libyuv/unit_test/convert_test.cc
fbarchard@google.com 042acf0458 Reduce allowed error on simple conversions
BUG=none
TEST=unittests
Review URL: https://webrtc-codereview.appspot.com/917006

git-svn-id: http://libyuv.googlecode.com/svn/trunk@431 16f28f9a-4ce2-e073-06de-1de4eb20be90
2012-10-20 06:37:21 +00:00

677 lines
44 KiB
C++

/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <time.h>
#include "libyuv/compare.h"
#include "libyuv/convert.h"
#include "libyuv/convert_argb.h"
#include "libyuv/convert_from.h"
#include "libyuv/convert_from_argb.h"
#include "libyuv/cpu_id.h"
#include "libyuv/format_conversion.h"
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
#include "../unit_test/unit_test.h"
#if defined(_MSC_VER)
#define SIMD_ALIGNED(var) __declspec(align(16)) var
#else // __GNUC__
#define SIMD_ALIGNED(var) var __attribute__((aligned(16)))
#endif
namespace libyuv {
#define TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG) \
TEST_F(libyuvTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \
const int kWidth = W1280; \
const int kHeight = 720; \
align_buffer_16(src_y, kWidth * kHeight); \
align_buffer_16(src_u, kWidth / SRC_SUBSAMP_X * kHeight / SRC_SUBSAMP_Y); \
align_buffer_16(src_v, kWidth / SRC_SUBSAMP_X * kHeight / SRC_SUBSAMP_Y); \
align_buffer_16(dst_y_c, kWidth * kHeight); \
align_buffer_16(dst_u_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_v_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_y_opt, kWidth * kHeight); \
align_buffer_16(dst_u_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_v_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[(i * kWidth) + j] = (random() & 0xff); \
for (int i = 0; i < kHeight / SRC_SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SRC_SUBSAMP_X; ++j) { \
src_u[(i * kWidth / SRC_SUBSAMP_X) + j] = (random() & 0xff); \
src_v[(i * kWidth / SRC_SUBSAMP_X) + j] = (random() & 0xff); \
} \
} \
MaskCpuFlags(0); \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y, kWidth, \
src_u, kWidth / SRC_SUBSAMP_X, \
src_v, kWidth / SRC_SUBSAMP_X, \
dst_y_c, kWidth, \
dst_u_c, kWidth / SUBSAMP_X, \
dst_v_c, kWidth / SUBSAMP_X, \
kWidth, NEG kHeight); \
MaskCpuFlags(-1); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y, kWidth, \
src_u, kWidth / SRC_SUBSAMP_X, \
src_v, kWidth / SRC_SUBSAMP_X, \
dst_y_opt, kWidth, \
dst_u_opt, kWidth / SUBSAMP_X, \
dst_v_opt, kWidth / SUBSAMP_X, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \
static_cast<int>(dst_y_opt[i * kWidth + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_u_c[i * kWidth / SUBSAMP_X + j]) - \
static_cast<int>(dst_u_opt[i * kWidth / SUBSAMP_X + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_v_c[i * kWidth / SUBSAMP_X + j]) - \
static_cast<int>(dst_v_opt[i * kWidth / SUBSAMP_X + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
free_aligned_buffer_16(dst_y_c) \
free_aligned_buffer_16(dst_u_c) \
free_aligned_buffer_16(dst_v_c) \
free_aligned_buffer_16(dst_y_opt) \
free_aligned_buffer_16(dst_u_opt) \
free_aligned_buffer_16(dst_v_opt) \
free_aligned_buffer_16(src_y) \
free_aligned_buffer_16(src_u) \
free_aligned_buffer_16(src_v) \
}
#define TESTPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, 1280, _Opt, +) \
TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, 1280, _Invert, -) \
TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, 1276, _Any, +)
TESTPLANARTOP(I420, 2, 2, I420, 2, 2)
TESTPLANARTOP(I422, 2, 1, I420, 2, 2)
TESTPLANARTOP(I444, 1, 1, I420, 2, 2)
TESTPLANARTOP(I411, 4, 1, I420, 2, 2)
TESTPLANARTOP(I420, 2, 2, I422, 2, 1)
TESTPLANARTOP(I420, 2, 2, I444, 1, 1)
TESTPLANARTOP(I420, 2, 2, I411, 4, 1)
TESTPLANARTOP(I420, 2, 2, I420Mirror, 2, 2)
#define TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG) \
TEST_F(libyuvTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \
const int kWidth = W1280; \
const int kHeight = 720; \
align_buffer_16(src_y, kWidth * kHeight); \
align_buffer_16(src_uv, 2 * kWidth / SRC_SUBSAMP_X * \
kHeight / SRC_SUBSAMP_Y); \
align_buffer_16(dst_y_c, kWidth * kHeight); \
align_buffer_16(dst_u_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_v_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_y_opt, kWidth * kHeight); \
align_buffer_16(dst_u_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_v_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[(i * kWidth) + j] = (random() & 0xff); \
for (int i = 0; i < kHeight / SRC_SUBSAMP_Y; ++i) { \
for (int j = 0; j < 2 * kWidth / SRC_SUBSAMP_X; ++j) { \
src_uv[(i * 2 * kWidth / SRC_SUBSAMP_X) + j] = (random() & 0xff); \
} \
} \
MaskCpuFlags(0); \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y, kWidth, \
src_uv, 2 * kWidth / SRC_SUBSAMP_X, \
dst_y_c, kWidth, \
dst_u_c, kWidth / SUBSAMP_X, \
dst_v_c, kWidth / SUBSAMP_X, \
kWidth, NEG kHeight); \
MaskCpuFlags(-1); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y, kWidth, \
src_uv, 2 * kWidth / SRC_SUBSAMP_X, \
dst_y_opt, kWidth, \
dst_u_opt, kWidth / SUBSAMP_X, \
dst_v_opt, kWidth / SUBSAMP_X, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \
static_cast<int>(dst_y_opt[i * kWidth + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_u_c[i * kWidth / SUBSAMP_X + j]) - \
static_cast<int>(dst_u_opt[i * kWidth / SUBSAMP_X + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_v_c[i * kWidth / SUBSAMP_X + j]) - \
static_cast<int>(dst_v_opt[i * kWidth / SUBSAMP_X + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
free_aligned_buffer_16(dst_y_c) \
free_aligned_buffer_16(dst_u_c) \
free_aligned_buffer_16(dst_v_c) \
free_aligned_buffer_16(dst_y_opt) \
free_aligned_buffer_16(dst_u_opt) \
free_aligned_buffer_16(dst_v_opt) \
free_aligned_buffer_16(src_y) \
free_aligned_buffer_16(src_uv) \
}
#define TESTBIPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, 1280, _Opt, +) \
TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, 1280, _Invert, -) \
TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, 1276, _Any, +)
TESTBIPLANARTOP(NV12, 2, 2, I420, 2, 2)
#define TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
W1280, DIFF, N, NEG) \
TEST_F(libyuvTest, FMT_PLANAR##To##FMT_B##N) { \
const int kWidth = W1280; \
const int kHeight = 720; \
const int kStrideB = ((kWidth * 8 * BPP_B + 7) / 8 + ALIGN - 1) / \
ALIGN * ALIGN; \
align_buffer_16(src_y, kWidth * kHeight); \
align_buffer_16(src_u, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(src_v, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_argb_c, kStrideB * kHeight); \
align_buffer_16(dst_argb_opt, kStrideB * kHeight); \
memset(dst_argb_c, 0, kStrideB * kHeight); \
memset(dst_argb_opt, 0, kStrideB * kHeight); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
src_y[(i * kWidth) + j] = (random() & 0xff); \
} \
} \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
src_u[(i * kWidth / SUBSAMP_X) + j] = (random() & 0xff); \
src_v[(i * kWidth / SUBSAMP_X) + j] = (random() & 0xff); \
} \
} \
MaskCpuFlags(0); \
FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_u, kWidth / SUBSAMP_X, \
src_v, kWidth / SUBSAMP_X, \
dst_argb_c, kStrideB, \
kWidth, NEG kHeight); \
MaskCpuFlags(-1); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_u, kWidth / SUBSAMP_X, \
src_v, kWidth / SUBSAMP_X, \
dst_argb_opt, kStrideB, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
/* Convert to ARGB so 565 is expanded to bytes that can be compared. */ \
align_buffer_16(dst_argb32_c, kWidth * 4 * kHeight); \
align_buffer_16(dst_argb32_opt, kWidth * 4 * kHeight); \
memset(dst_argb32_c, 0, kWidth * 4 * kHeight); \
memset(dst_argb32_opt, 0, kWidth * 4 * kHeight); \
FMT_B##ToARGB(dst_argb_c, kStrideB, \
dst_argb32_c, kWidth * 4, \
kWidth, kHeight); \
FMT_B##ToARGB(dst_argb_opt, kStrideB, \
dst_argb32_opt, kWidth * 4, \
kWidth, kHeight); \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth * 4; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_argb32_c[i * kWidth * 4 + j]) - \
static_cast<int>(dst_argb32_opt[i * kWidth * 4 + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
\
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_16(src_y) \
free_aligned_buffer_16(src_u) \
free_aligned_buffer_16(src_v) \
free_aligned_buffer_16(dst_argb_c) \
free_aligned_buffer_16(dst_argb_opt) \
free_aligned_buffer_16(dst_argb32_c) \
free_aligned_buffer_16(dst_argb32_opt) \
}
#define TESTPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
DIFF) \
TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
1280, DIFF, _Opt, +) \
TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
1280, DIFF, _Invert, -) \
TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
1276, DIFF, _Any, +)
TESTPLANARTOB(I420, 2, 2, ARGB, 4, 4, 2)
TESTPLANARTOB(I420, 2, 2, BGRA, 4, 4, 2)
TESTPLANARTOB(I420, 2, 2, ABGR, 4, 4, 2)
TESTPLANARTOB(I420, 2, 2, RGBA, 4, 4, 2)
TESTPLANARTOB(I420, 2, 2, RAW, 3, 3, 2)
TESTPLANARTOB(I420, 2, 2, RGB24, 3, 3, 2)
TESTPLANARTOB(I420, 2, 2, RGB565, 2, 2, 9)
TESTPLANARTOB(I420, 2, 2, ARGB1555, 2, 2, 9)
TESTPLANARTOB(I420, 2, 2, ARGB4444, 2, 2, 17)
TESTPLANARTOB(I422, 2, 1, ARGB, 4, 4, 2)
TESTPLANARTOB(I422, 2, 1, BGRA, 4, 4, 2)
TESTPLANARTOB(I422, 2, 1, ABGR, 4, 4, 2)
TESTPLANARTOB(I422, 2, 1, RGBA, 4, 4, 2)
TESTPLANARTOB(I411, 4, 1, ARGB, 4, 4, 2)
TESTPLANARTOB(I444, 1, 1, ARGB, 4, 4, 2)
// TODO(fbarchard): Fix TESTPLANARTOB(I420, 2, 2, V210, 16 / 6, 128)
TESTPLANARTOB(I420, 2, 2, YUY2, 2, 4, 1)
TESTPLANARTOB(I420, 2, 2, UYVY, 2, 4, 1)
TESTPLANARTOB(I422, 2, 1, YUY2, 2, 4, 0)
TESTPLANARTOB(I422, 2, 1, UYVY, 2, 4, 0)
TESTPLANARTOB(I420, 2, 2, I400, 1, 1, 0)
TESTPLANARTOB(I420, 2, 2, BayerBGGR, 1, 1, 2)
TESTPLANARTOB(I420, 2, 2, BayerRGGB, 1, 1, 2)
TESTPLANARTOB(I420, 2, 2, BayerGBRG, 1, 1, 2)
TESTPLANARTOB(I420, 2, 2, BayerGRBG, 1, 1, 2)
#define TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \
W1280, DIFF, N, NEG) \
TEST_F(libyuvTest, FMT_PLANAR##To##FMT_B##N) { \
const int kWidth = W1280; \
const int kHeight = 720; \
const int kStrideB = kWidth * BPP_B; \
align_buffer_16(src_y, kWidth * kHeight); \
align_buffer_16(src_uv, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y * 2); \
align_buffer_16(dst_argb_c, kStrideB * kHeight); \
align_buffer_16(dst_argb_opt, kStrideB * kHeight); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[(i * kWidth) + j] = (random() & 0xff); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) \
for (int j = 0; j < kWidth / SUBSAMP_X * 2; ++j) { \
src_uv[(i * kWidth / SUBSAMP_X) * 2 + j] = (random() & 0xff); \
} \
MaskCpuFlags(0); \
FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_uv, kWidth / SUBSAMP_X * 2, \
dst_argb_c, kWidth * BPP_B, \
kWidth, NEG kHeight); \
MaskCpuFlags(-1); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_uv, kWidth / SUBSAMP_X * 2, \
dst_argb_opt, kWidth * BPP_B, \
kWidth, NEG kHeight); \
} \
/* Convert to ARGB so 565 is expanded to bytes that can be compared. */ \
align_buffer_16(dst_argb32_c, kWidth * 4 * kHeight); \
align_buffer_16(dst_argb32_opt, kWidth * 4 * kHeight); \
memset(dst_argb32_c, 0, kWidth * 4 * kHeight); \
memset(dst_argb32_opt, 0, kWidth * 4 * kHeight); \
FMT_B##ToARGB(dst_argb_c, kStrideB, \
dst_argb32_c, kWidth * 4, \
kWidth, kHeight); \
FMT_B##ToARGB(dst_argb_opt, kStrideB, \
dst_argb32_opt, kWidth * 4, \
kWidth, kHeight); \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth * 4; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_argb32_c[i * kWidth * 4 + j]) - \
static_cast<int>(dst_argb32_opt[i * kWidth * 4 + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_16(src_y) \
free_aligned_buffer_16(src_uv) \
free_aligned_buffer_16(dst_argb_c) \
free_aligned_buffer_16(dst_argb_opt) \
free_aligned_buffer_16(dst_argb32_c) \
free_aligned_buffer_16(dst_argb32_opt) \
}
#define TESTBIPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, DIFF) \
TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, DIFF, \
1280, _Opt, +) \
TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, DIFF, \
1280, _Invert, -) \
TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, DIFF, \
1276, _Any, +)
TESTBIPLANARTOB(NV12, 2, 2, ARGB, 4, 2)
TESTBIPLANARTOB(NV21, 2, 2, ARGB, 4, 2)
// TODO(fbarchard): Fix neon version of this function and reenable.
// TESTBIPLANARTOB(NV12, 2, 2, RGB565, 2, 9)
// TESTBIPLANARTOB(NV21, 2, 2, RGB565, 2, 9)
#define TESTATOPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
W1280, N, NEG) \
TEST_F(libyuvTest, FMT_A##To##FMT_PLANAR##N) { \
const int kWidth = W1280; \
const int kHeight = 720; \
const int kStride = (kWidth * 8 * BPP_A + 7) / 8; \
align_buffer_16(src_argb, kStride * kHeight); \
align_buffer_16(dst_y_c, kWidth * kHeight); \
align_buffer_16(dst_u_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_v_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_y_opt, kWidth * kHeight); \
align_buffer_16(dst_u_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_v_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kStride; ++j) \
src_argb[(i * kStride) + j] = (random() & 0xff); \
MaskCpuFlags(0); \
FMT_A##To##FMT_PLANAR(src_argb, kStride, \
dst_y_c, kWidth, \
dst_u_c, kWidth / SUBSAMP_X, \
dst_v_c, kWidth / SUBSAMP_X, \
kWidth, NEG kHeight); \
MaskCpuFlags(-1); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_A##To##FMT_PLANAR(src_argb, kStride, \
dst_y_opt, kWidth, \
dst_u_opt, kWidth / SUBSAMP_X, \
dst_v_opt, kWidth / SUBSAMP_X, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \
static_cast<int>(dst_y_opt[i * kWidth + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 2); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_u_c[i * kWidth / SUBSAMP_X + j]) - \
static_cast<int>(dst_u_opt[i * kWidth / SUBSAMP_X + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 2); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_v_c[i * kWidth / SUBSAMP_X + j]) - \
static_cast<int>(dst_v_opt[i * kWidth / SUBSAMP_X + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 2); \
free_aligned_buffer_16(dst_y_c) \
free_aligned_buffer_16(dst_u_c) \
free_aligned_buffer_16(dst_v_c) \
free_aligned_buffer_16(dst_y_opt) \
free_aligned_buffer_16(dst_u_opt) \
free_aligned_buffer_16(dst_v_opt) \
free_aligned_buffer_16(src_argb) \
}
#define TESTATOPLANAR(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
TESTATOPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
1280, _Opt, +) \
TESTATOPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
1280, _Invert, -) \
TESTATOPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
1276, _Any, +)
TESTATOPLANAR(ARGB, 4, I420, 2, 2)
TESTATOPLANAR(BGRA, 4, I420, 2, 2)
TESTATOPLANAR(ABGR, 4, I420, 2, 2)
TESTATOPLANAR(RGBA, 4, I420, 2, 2)
TESTATOPLANAR(RAW, 3, I420, 2, 2)
TESTATOPLANAR(RGB24, 3, I420, 2, 2)
TESTATOPLANAR(RGB565, 2, I420, 2, 2)
TESTATOPLANAR(ARGB1555, 2, I420, 2, 2)
TESTATOPLANAR(ARGB4444, 2, I420, 2, 2)
// TESTATOPLANAR(ARGB, 4, I411, 4, 1)
TESTATOPLANAR(ARGB, 4, I422, 2, 1)
// TESTATOPLANAR(ARGB, 4, I444, 1, 1)
// TODO(fbarchard): Implement and test 411 and 444
TESTATOPLANAR(V210, 16 / 6, I420, 2, 2)
