CumulativeSumToAverage)(const int32* topleft, const int32* botleft, int width, int area, uint8* dst, int count) = CumulativeSumToAverage_C; #if defined(HAS_CUMULATIVESUMTOAVERAGE_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2; CumulativeSumToAverage = CumulativeSumToAverage_SSE2; } #endif // Compute enough CumulativeSum for first row to be blurred. After this // one row of CumulativeSum is updated at a time. ARGBComputeCumulativeSum(src_argb, src_stride_argb, dst_cumsum, dst_stride32_cumsum, width, radius); src_argb = src_argb + radius * src_stride_argb; int32* cumsum_bot_row = &dst_cumsum[(radius - 1) * dst_stride32_cumsum]; const int32* max_cumsum_bot_row = &dst_cumsum[(radius * 2 + 2) * dst_stride32_cumsum]; const int32* cumsum_top_row = &dst_cumsum[0]; for (int y = 0; y < height; ++y) { int top_y = ((y - radius - 1) >= 0) ? (y - radius - 1) : 0; int bot_y = ((y + radius) < height) ? (y + radius) : (height - 1); int area = radius * (bot_y - top_y); // Increment cumsum_top_row pointer with circular buffer wrap around. if (top_y) { cumsum_top_row += dst_stride32_cumsum; if (cumsum_top_row >= max_cumsum_bot_row) { cumsum_top_row = dst_cumsum; } } // Increment cumsum_bot_row pointer with circular buffer wrap around and // then fill in a row of CumulativeSum. if ((y + radius) < height) { const int32* prev_cumsum_bot_row = cumsum_bot_row; cumsum_bot_row += dst_stride32_cumsum; if (cumsum_bot_row >= max_cumsum_bot_row) { cumsum_bot_row = dst_cumsum; } ComputeCumulativeSumRow(src_argb, cumsum_bot_row, prev_cumsum_bot_row, width); src_argb += src_stride_argb; } // Left clipped. int boxwidth = radius * 4; int x; for (x = 0; x < radius + 1; ++x) { CumulativeSumToAverage(cumsum_top_row, cumsum_bot_row, boxwidth, area, &dst_argb[x * 4], 1); area += (bot_y - top_y); boxwidth += 4; } // Middle unclipped. int n = (width - 1) - radius - x + 1; CumulativeSumToAverage(cumsum_top_row, cumsum_bot_row, boxwidth, area, &dst_argb[x * 4], n); // Right clipped. for (x += n; x <= width - 1; ++x) { area -= (bot_y - top_y); boxwidth -= 4; CumulativeSumToAverage(cumsum_top_row + (x - radius - 1) * 4, cumsum_bot_row + (x - radius - 1) * 4, boxwidth, area, &dst_argb[x * 4], 1); } dst_argb += dst_stride_argb; } return 0; } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif