libyuv/unit_test/planar_test.cc
Frank Barchard 324fa32739 Convert16To8Row_SSSE3 port from AVX2
H010ToAR30 uses Convert16To8Row_SSSE3 to convert 10 bit YUV to 8 bit.
Then standard YUV conversion can be used.  This improves performance
on low end CPUs.
Future CL will by pass this conversion allowing for 10 bit YUV source,
but the function will be useful as a utility for YUV conversions.

Bug: libyuv:559, libyuv:751
Test: out/Release/libyuv_unittest --gtest_filter=*H010ToAR30* --libyuv_width=1280 --libyuv_height=720 --libyuv_repeat=999 --libyuv_flags=-1 --libyuv_cpu_info=-1
Change-Id: I9b3ef22d88a5fd861de4cf1900b4c6e8fd24d0af
Reviewed-on: https://chromium-review.googlesource.com/792334
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
2017-11-28 19:22:39 +00:00

3116 lines
109 KiB
C++

/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <time.h>
// row.h defines SIMD_ALIGNED, overriding unit_test.h
#include "libyuv/row.h" /* For ScaleSumSamples_Neon */
#include "../unit_test/unit_test.h"
#include "libyuv/compare.h"
#include "libyuv/convert.h"
#include "libyuv/convert_argb.h"
#include "libyuv/convert_from.h"
#include "libyuv/convert_from_argb.h"
#include "libyuv/cpu_id.h"
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
namespace libyuv {
TEST_F(LibYUVPlanarTest, TestAttenuate) {
const int kSize = 1280 * 4;
align_buffer_page_end(orig_pixels, kSize);
align_buffer_page_end(atten_pixels, kSize);
align_buffer_page_end(unatten_pixels, kSize);
align_buffer_page_end(atten2_pixels, kSize);
// Test unattenuation clamps
orig_pixels[0 * 4 + 0] = 200u;
orig_pixels[0 * 4 + 1] = 129u;
orig_pixels[0 * 4 + 2] = 127u;
orig_pixels[0 * 4 + 3] = 128u;
// Test unattenuation transparent and opaque are unaffected
orig_pixels[1 * 4 + 0] = 16u;
orig_pixels[1 * 4 + 1] = 64u;
orig_pixels[1 * 4 + 2] = 192u;
orig_pixels[1 * 4 + 3] = 0u;
orig_pixels[2 * 4 + 0] = 16u;
orig_pixels[2 * 4 + 1] = 64u;
orig_pixels[2 * 4 + 2] = 192u;
orig_pixels[2 * 4 + 3] = 255u;
orig_pixels[3 * 4 + 0] = 16u;
orig_pixels[3 * 4 + 1] = 64u;
orig_pixels[3 * 4 + 2] = 192u;
orig_pixels[3 * 4 + 3] = 128u;
ARGBUnattenuate(orig_pixels, 0, unatten_pixels, 0, 4, 1);
EXPECT_EQ(255u, unatten_pixels[0 * 4 + 0]);
EXPECT_EQ(255u, unatten_pixels[0 * 4 + 1]);
EXPECT_EQ(254u, unatten_pixels[0 * 4 + 2]);
EXPECT_EQ(128u, unatten_pixels[0 * 4 + 3]);
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 0]);
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 1]);
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 2]);
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 3]);
EXPECT_EQ(16u, unatten_pixels[2 * 4 + 0]);
EXPECT_EQ(64u, unatten_pixels[2 * 4 + 1]);
EXPECT_EQ(192u, unatten_pixels[2 * 4 + 2]);
EXPECT_EQ(255u, unatten_pixels[2 * 4 + 3]);
EXPECT_EQ(32u, unatten_pixels[3 * 4 + 0]);
EXPECT_EQ(128u, unatten_pixels[3 * 4 + 1]);
EXPECT_EQ(255u, unatten_pixels[3 * 4 + 2]);
EXPECT_EQ(128u, unatten_pixels[3 * 4 + 3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i * 4 + 0] = i;
orig_pixels[i * 4 + 1] = i / 2;
orig_pixels[i * 4 + 2] = i / 3;
orig_pixels[i * 4 + 3] = i;
}
ARGBAttenuate(orig_pixels, 0, atten_pixels, 0, 1280, 1);
ARGBUnattenuate(atten_pixels, 0, unatten_pixels, 0, 1280, 1);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBAttenuate(unatten_pixels, 0, atten2_pixels, 0, 1280, 1);
}
for (int i = 0; i < 1280; ++i) {
EXPECT_NEAR(atten_pixels[i * 4 + 0], atten2_pixels[i * 4 + 0], 2);
EXPECT_NEAR(atten_pixels[i * 4 + 1], atten2_pixels[i * 4 + 1], 2);
EXPECT_NEAR(atten_pixels[i * 4 + 2], atten2_pixels[i * 4 + 2], 2);
EXPECT_NEAR(atten_pixels[i * 4 + 3], atten2_pixels[i * 4 + 3], 2);
}
// Make sure transparent, 50% and opaque are fully accurate.
EXPECT_EQ(0, atten_pixels[0 * 4 + 0]);
EXPECT_EQ(0, atten_pixels[0 * 4 + 1]);
EXPECT_EQ(0, atten_pixels[0 * 4 + 2]);
EXPECT_EQ(0, atten_pixels[0 * 4 + 3]);
EXPECT_EQ(64, atten_pixels[128 * 4 + 0]);
EXPECT_EQ(32, atten_pixels[128 * 4 + 1]);
EXPECT_EQ(21, atten_pixels[128 * 4 + 2]);
EXPECT_EQ(128, atten_pixels[128 * 4 + 3]);
EXPECT_NEAR(255, atten_pixels[255 * 4 + 0], 1);
EXPECT_NEAR(127, atten_pixels[255 * 4 + 1], 1);
EXPECT_NEAR(85, atten_pixels[255 * 4 + 2], 1);
EXPECT_EQ(255, atten_pixels[255 * 4 + 3]);
free_aligned_buffer_page_end(atten2_pixels);
free_aligned_buffer_page_end(unatten_pixels);
free_aligned_buffer_page_end(atten_pixels);
free_aligned_buffer_page_end(orig_pixels);
}
static int TestAttenuateI(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBAttenuate(src_argb + off, kStride, dst_argb_c, kStride, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBAttenuate(src_argb + off, kStride, dst_argb_opt, kStride, width,
invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBAttenuate_Any) {
int max_diff = TestAttenuateI(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBAttenuate_Unaligned) {
int max_diff =
TestAttenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBAttenuate_Invert) {
int max_diff =
TestAttenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBAttenuate_Opt) {
int max_diff =
TestAttenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 2);
}
static int TestUnattenuateI(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb[i + off] = (fastrand() & 0xff);
}
ARGBAttenuate(src_argb + off, kStride, src_argb + off, kStride, width,
height);
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBUnattenuate(src_argb + off, kStride, dst_argb_c, kStride, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBUnattenuate(src_argb + off, kStride, dst_argb_opt, kStride, width,
invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Any) {
int max_diff = TestUnattenuateI(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Unaligned) {
int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Invert) {
int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Opt) {
int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, TestARGBComputeCumulativeSum) {
SIMD_ALIGNED(uint8 orig_pixels[16][16][4]);
SIMD_ALIGNED(int32 added_pixels[16][16][4]);
for (int y = 0; y < 16; ++y) {
for (int x = 0; x < 16; ++x) {
orig_pixels[y][x][0] = 1u;
orig_pixels[y][x][1] = 2u;
orig_pixels[y][x][2] = 3u;
orig_pixels[y][x][3] = 255u;
}
}
ARGBComputeCumulativeSum(&orig_pixels[0][0][0], 16 * 4,
&added_pixels[0][0][0], 16 * 4, 16, 16);
for (int y = 0; y < 16; ++y) {
for (int x = 0; x < 16; ++x) {
EXPECT_EQ((x + 1) * (y + 1), added_pixels[y][x][0]);
EXPECT_EQ((x + 1) * (y + 1) * 2, added_pixels[y][x][1]);
EXPECT_EQ((x + 1) * (y + 1) * 3, added_pixels[y][x][2]);
EXPECT_EQ((x + 1) * (y + 1) * 255, added_pixels[y][x][3]);
}
}
}
TEST_F(LibYUVPlanarTest, TestARGBGray) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test black
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 0u;
orig_pixels[3][2] = 0u;
orig_pixels[3][3] = 255u;
// Test white
orig_pixels[4][0] = 255u;
orig_pixels[4][1] = 255u;
orig_pixels[4][2] = 255u;
orig_pixels[4][3] = 255u;
// Test color
orig_pixels[5][0] = 16u;
orig_pixels[5][1] = 64u;
orig_pixels[5][2] = 192u;
orig_pixels[5][3] = 224u;
// Do 16 to test asm version.
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 16, 1);
EXPECT_EQ(30u, orig_pixels[0][0]);
EXPECT_EQ(30u, orig_pixels[0][1]);
EXPECT_EQ(30u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(149u, orig_pixels[1][0]);
EXPECT_EQ(149u, orig_pixels[1][1]);
EXPECT_EQ(149u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(76u, orig_pixels[2][0]);
EXPECT_EQ(76u, orig_pixels[2][1]);
EXPECT_EQ(76u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(0u, orig_pixels[3][0]);
EXPECT_EQ(0u, orig_pixels[3][1]);
EXPECT_EQ(0u, orig_pixels[3][2]);
EXPECT_EQ(255u, orig_pixels[3][3]);
EXPECT_EQ(255u, orig_pixels[4][0]);
EXPECT_EQ(255u, orig_pixels[4][1]);
EXPECT_EQ(255u, orig_pixels[4][2]);
EXPECT_EQ(255u, orig_pixels[4][3]);
EXPECT_EQ(96u, orig_pixels[5][0]);
EXPECT_EQ(96u, orig_pixels[5][1]);
EXPECT_EQ(96u, orig_pixels[5][2]);
EXPECT_EQ(224u, orig_pixels[5][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBGrayTo) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
SIMD_ALIGNED(uint8 gray_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test black
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 0u;
orig_pixels[3][2] = 0u;
orig_pixels[3][3] = 255u;
// Test white
orig_pixels[4][0] = 255u;
orig_pixels[4][1] = 255u;
orig_pixels[4][2] = 255u;
orig_pixels[4][3] = 255u;
// Test color
orig_pixels[5][0] = 16u;
orig_pixels[5][1] = 64u;
orig_pixels[5][2] = 192u;
orig_pixels[5][3] = 224u;
// Do 16 to test asm version.
ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 16, 1);
EXPECT_EQ(30u, gray_pixels[0][0]);
EXPECT_EQ(30u, gray_pixels[0][1]);
EXPECT_EQ(30u, gray_pixels[0][2]);
EXPECT_EQ(128u, gray_pixels[0][3]);
EXPECT_EQ(149u, gray_pixels[1][0]);
EXPECT_EQ(149u, gray_pixels[1][1]);
EXPECT_EQ(149u, gray_pixels[1][2]);
EXPECT_EQ(0u, gray_pixels[1][3]);
EXPECT_EQ(76u, gray_pixels[2][0]);
EXPECT_EQ(76u, gray_pixels[2][1]);
EXPECT_EQ(76u, gray_pixels[2][2]);
EXPECT_EQ(255u, gray_pixels[2][3]);
EXPECT_EQ(0u, gray_pixels[3][0]);
EXPECT_EQ(0u, gray_pixels[3][1]);
EXPECT_EQ(0u, gray_pixels[3][2]);
EXPECT_EQ(255u, gray_pixels[3][3]);
EXPECT_EQ(255u, gray_pixels[4][0]);
EXPECT_EQ(255u, gray_pixels[4][1]);
EXPECT_EQ(255u, gray_pixels[4][2]);
EXPECT_EQ(255u, gray_pixels[4][3]);
EXPECT_EQ(96u, gray_pixels[5][0]);
EXPECT_EQ(96u, gray_pixels[5][1]);
EXPECT_EQ(96u, gray_pixels[5][2]);
EXPECT_EQ(224u, gray_pixels[5][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBSepia) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test black
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 0u;
orig_pixels[3][2] = 0u;
orig_pixels[3][3] = 255u;
// Test white
orig_pixels[4][0] = 255u;
orig_pixels[4][1] = 255u;
orig_pixels[4][2] = 255u;
orig_pixels[4][3] = 255u;
// Test color
orig_pixels[5][0] = 16u;
orig_pixels[5][1] = 64u;
orig_pixels[5][2] = 192u;
orig_pixels[5][3] = 224u;
// Do 16 to test asm version.
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 16, 1);
EXPECT_EQ(33u, orig_pixels[0][0]);
EXPECT_EQ(43u, orig_pixels[0][1]);
EXPECT_EQ(47u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(135u, orig_pixels[1][0]);
EXPECT_EQ(175u, orig_pixels[1][1]);
EXPECT_EQ(195u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(69u, orig_pixels[2][0]);
EXPECT_EQ(89u, orig_pixels[2][1]);
EXPECT_EQ(99u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(0u, orig_pixels[3][0]);
EXPECT_EQ(0u, orig_pixels[3][1]);
EXPECT_EQ(0u, orig_pixels[3][2]);
EXPECT_EQ(255u, orig_pixels[3][3]);
EXPECT_EQ(239u, orig_pixels[4][0]);
EXPECT_EQ(255u, orig_pixels[4][1]);
EXPECT_EQ(255u, orig_pixels[4][2]);
EXPECT_EQ(255u, orig_pixels[4][3]);
EXPECT_EQ(88u, orig_pixels[5][0]);
EXPECT_EQ(114u, orig_pixels[5][1]);
EXPECT_EQ(127u, orig_pixels[5][2]);
EXPECT_EQ(224u, orig_pixels[5][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBColorMatrix) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
SIMD_ALIGNED(uint8 dst_pixels_opt[1280][4]);
SIMD_ALIGNED(uint8 dst_pixels_c[1280][4]);
// Matrix for Sepia.
SIMD_ALIGNED(static const int8 kRGBToSepia[]) = {
17 / 2, 68 / 2, 35 / 2, 0, 22 / 2, 88 / 2, 45 / 2, 0,
24 / 2, 98 / 2, 50 / 2, 0, 0, 0, 0, 64, // Copy alpha.
};
memset(orig_pixels, 0, sizeof(orig_pixels));
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
&kRGBToSepia[0], 16, 1);
EXPECT_EQ(31u, dst_pixels_opt[0][0]);
EXPECT_EQ(43u, dst_pixels_opt[0][1]);
EXPECT_EQ(47u, dst_pixels_opt[0][2]);
EXPECT_EQ(128u, dst_pixels_opt[0][3]);
EXPECT_EQ(135u, dst_pixels_opt[1][0]);
EXPECT_EQ(175u, dst_pixels_opt[1][1]);
EXPECT_EQ(195u, dst_pixels_opt[1][2]);
EXPECT_EQ(0u, dst_pixels_opt[1][3]);
EXPECT_EQ(67u, dst_pixels_opt[2][0]);
EXPECT_EQ(87u, dst_pixels_opt[2][1]);
EXPECT_EQ(99u, dst_pixels_opt[2][2]);
EXPECT_EQ(255u, dst_pixels_opt[2][3]);
EXPECT_EQ(87u, dst_pixels_opt[3][0]);
EXPECT_EQ(112u, dst_pixels_opt[3][1]);
EXPECT_EQ(127u, dst_pixels_opt[3][2]);
EXPECT_EQ(224u, dst_pixels_opt[3][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
MaskCpuFlags(disable_cpu_flags_);
ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0,
&kRGBToSepia[0], 1280, 1);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
&kRGBToSepia[0], 1280, 1);
}
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]);
EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]);
EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]);
EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]);
}
}
TEST_F(LibYUVPlanarTest, TestRGBColorMatrix) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
// Matrix for Sepia.
SIMD_ALIGNED(static const int8 kRGBToSepia[]) = {
17, 68, 35, 0, 22, 88, 45, 0,
24, 98, 50, 0, 0, 0, 0, 0, // Unused but makes matrix 16 bytes.
};
memset(orig_pixels, 0, sizeof(orig_pixels));
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
RGBColorMatrix(&orig_pixels[0][0], 0, &kRGBToSepia[0], 0, 0, 16, 1);
EXPECT_EQ(31u, orig_pixels[0][0]);
EXPECT_EQ(43u, orig_pixels[0][1]);
EXPECT_EQ(47u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(135u, orig_pixels[1][0]);
EXPECT_EQ(175u, orig_pixels[1][1]);
EXPECT_EQ(195u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(67u, orig_pixels[2][0]);
EXPECT_EQ(87u, orig_pixels[2][1]);
EXPECT_EQ(99u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(87u, orig_pixels[3][0]);
EXPECT_EQ(112u, orig_pixels[3][1]);
EXPECT_EQ(127u, orig_pixels[3][2]);
EXPECT_EQ(224u, orig_pixels[3][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
RGBColorMatrix(&orig_pixels[0][0], 0, &kRGBToSepia[0], 0, 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBColorTable) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Matrix for Sepia.
static const uint8 kARGBTable[256 * 4] = {
1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 14u, 15u, 16u,
};
orig_pixels[0][0] = 0u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 0u;
orig_pixels[1][0] = 1u;
orig_pixels[1][1] = 1u;
orig_pixels[1][2] = 1u;
orig_pixels[1][3] = 1u;
orig_pixels[2][0] = 2u;
orig_pixels[2][1] = 2u;
orig_pixels[2][2] = 2u;
orig_pixels[2][3] = 2u;
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 1u;
orig_pixels[3][2] = 2u;
orig_pixels[3][3] = 3u;
// Do 16 to test asm version.
ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1);
EXPECT_EQ(1u, orig_pixels[0][0]);
EXPECT_EQ(2u, orig_pixels[0][1]);
EXPECT_EQ(3u, orig_pixels[0][2]);
EXPECT_EQ(4u, orig_pixels[0][3]);
EXPECT_EQ(5u, orig_pixels[1][0]);
EXPECT_EQ(6u, orig_pixels[1][1]);
EXPECT_EQ(7u, orig_pixels[1][2]);
EXPECT_EQ(8u, orig_pixels[1][3]);
EXPECT_EQ(9u, orig_pixels[2][0]);
EXPECT_EQ(10u, orig_pixels[2][1]);
EXPECT_EQ(11u, orig_pixels[2][2]);
EXPECT_EQ(12u, orig_pixels[2][3]);
EXPECT_EQ(1u, orig_pixels[3][0]);
EXPECT_EQ(6u, orig_pixels[3][1]);
EXPECT_EQ(11u, orig_pixels[3][2]);
EXPECT_EQ(16u, orig_pixels[3][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 1280, 1);
}
}
// Same as TestARGBColorTable except alpha does not change.
TEST_F(LibYUVPlanarTest, TestRGBColorTable) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Matrix for Sepia.
static const uint8 kARGBTable[256 * 4] = {
1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 14u, 15u, 16u,
};
orig_pixels[0][0] = 0u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 0u;
orig_pixels[1][0] = 1u;
orig_pixels[1][1] = 1u;
orig_pixels[1][2] = 1u;
orig_pixels[1][3] = 1u;
orig_pixels[2][0] = 2u;
orig_pixels[2][1] = 2u;
orig_pixels[2][2] = 2u;
orig_pixels[2][3] = 2u;
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 1u;
orig_pixels[3][2] = 2u;
orig_pixels[3][3] = 3u;
// Do 16 to test asm version.
RGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1);
EXPECT_EQ(1u, orig_pixels[0][0]);
EXPECT_EQ(2u, orig_pixels[0][1]);
EXPECT_EQ(3u, orig_pixels[0][2]);
EXPECT_EQ(0u, orig_pixels[0][3]); // Alpha unchanged.
EXPECT_EQ(5u, orig_pixels[1][0]);
EXPECT_EQ(6u, orig_pixels[1][1]);
EXPECT_EQ(7u, orig_pixels[1][2]);
EXPECT_EQ(1u, orig_pixels[1][3]); // Alpha unchanged.
EXPECT_EQ(9u, orig_pixels[2][0]);
EXPECT_EQ(10u, orig_pixels[2][1]);
EXPECT_EQ(11u, orig_pixels[2][2]);
EXPECT_EQ(2u, orig_pixels[2][3]); // Alpha unchanged.
EXPECT_EQ(1u, orig_pixels[3][0]);
EXPECT_EQ(6u, orig_pixels[3][1]);
EXPECT_EQ(11u, orig_pixels[3][2]);
EXPECT_EQ(3u, orig_pixels[3][3]); // Alpha unchanged.
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
RGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBQuantize) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
ARGBQuantize(&orig_pixels[0][0], 0, (65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0,
1280, 1);
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ((i / 8 * 8 + 8 / 2) & 255, orig_pixels[i][0]);
EXPECT_EQ((i / 2 / 8 * 8 + 8 / 2) & 255, orig_pixels[i][1]);
EXPECT_EQ((i / 3 / 8 * 8 + 8 / 2) & 255, orig_pixels[i][2]);
EXPECT_EQ(i & 255, orig_pixels[i][3]);
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBQuantize(&orig_pixels[0][0], 0, (65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0,
1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBMirror) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
SIMD_ALIGNED(uint8 dst_pixels[1280][4]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i / 4;
}
ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 1280, 1);
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ(i & 255, dst_pixels[1280 - 1 - i][0]);
EXPECT_EQ((i / 2) & 255, dst_pixels[1280 - 1 - i][1]);
EXPECT_EQ((i / 3) & 255, dst_pixels[1280 - 1 - i][2]);
EXPECT_EQ((i / 4) & 255, dst_pixels[1280 - 1 - i][3]);
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestShade) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
SIMD_ALIGNED(uint8 shade_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
orig_pixels[0][0] = 10u;
orig_pixels[0][1] = 20u;
orig_pixels[0][2] = 40u;
orig_pixels[0][3] = 80u;
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 0u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 255u;
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 0u;
orig_pixels[2][3] = 0u;
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 0u;
orig_pixels[3][2] = 0u;
orig_pixels[3][3] = 0u;
// Do 8 pixels to allow opt version to be used.
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x80ffffff);
EXPECT_EQ(10u, shade_pixels[0][0]);
EXPECT_EQ(20u, shade_pixels[0][1]);
EXPECT_EQ(40u, shade_pixels[0][2]);
EXPECT_EQ(40u, shade_pixels[0][3]);
EXPECT_EQ(0u, shade_pixels[1][0]);
EXPECT_EQ(0u, shade_pixels[1][1]);
EXPECT_EQ(0u, shade_pixels[1][2]);
EXPECT_EQ(128u, shade_pixels[1][3]);
EXPECT_EQ(0u, shade_pixels[2][0]);
EXPECT_EQ(0u, shade_pixels[2][1]);
EXPECT_EQ(0u, shade_pixels[2][2]);
EXPECT_EQ(0u, shade_pixels[2][3]);
EXPECT_EQ(0u, shade_pixels[3][0]);
EXPECT_EQ(0u, shade_pixels[3][1]);
EXPECT_EQ(0u, shade_pixels[3][2]);
EXPECT_EQ(0u, shade_pixels[3][3]);
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x80808080);
EXPECT_EQ(5u, shade_pixels[0][0]);
EXPECT_EQ(10u, shade_pixels[0][1]);
EXPECT_EQ(20u, shade_pixels[0][2]);
EXPECT_EQ(40u, shade_pixels[0][3]);
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x10204080);
EXPECT_EQ(5u, shade_pixels[0][0]);
EXPECT_EQ(5u, shade_pixels[0][1]);
EXPECT_EQ(5u, shade_pixels[0][2]);
EXPECT_EQ(5u, shade_pixels[0][3]);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 1280, 1,
0x80808080);
}
}
TEST_F(LibYUVPlanarTest, TestARGBInterpolate) {
SIMD_ALIGNED(uint8 orig_pixels_0[1280][4]);
SIMD_ALIGNED(uint8 orig_pixels_1[1280][4]);
SIMD_ALIGNED(uint8 interpolate_pixels[1280][4]);
memset(orig_pixels_0, 0, sizeof(orig_pixels_0));
memset(orig_pixels_1, 0, sizeof(orig_pixels_1));
orig_pixels_0[0][0] = 16u;
orig_pixels_0[0][1] = 32u;
orig_pixels_0[0][2] = 64u;
orig_pixels_0[0][3] = 128u;
orig_pixels_0[1][0] = 0u;
orig_pixels_0[1][1] = 0u;
orig_pixels_0[1][2] = 0u;
orig_pixels_0[1][3] = 255u;
orig_pixels_0[2][0] = 0u;
orig_pixels_0[2][1] = 0u;
orig_pixels_0[2][2] = 0u;
orig_pixels_0[2][3] = 0u;
orig_pixels_0[3][0] = 0u;
orig_pixels_0[3][1] = 0u;
orig_pixels_0[3][2] = 0u;
orig_pixels_0[3][3] = 0u;
orig_pixels_1[0][0] = 0u;
orig_pixels_1[0][1] = 0u;
orig_pixels_1[0][2] = 0u;
orig_pixels_1[0][3] = 0u;
orig_pixels_1[1][0] = 0u;
orig_pixels_1[1][1] = 0u;
orig_pixels_1[1][2] = 0u;
orig_pixels_1[1][3] = 0u;
orig_pixels_1[2][0] = 0u;
orig_pixels_1[2][1] = 0u;
orig_pixels_1[2][2] = 0u;
orig_pixels_1[2][3] = 0u;
orig_pixels_1[3][0] = 255u;
orig_pixels_1[3][1] = 255u;
orig_pixels_1[3][2] = 255u;
orig_pixels_1[3][3] = 255u;
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 4, 1, 128);
EXPECT_EQ(8u, interpolate_pixels[0][0]);
EXPECT_EQ(16u, interpolate_pixels[0][1]);
EXPECT_EQ(32u, interpolate_pixels[0][2]);
EXPECT_EQ(64u, interpolate_pixels[0][3]);
EXPECT_EQ(0u, interpolate_pixels[1][0]);
EXPECT_EQ(0u, interpolate_pixels[1][1]);
EXPECT_EQ(0u, interpolate_pixels[1][2]);
EXPECT_EQ(128u, interpolate_pixels[1][3]);
EXPECT_EQ(0u, interpolate_pixels[2][0]);
EXPECT_EQ(0u, interpolate_pixels[2][1]);
EXPECT_EQ(0u, interpolate_pixels[2][2]);
EXPECT_EQ(0u, interpolate_pixels[2][3]);
EXPECT_EQ(128u, interpolate_pixels[3][0]);
EXPECT_EQ(128u, interpolate_pixels[3][1]);
EXPECT_EQ(128u, interpolate_pixels[3][2]);
EXPECT_EQ(128u, interpolate_pixels[3][3]);
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 4, 1, 0);
EXPECT_EQ(16u, interpolate_pixels[0][0]);
EXPECT_EQ(32u, interpolate_pixels[0][1]);
EXPECT_EQ(64u, interpolate_pixels[0][2]);
EXPECT_EQ(128u, interpolate_pixels[0][3]);
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 4, 1, 192);
EXPECT_EQ(4u, interpolate_pixels[0][0]);
EXPECT_EQ(8u, interpolate_pixels[0][1]);
EXPECT_EQ(16u, interpolate_pixels[0][2]);
EXPECT_EQ(32u, interpolate_pixels[0][3]);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 1280, 1, 128);
}
}
TEST_F(LibYUVPlanarTest, TestInterpolatePlane) {
SIMD_ALIGNED(uint8 orig_pixels_0[1280]);
SIMD_ALIGNED(uint8 orig_pixels_1[1280]);
SIMD_ALIGNED(uint8 interpolate_pixels[1280]);
memset(orig_pixels_0, 0, sizeof(orig_pixels_0));
memset(orig_pixels_1, 0, sizeof(orig_pixels_1));
orig_pixels_0[0] = 16u;
orig_pixels_0[1] = 32u;
orig_pixels_0[2] = 64u;
orig_pixels_0[3] = 128u;
orig_pixels_0[4] = 0u;
orig_pixels_0[5] = 0u;
orig_pixels_0[6] = 0u;
orig_pixels_0[7] = 255u;
orig_pixels_0[8] = 0u;
orig_pixels_0[9] = 0u;
orig_pixels_0[10] = 0u;
orig_pixels_0[11] = 0u;
orig_pixels_0[12] = 0u;
orig_pixels_0[13] = 0u;
orig_pixels_0[14] = 0u;
orig_pixels_0[15] = 0u;
orig_pixels_1[0] = 0u;
orig_pixels_1[1] = 0u;
orig_pixels_1[2] = 0u;
orig_pixels_1[3] = 0u;
orig_pixels_1[4] = 0u;
orig_pixels_1[5] = 0u;
orig_pixels_1[6] = 0u;
orig_pixels_1[7] = 0u;
orig_pixels_1[8] = 0u;
orig_pixels_1[9] = 0u;
orig_pixels_1[10] = 0u;
orig_pixels_1[11] = 0u;
orig_pixels_1[12] = 255u;
orig_pixels_1[13] = 255u;
orig_pixels_1[14] = 255u;
orig_pixels_1[15] = 255u;
InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0,
&interpolate_pixels[0], 0, 16, 1, 128);
EXPECT_EQ(8u, interpolate_pixels[0]);
EXPECT_EQ(16u, interpolate_pixels[1]);
EXPECT_EQ(32u, interpolate_pixels[2]);
EXPECT_EQ(64u, interpolate_pixels[3]);
EXPECT_EQ(0u, interpolate_pixels[4]);
EXPECT_EQ(0u, interpolate_pixels[5]);
EXPECT_EQ(0u, interpolate_pixels[6]);
EXPECT_EQ(128u, interpolate_pixels[7]);
EXPECT_EQ(0u, interpolate_pixels[8]);
EXPECT_EQ(0u, interpolate_pixels[9]);
EXPECT_EQ(0u, interpolate_pixels[10]);
EXPECT_EQ(0u, interpolate_pixels[11]);
EXPECT_EQ(128u, interpolate_pixels[12]);
EXPECT_EQ(128u, interpolate_pixels[13]);
EXPECT_EQ(128u, interpolate_pixels[14]);
EXPECT_EQ(128u, interpolate_pixels[15]);
InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0,
&interpolate_pixels[0], 0, 16, 1, 0);
EXPECT_EQ(16u, interpolate_pixels[0]);
EXPECT_EQ(32u, interpolate_pixels[1]);
EXPECT_EQ(64u, interpolate_pixels[2]);
EXPECT_EQ(128u, interpolate_pixels[3]);
InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0,
&interpolate_pixels[0], 0, 16, 1, 192);
EXPECT_EQ(4u, interpolate_pixels[0]);
EXPECT_EQ(8u, interpolate_pixels[1]);
EXPECT_EQ(16u, interpolate_pixels[2]);
EXPECT_EQ(32u, interpolate_pixels[3]);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0,
&interpolate_pixels[0], 0, 1280, 1, 123);
}
}
#define TESTTERP(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, STRIDE_B, W1280, TERP, \
N, NEG, OFF) \
TEST_F(LibYUVPlanarTest, ARGBInterpolate##TERP##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
const int kStrideA = \
(kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \
const int kStrideB = \
(kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \
align_buffer_page_end(src_argb_a, kStrideA* kHeight + OFF); \
align_buffer_page_end(src_argb_b, kStrideA* kHeight + OFF); \
align_buffer_page_end(dst_argb_c, kStrideB* kHeight); \
align_buffer_page_end(dst_argb_opt, kStrideB* kHeight); \
for (int i = 0; i < kStrideA * kHeight; ++i) { \
src_argb_a[i + OFF] = (fastrand() & 0xff); \
src_argb_b[i + OFF] = (fastrand() & 0xff); \
} \
MaskCpuFlags(disable_cpu_flags_); \
ARGBInterpolate(src_argb_a + OFF, kStrideA, src_argb_b + OFF, kStrideA, \
dst_argb_c, kStrideB, kWidth, NEG kHeight, TERP); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
ARGBInterpolate(src_argb_a + OFF, kStrideA, src_argb_b + OFF, kStrideA, \
dst_argb_opt, kStrideB, kWidth, NEG kHeight, TERP); \
} \
for (int i = 0; i < kStrideB * kHeight; ++i) { \
EXPECT_EQ(dst_argb_c[i], dst_argb_opt[i]); \
} \
free_aligned_buffer_page_end(src_argb_a); \
free_aligned_buffer_page_end(src_argb_b); \
free_aligned_buffer_page_end(dst_argb_c); \
free_aligned_buffer_page_end(dst_argb_opt); \
}
#define TESTINTERPOLATE(TERP) \
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_ - 1, TERP, _Any, +, 0) \
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_, TERP, _Unaligned, +, 1) \
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_, TERP, _Invert, -, 0) \
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_, TERP, _Opt, +, 0)
TESTINTERPOLATE(0)
TESTINTERPOLATE(64)
TESTINTERPOLATE(128)
TESTINTERPOLATE(192)
TESTINTERPOLATE(255)
static int TestBlend(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(src_argb_b, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
src_argb_b[i + off] = (fastrand() & 0xff);
}
ARGBAttenuate(src_argb_a + off, kStride, src_argb_a + off, kStride, width,
height);
ARGBAttenuate(src_argb_b + off, kStride, src_argb_b + off, kStride, width,
height);
memset(dst_argb_c, 255, kStride * height);
memset(dst_argb_opt, 255, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBBlend(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c,
kStride, width, invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBBlend(src_argb_a + off, kStride, src_argb_b + off, kStride,
dst_argb_opt, kStride, width, invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(src_argb_b);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBBlend_Any) {
int max_diff =
TestBlend(benchmark_width_ - 4, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlend_Unaligned) {
int max_diff =
TestBlend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlend_Invert) {
int max_diff =
TestBlend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlend_Opt) {
int max_diff =
TestBlend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
static void TestBlendPlane(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 1;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(src_argb_b, kStride * height + off);
align_buffer_page_end(src_argb_alpha, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height + off);
align_buffer_page_end(dst_argb_opt, kStride * height + off);
memset(dst_argb_c, 255, kStride * height + off);
memset(dst_argb_opt, 255, kStride * height + off);
// Test source is maintained exactly if alpha is 255.
for (int i = 0; i < width; ++i) {
src_argb_a[i + off] = i & 255;
src_argb_b[i + off] = 255 - (i & 255);
}
memset(src_argb_alpha + off, 255, width);
BlendPlane(src_argb_a + off, width, src_argb_b + off, width,
src_argb_alpha + off, width, dst_argb_opt + off, width, width, 1);
for (int i = 0; i < width; ++i) {
EXPECT_EQ(src_argb_a[i + off], dst_argb_opt[i + off]);
}
// Test destination is maintained exactly if alpha is 0.
memset(src_argb_alpha + off, 0, width);
BlendPlane(src_argb_a + off, width, src_argb_b + off, width,
src_argb_alpha + off, width, dst_argb_opt + off, width, width, 1);
for (int i = 0; i < width; ++i) {
EXPECT_EQ(src_argb_b[i + off], dst_argb_opt[i + off]);
}
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
src_argb_b[i + off] = (fastrand() & 0xff);
src_argb_alpha[i + off] = (fastrand() & 0xff);
}
MaskCpuFlags(disable_cpu_flags);
BlendPlane(src_argb_a + off, width, src_argb_b + off, width,
src_argb_alpha + off, width, dst_argb_c + off, width, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
BlendPlane(src_argb_a + off, width, src_argb_b + off, width,
src_argb_alpha + off, width, dst_argb_opt + off, width, width,
invert * height);
}
for (int i = 0; i < kStride * height; ++i) {
EXPECT_EQ(dst_argb_c[i + off], dst_argb_opt[i + off]);
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(src_argb_b);
free_aligned_buffer_page_end(src_argb_alpha);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return;
}
TEST_F(LibYUVPlanarTest, BlendPlane_Opt) {
TestBlendPlane(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
}
TEST_F(LibYUVPlanarTest, BlendPlane_Unaligned) {
TestBlendPlane(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
}
TEST_F(LibYUVPlanarTest, BlendPlane_Any) {
TestBlendPlane(benchmark_width_ - 4, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
}
TEST_F(LibYUVPlanarTest, BlendPlane_Invert) {
TestBlendPlane(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 1);
}
#define SUBSAMPLE(v, a) ((((v) + (a)-1)) / (a))
static void TestI420Blend(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
width = ((width) > 0) ? (width) : 1;
const int kStrideUV = SUBSAMPLE(width, 2);
const int kSizeUV = kStrideUV * SUBSAMPLE(height, 2);
align_buffer_page_end(src_y0, width * height + off);
align_buffer_page_end(src_u0, kSizeUV + off);
align_buffer_page_end(src_v0, kSizeUV + off);
align_buffer_page_end(src_y1, width * height + off);
align_buffer_page_end(src_u1, kSizeUV + off);
align_buffer_page_end(src_v1, kSizeUV + off);
align_buffer_page_end(src_a, width * height + off);
align_buffer_page_end(dst_y_c, width * height + off);
align_buffer_page_end(dst_u_c, kSizeUV + off);
align_buffer_page_end(dst_v_c, kSizeUV + off);
align_buffer_page_end(dst_y_opt, width * height + off);
align_buffer_page_end(dst_u_opt, kSizeUV + off);
align_buffer_page_end(dst_v_opt, kSizeUV + off);
MemRandomize(src_y0, width * height + off);
MemRandomize(src_u0, kSizeUV + off);
MemRandomize(src_v0, kSizeUV + off);
MemRandomize(src_y1, width * height + off);
MemRandomize(src_u1, kSizeUV + off);
MemRandomize(src_v1, kSizeUV + off);
MemRandomize(src_a, width * height + off);
memset(dst_y_c, 255, width * height + off);
memset(dst_u_c, 255, kSizeUV + off);
memset(dst_v_c, 255, kSizeUV + off);
memset(dst_y_opt, 255, width * height + off);
memset(dst_u_opt, 255, kSizeUV + off);
memset(dst_v_opt, 255, kSizeUV + off);
MaskCpuFlags(disable_cpu_flags);
I420Blend(src_y0 + off, width, src_u0 + off, kStrideUV, src_v0 + off,
kStrideUV, src_y1 + off, width, src_u1 + off, kStrideUV,
src_v1 + off, kStrideUV, src_a + off, width, dst_y_c + off, width,
dst_u_c + off, kStrideUV, dst_v_c + off, kStrideUV, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
I420Blend(src_y0 + off, width, src_u0 + off, kStrideUV, src_v0 + off,
kStrideUV, src_y1 + off, width, src_u1 + off, kStrideUV,
src_v1 + off, kStrideUV, src_a + off, width, dst_y_opt + off,
width, dst_u_opt + off, kStrideUV, dst_v_opt + off, kStrideUV,
width, invert * height);
}
for (int i = 0; i < width * height; ++i) {
EXPECT_EQ(dst_y_c[i + off], dst_y_opt[i + off]);
}
for (int i = 0; i < kSizeUV; ++i) {
EXPECT_EQ(dst_u_c[i + off], dst_u_opt[i + off]);
EXPECT_EQ(dst_v_c[i + off], dst_v_opt[i + off]);
}
free_aligned_buffer_page_end(src_y0);
free_aligned_buffer_page_end(src_u0);
free_aligned_buffer_page_end(src_v0);
free_aligned_buffer_page_end(src_y1);
free_aligned_buffer_page_end(src_u1);
free_aligned_buffer_page_end(src_v1);
free_aligned_buffer_page_end(src_a);
free_aligned_buffer_page_end(dst_y_c);
free_aligned_buffer_page_end(dst_u_c);
free_aligned_buffer_page_end(dst_v_c);
free_aligned_buffer_page_end(dst_y_opt);
free_aligned_buffer_page_end(dst_u_opt);
free_aligned_buffer_page_end(dst_v_opt);
return;
}
TEST_F(LibYUVPlanarTest, I420Blend_Opt) {
TestI420Blend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
}
TEST_F(LibYUVPlanarTest, I420Blend_Unaligned) {
TestI420Blend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
}
// TODO(fbarchard): DISABLED because _Any uses C. Avoid C and re-enable.
TEST_F(LibYUVPlanarTest, DISABLED_I420Blend_Any) {
TestI420Blend(benchmark_width_ - 4, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
}
TEST_F(LibYUVPlanarTest, I420Blend_Invert) {
TestI420Blend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
}
TEST_F(LibYUVPlanarTest, TestAffine) {
SIMD_ALIGNED(uint8 orig_pixels_0[1280][4]);
SIMD_ALIGNED(uint8 interpolate_pixels_C[1280][4]);
for (int i = 0; i < 1280; ++i) {
for (int j = 0; j < 4; ++j) {
orig_pixels_0[i][j] = i;
}
}
float uv_step[4] = {0.f, 0.f, 0.75f, 0.f};
ARGBAffineRow_C(&orig_pixels_0[0][0], 0, &interpolate_pixels_C[0][0], uv_step,
1280);
EXPECT_EQ(0u, interpolate_pixels_C[0][0]);
EXPECT_EQ(96u, interpolate_pixels_C[128][0]);
EXPECT_EQ(191u, interpolate_pixels_C[255][3]);
#if defined(HAS_ARGBAFFINEROW_SSE2)
SIMD_ALIGNED(uint8 interpolate_pixels_Opt[1280][4]);
ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0],
uv_step, 1280);
EXPECT_EQ(0, memcmp(interpolate_pixels_Opt, interpolate_pixels_C, 1280 * 4));
int has_sse2 = TestCpuFlag(kCpuHasSSE2);
if (has_sse2) {
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0],
uv_step, 1280);
}
}
#endif
}
TEST_F(LibYUVPlanarTest, TestCopyPlane) {
int err = 0;
int yw = benchmark_width_;
int yh = benchmark_height_;
int b = 12;
int i, j;
int y_plane_size = (yw + b * 2) * (yh + b * 2);
align_buffer_page_end(orig_y, y_plane_size);
align_buffer_page_end(dst_c, y_plane_size);
align_buffer_page_end(dst_opt, y_plane_size);
memset(orig_y, 0, y_plane_size);
memset(dst_c, 0, y_plane_size);
memset(dst_opt, 0, y_plane_size);
// Fill image buffers with random data.
for (i = b; i < (yh + b); ++i) {
for (j = b; j < (yw + b); ++j) {
orig_y[i * (yw + b * 2) + j] = fastrand() & 0xff;
}
}
// Fill destination buffers with random data.
for (i = 0; i < y_plane_size; ++i) {
uint8 random_number = fastrand() & 0x7f;
dst_c[i] = random_number;
dst_opt[i] = dst_c[i];
}
int y_off = b * (yw + b * 2) + b;
int y_st = yw + b * 2;
int stride = 8;
// Disable all optimizations.