TESTATOPLANAR(YUY2, 2, I420, 2, 2)
TESTATOPLANAR(UYVY, 2, I420, 2, 2)
TESTATOPLANAR(YUY2, 2, I422, 2, 1)
TESTATOPLANAR(UYVY, 2, I422, 2, 1)
TESTATOPLANAR(I400, 1, I420, 2, 2)
TESTATOPLANAR(BayerBGGR, 1, I420, 2, 2)
TESTATOPLANAR(BayerRGGB, 1, I420, 2, 2)
TESTATOPLANAR(BayerGBRG, 1, I420, 2, 2)
TESTATOPLANAR(BayerGRBG, 1, I420, 2, 2)
#define TESTATOBI(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, W1280, DIFF, N, NEG) \
TEST_F(libyuvTest, FMT_A##To##FMT_B##N) { \
const int kWidth = W1280; \
const int kHeight = 720; \
align_buffer_16(src_argb, (kWidth * BPP_A) * kHeight); \
align_buffer_16(dst_argb_c, (kWidth * BPP_B) * kHeight); \
align_buffer_16(dst_argb_opt, (kWidth * BPP_B) * kHeight); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight * kWidth * BPP_A; ++i) { \
src_argb[i] = (random() & 0xff); \
} \
MaskCpuFlags(0); \
FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \
dst_argb_c, kWidth * BPP_B, \
kWidth, NEG kHeight); \
MaskCpuFlags(-1); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \
dst_argb_opt, kWidth * BPP_B, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight * kWidth * BPP_B; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i]) - \
static_cast<int>(dst_argb_opt[i])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_16(src_argb) \
free_aligned_buffer_16(dst_argb_c) \
free_aligned_buffer_16(dst_argb_opt) \
}
#define TESTATOB(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, DIFF) \
TESTATOBI(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, 1280, DIFF, _Opt, +) \
TESTATOBI(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, 1280, DIFF, _Invert, -) \
TESTATOBI(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, 1280, DIFF, _Any, +)
TESTATOB(ARGB, 4, 4, ARGB, 4, 0)
TESTATOB(ARGB, 4, 4, BGRA, 4, 0)
TESTATOB(ARGB, 4, 4, ABGR, 4, 0)
TESTATOB(ARGB, 4, 4, RGBA, 4, 0)
TESTATOB(ARGB, 4, 4, RAW, 3, 0)
TESTATOB(ARGB, 4, 4, RGB24, 3, 0)
TESTATOB(ARGB, 4, 4, RGB565, 2, 0)
TESTATOB(ARGB, 4, 4, ARGB1555, 2, 0)
TESTATOB(ARGB, 4, 4, ARGB4444, 2, 0)
TESTATOB(ARGB, 4, 4, BayerBGGR, 1, 0)
TESTATOB(ARGB, 4, 4, BayerRGGB, 1, 0)
TESTATOB(ARGB, 4, 4, BayerGBRG, 1, 0)
TESTATOB(ARGB, 4, 4, BayerGRBG, 1, 0)
TESTATOB(ARGB, 4, 4, I400, 1, 2)
TESTATOB(BGRA, 4, 4, ARGB, 4, 0)
TESTATOB(ABGR, 4, 4, ARGB, 4, 0)
TESTATOB(RGBA, 4, 4, ARGB, 4, 0)
TESTATOB(RAW, 3, 3, ARGB, 4, 0)
TESTATOB(RGB24, 3, 3, ARGB, 4, 0)
TESTATOB(RGB565, 2, 2, ARGB, 4, 0)
TESTATOB(ARGB1555, 2, 2, ARGB, 4, 0)
TESTATOB(ARGB4444, 2, 2, ARGB, 4, 0)
TESTATOB(YUY2, 2, 2, ARGB, 4, 0)
TESTATOB(UYVY, 2, 2, ARGB, 4, 0)
TESTATOB(M420, 3 / 2, 1, ARGB, 4, 0)
TESTATOB(BayerBGGR, 1, 1, ARGB, 4, 0)
TESTATOB(BayerRGGB, 1, 1, ARGB, 4, 0)
TESTATOB(BayerGBRG, 1, 1, ARGB, 4, 0)
TESTATOB(BayerGRBG, 1, 1, ARGB, 4, 0)
TESTATOB(I400, 1, 1, ARGB, 4, 0)
TESTATOB(I400, 1, 1, I400, 1, 0)
TESTATOB(ARGB, 4, 4, ARGBMirror, 4, 0)
#define TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, STRIDE_B, DIFF) \
TEST_F(libyuvTest, FMT_A##To##FMT_B##_Random) { \
srandom(time(NULL)); \
for (int times = 0; times < benchmark_iterations_; ++times) { \
const int kWidth = (random() & 63) + 1; \
const int kHeight = (random() & 31) + 1; \
const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A;\
const int kStrideB = (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B;\
align_buffer_page_end(src_argb, kStrideA * kHeight); \
align_buffer_page_end(dst_argb_c, kStrideB * kHeight); \
align_buffer_page_end(dst_argb_opt, kStrideB * kHeight); \
for (int i = 0; i < kStrideA * kHeight; ++i) { \
src_argb[i] = (random() & 0xff); \
} \
MaskCpuFlags(0); \
FMT_A##To##FMT_B(src_argb, kStrideA, \
dst_argb_c, kStrideB, \
kWidth, kHeight); \
MaskCpuFlags(-1); \
FMT_A##To##FMT_B(src_argb, kStrideA, \
dst_argb_opt, kStrideB, \
kWidth, kHeight); \
int max_diff = 0; \
for (int i = 0; i < kStrideB * kHeight; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i]) - \
static_cast<int>(dst_argb_opt[i])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_page_end(src_argb) \
free_aligned_buffer_page_end(dst_argb_c) \
free_aligned_buffer_page_end(dst_argb_opt) \
} \
}
TESTATOBRANDOM(ARGB, 4, 4, ARGB, 4, 4, 0)
TESTATOBRANDOM(ARGB, 4, 4, BGRA, 4, 4, 0)
TESTATOBRANDOM(ARGB, 4, 4, ABGR, 4, 4, 0)
TESTATOBRANDOM(ARGB, 4, 4, RGBA, 4, 4, 0)
TESTATOBRANDOM(ARGB, 4, 4, RAW, 3, 3, 0)
TESTATOBRANDOM(ARGB, 4, 4, RGB24, 3, 3, 0)
TESTATOBRANDOM(ARGB, 4, 4, RGB565, 2, 2, 0)
TESTATOBRANDOM(ARGB, 4, 4, ARGB1555, 2, 2, 0)
TESTATOBRANDOM(ARGB, 4, 4, ARGB4444, 2, 2, 0)
TESTATOBRANDOM(ARGB, 4, 4, I400, 1, 1, 2)
// TODO(fbarchard, 0): Implement YUY2
// TESTATOBRANDOM(ARGB, 4, 4, YUY2, 4, 2, 0)
// TESTATOBRANDOM(ARGB, 4, 4, UYVY, 4, 2, 0)
TESTATOBRANDOM(BGRA, 4, 4, ARGB, 4, 4, 0)
TESTATOBRANDOM(ABGR, 4, 4, ARGB, 4, 4, 0)
TESTATOBRANDOM(RGBA, 4, 4, ARGB, 4, 4, 0)
TESTATOBRANDOM(RAW, 3, 3, ARGB, 4, 4, 0)
TESTATOBRANDOM(RGB24, 3, 3, ARGB, 4, 4, 0)
TESTATOBRANDOM(RGB565, 2, 2, ARGB, 4, 4, 0)
TESTATOBRANDOM(ARGB1555, 2, 2, ARGB, 4, 4, 0)
TESTATOBRANDOM(ARGB4444, 2, 2, ARGB, 4, 4, 0)
TESTATOBRANDOM(I400, 1, 1, ARGB, 4, 4, 0)
TESTATOBRANDOM(YUY2, 4, 2, ARGB, 4, 4, 0)
TESTATOBRANDOM(UYVY, 4, 2, ARGB, 4, 4, 0)
TESTATOBRANDOM(I400, 1, 1, I400, 1, 1, 0)
TESTATOBRANDOM(ARGB, 4, 4, ARGBMirror, 4, 4, 0)
TEST_F(libyuvTest, Test565) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
SIMD_ALIGNED(uint8 pixels565[256][2]);
for (int i = 0; i < 256; ++i) {
for (int j = 0; j < 4; ++j) {
orig_pixels[i][j] = i;
}
}
ARGBToRGB565(&orig_pixels[0][0], 0, &pixels565[0][0], 0, 256, 1);
uint32 checksum = HashDjb2(&pixels565[0][0], sizeof(pixels565), 5381);
EXPECT_EQ(610919429u, checksum);
}
} // namespace libyuv