MaskCpuFlags(disable_cpu_flags_);
for (j = 0; j < benchmark_iterations_; j++) {
CopyPlane(orig_y + y_off, y_st, dst_c + y_off, stride, yw, yh);
}
// Enable optimizations.
MaskCpuFlags(benchmark_cpu_info_);
for (j = 0; j < benchmark_iterations_; j++) {
CopyPlane(orig_y + y_off, y_st, dst_opt + y_off, stride, yw, yh);
}
for (i = 0; i < y_plane_size; ++i) {
if (dst_c[i] != dst_opt[i])
++err;
}
free_aligned_buffer_page_end(orig_y);
free_aligned_buffer_page_end(dst_c);
free_aligned_buffer_page_end(dst_opt);
EXPECT_EQ(0, err);
}
static int TestMultiply(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(src_argb_b, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
src_argb_b[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBMultiply(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c,
kStride, width, invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBMultiply(src_argb_a + off, kStride, src_argb_b + off, kStride,
dst_argb_opt, kStride, width, invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(src_argb_b);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBMultiply_Any) {
int max_diff = TestMultiply(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBMultiply_Unaligned) {
int max_diff =
TestMultiply(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBMultiply_Invert) {
int max_diff =
TestMultiply(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBMultiply_Opt) {
int max_diff =
TestMultiply(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
static int TestAdd(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(src_argb_b, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
src_argb_b[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBAdd(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c,
kStride, width, invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBAdd(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_opt,
kStride, width, invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(src_argb_b);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBAdd_Any) {
int max_diff =
TestAdd(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBAdd_Unaligned) {
int max_diff =
TestAdd(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBAdd_Invert) {
int max_diff =
TestAdd(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBAdd_Opt) {
int max_diff =
TestAdd(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
static int TestSubtract(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(src_argb_b, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
src_argb_b[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBSubtract(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c,
kStride, width, invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBSubtract(src_argb_a + off, kStride, src_argb_b + off, kStride,
dst_argb_opt, kStride, width, invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(src_argb_b);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBSubtract_Any) {
int max_diff = TestSubtract(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBSubtract_Unaligned) {
int max_diff =
TestSubtract(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBSubtract_Invert) {
int max_diff =
TestSubtract(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBSubtract_Opt) {
int max_diff =
TestSubtract(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
static int TestSobel(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
memset(src_argb_a, 0, kStride * height + off);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBSobel(src_argb_a + off, kStride, dst_argb_c, kStride, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBSobel(src_argb_a + off, kStride, dst_argb_opt, kStride, width,
invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBSobel_Any) {
int max_diff =
TestSobel(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobel_Unaligned) {
int max_diff =
TestSobel(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobel_Invert) {
int max_diff =
TestSobel(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobel_Opt) {
int max_diff =
TestSobel(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
static int TestSobelToPlane(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kSrcBpp = 4;
const int kDstBpp = 1;
const int kSrcStride = (width * kSrcBpp + 15) & ~15;
const int kDstStride = (width * kDstBpp + 15) & ~15;
align_buffer_page_end(src_argb_a, kSrcStride * height + off);
align_buffer_page_end(dst_argb_c, kDstStride * height);
align_buffer_page_end(dst_argb_opt, kDstStride * height);
memset(src_argb_a, 0, kSrcStride * height + off);
for (int i = 0; i < kSrcStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kDstStride * height);
memset(dst_argb_opt, 0, kDstStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBSobelToPlane(src_argb_a + off, kSrcStride, dst_argb_c, kDstStride, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBSobelToPlane(src_argb_a + off, kSrcStride, dst_argb_opt, kDstStride,
width, invert * height);
}
int max_diff = 0;
for (int i = 0; i < kDstStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Any) {
int max_diff = TestSobelToPlane(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Unaligned) {
int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Invert) {
int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, -1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Opt) {
int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
static int TestSobelXY(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
memset(src_argb_a, 0, kStride * height + off);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBSobelXY(src_argb_a + off, kStride, dst_argb_c, kStride, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBSobelXY(src_argb_a + off, kStride, dst_argb_opt, kStride, width,
invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBSobelXY_Any) {
int max_diff = TestSobelXY(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelXY_Unaligned) {
int max_diff =
TestSobelXY(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelXY_Invert) {
int max_diff =
TestSobelXY(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelXY_Opt) {
int max_diff =
TestSobelXY(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
static int TestBlur(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off,
int radius) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(dst_cumsum, width * height * 16);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
}
memset(dst_cumsum, 0, width * height * 16);
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBBlur(src_argb_a + off, kStride, dst_argb_c, kStride,
reinterpret_cast<int32*>(dst_cumsum), width * 4, width,
invert * height, radius);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBBlur(src_argb_a + off, kStride, dst_argb_opt, kStride,
reinterpret_cast<int32*>(dst_cumsum), width * 4, width,
invert * height, radius);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(dst_cumsum);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
static const int kBlurSize = 55;
TEST_F(LibYUVPlanarTest, ARGBBlur_Any) {
int max_diff =
TestBlur(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlur_Unaligned) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1, kBlurSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlur_Invert) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0, kBlurSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlur_Opt) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSize);
EXPECT_LE(max_diff, 1);
}
static const int kBlurSmallSize = 5;
TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Any) {
int max_diff =
TestBlur(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSmallSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Unaligned) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1, kBlurSmallSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Invert) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0, kBlurSmallSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Opt) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSmallSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, TestARGBPolynomial) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
SIMD_ALIGNED(uint8 dst_pixels_opt[1280][4]);
SIMD_ALIGNED(uint8 dst_pixels_c[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
SIMD_ALIGNED(static const float kWarmifyPolynomial[16]) = {
0.94230f, -3.03300f, -2.92500f, 0.f, // C0
0.584500f, 1.112000f, 1.535000f, 1.f, // C1 x
0.001313f, -0.002503f, -0.004496f, 0.f, // C2 x * x
0.0f, 0.000006965f, 0.000008781f, 0.f, // C3 x * x * x
};
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test white
orig_pixels[3][0] = 255u;
orig_pixels[3][1] = 255u;
orig_pixels[3][2] = 255u;
orig_pixels[3][3] = 255u;
// Test color
orig_pixels[4][0] = 16u;
orig_pixels[4][1] = 64u;
orig_pixels[4][2] = 192u;
orig_pixels[4][3] = 224u;
// Do 16 to test asm version.
ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
&kWarmifyPolynomial[0], 16, 1);
EXPECT_EQ(235u, dst_pixels_opt[0][0]);
EXPECT_EQ(0u, dst_pixels_opt[0][1]);
EXPECT_EQ(0u, dst_pixels_opt[0][2]);
EXPECT_EQ(128u, dst_pixels_opt[0][3]);
EXPECT_EQ(0u, dst_pixels_opt[1][0]);
EXPECT_EQ(233u, dst_pixels_opt[1][1]);
EXPECT_EQ(0u, dst_pixels_opt[1][2]);
EXPECT_EQ(0u, dst_pixels_opt[1][3]);
EXPECT_EQ(0u, dst_pixels_opt[2][0]);
EXPECT_EQ(0u, dst_pixels_opt[2][1]);
EXPECT_EQ(241u, dst_pixels_opt[2][2]);
EXPECT_EQ(255u, dst_pixels_opt[2][3]);
EXPECT_EQ(235u, dst_pixels_opt[3][0]);
EXPECT_EQ(233u, dst_pixels_opt[3][1]);
EXPECT_EQ(241u, dst_pixels_opt[3][2]);
EXPECT_EQ(255u, dst_pixels_opt[3][3]);
EXPECT_EQ(10u, dst_pixels_opt[4][0]);
EXPECT_EQ(59u, dst_pixels_opt[4][1]);
EXPECT_EQ(188u, dst_pixels_opt[4][2]);
EXPECT_EQ(224u, dst_pixels_opt[4][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
MaskCpuFlags(disable_cpu_flags_);
ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0,
&kWarmifyPolynomial[0], 1280, 1);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
&kWarmifyPolynomial[0], 1280, 1);
}
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]);
EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]);
EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]);
EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]);
}
}
int TestHalfFloatPlane(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
float scale,
int mask) {
int i, j;
const int y_plane_size = benchmark_width * benchmark_height * 2;
align_buffer_page_end(orig_y, y_plane_size * 3);
uint8* dst_opt = orig_y + y_plane_size;
uint8* dst_c = orig_y + y_plane_size * 2;
MemRandomize(orig_y, y_plane_size);
memset(dst_c, 0, y_plane_size);
memset(dst_opt, 1, y_plane_size);
for (i = 0; i < y_plane_size / 2; ++i) {
reinterpret_cast<uint16*>(orig_y)[i] &= mask;
}
// Disable all optimizations.
MaskCpuFlags(disable_cpu_flags);
for (j = 0; j < benchmark_iterations; j++) {
HalfFloatPlane(reinterpret_cast<uint16*>(orig_y), benchmark_width * 2,
reinterpret_cast<uint16*>(dst_c), benchmark_width * 2, scale,
benchmark_width, benchmark_height);
}
// Enable optimizations.
MaskCpuFlags(benchmark_cpu_info);
for (j = 0; j < benchmark_iterations; j++) {
HalfFloatPlane(reinterpret_cast<uint16*>(orig_y), benchmark_width * 2,
reinterpret_cast<uint16*>(dst_opt), benchmark_width * 2,
scale, benchmark_width, benchmark_height);
}
int max_diff = 0;
for (i = 0; i < y_plane_size / 2; ++i) {
int abs_diff = abs(static_cast<int>(reinterpret_cast<uint16*>(dst_c)[i]) -
static_cast<int>(reinterpret_cast<uint16*>(dst_opt)[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
#if defined(__arm__)
static void EnableFlushDenormalToZero(void) {
uint32_t cw;
__asm__ __volatile__(
"vmrs %0, fpscr \n"
"orr %0, %0, #0x1000000 \n"
"vmsr fpscr, %0 \n"
: "=r"(cw)::"memory");
}
#endif
// 5 bit exponent with bias of 15 will underflow to a denormal if scale causes
// exponent to be less than 0. 15 - log2(65536) = -1/ This shouldnt normally
// happen since scale is 1/(1<<bits) where bits is 9, 10 or 12.
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_16bit_denormal) {
// 32 bit arm rounding on denormal case is off by 1 compared to C.
#if defined(__arm__)
EnableFlushDenormalToZero();
#endif
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 65536.0f, 65535);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_16bit_One) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f, 65535);
EXPECT_LE(diff, 1);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_16bit_Opt) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 4096.0f, 65535);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_10bit_Opt) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 1024.0f, 1023);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_9bit_Opt) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 512.0f, 511);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_Opt) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 4096.0f, 4095);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_Offby1) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 4095.0f, 4095);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_One) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f, 2047);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_12bit_One) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f, 4095);
EXPECT_LE(diff, 1);
}
TEST_F(LibYUVPlanarTest, TestARGBLumaColorTable) {
SIMD_ALIGNED(uint8 orig_pixels[1280][4]);
SIMD_ALIGNED(uint8 dst_pixels_opt[1280][4]);
SIMD_ALIGNED(uint8 dst_pixels_c[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
align_buffer_page_end(lumacolortable, 32768);
int v = 0;
for (int i = 0; i < 32768; ++i) {
lumacolortable[i] = v;
v += 3;
}
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
&lumacolortable[0], 16, 1);
EXPECT_EQ(253u, dst_pixels_opt[0][0]);
EXPECT_EQ(0u, dst_pixels_opt[0][1]);
EXPECT_EQ(0u, dst_pixels_opt[0][2]);
EXPECT_EQ(128u, dst_pixels_opt[0][3]);
EXPECT_EQ(0u, dst_pixels_opt[1][0]);
EXPECT_EQ(253u, dst_pixels_opt[1][1]);
EXPECT_EQ(0u, dst_pixels_opt[1][2]);
EXPECT_EQ(0u, dst_pixels_opt[1][3]);
EXPECT_EQ(0u, dst_pixels_opt[2][0]);
EXPECT_EQ(0u, dst_pixels_opt[2][1]);
EXPECT_EQ(253u, dst_pixels_opt[2][2]);
EXPECT_EQ(255u, dst_pixels_opt[2][3]);
EXPECT_EQ(48u, dst_pixels_opt[3][0]);
EXPECT_EQ(192u, dst_pixels_opt[3][1]);
EXPECT_EQ(64u, dst_pixels_opt[3][2]);
EXPECT_EQ(224u, dst_pixels_opt[3][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
MaskCpuFlags(disable_cpu_flags_);
ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0,
lumacolortable, 1280, 1);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
lumacolortable, 1280, 1);
}
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]);
EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]);
EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]);
EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]);
}
free_aligned_buffer_page_end(lumacolortable);
}
TEST_F(LibYUVPlanarTest, TestARGBCopyAlpha) {
const int kSize = benchmark_width_ * benchmark_height_ * 4;
align_buffer_page_end(orig_pixels, kSize);
align_buffer_page_end(dst_pixels_opt, kSize);
align_buffer_page_end(dst_pixels_c, kSize);
MemRandomize(orig_pixels, kSize);
MemRandomize(dst_pixels_opt, kSize);
memcpy(dst_pixels_c, dst_pixels_opt, kSize);
MaskCpuFlags(disable_cpu_flags_);
ARGBCopyAlpha(orig_pixels, benchmark_width_ * 4, dst_pixels_c,
benchmark_width_ * 4, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
ARGBCopyAlpha(orig_pixels, benchmark_width_ * 4, dst_pixels_opt,
benchmark_width_ * 4, benchmark_width_, benchmark_height_);
}
for (int i = 0; i < kSize; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(dst_pixels_c);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(orig_pixels);
}
TEST_F(LibYUVPlanarTest, TestARGBExtractAlpha) {
const int kPixels = benchmark_width_ * benchmark_height_;
align_buffer_page_end(src_pixels, kPixels * 4);
align_buffer_page_end(dst_pixels_opt, kPixels);
align_buffer_page_end(dst_pixels_c, kPixels);
MemRandomize(src_pixels, kPixels * 4);
MemRandomize(dst_pixels_opt, kPixels);
memcpy(dst_pixels_c, dst_pixels_opt, kPixels);
MaskCpuFlags(disable_cpu_flags_);
ARGBExtractAlpha(src_pixels, benchmark_width_ * 4, dst_pixels_c,
benchmark_width_, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
ARGBExtractAlpha(src_pixels, benchmark_width_ * 4, dst_pixels_opt,
benchmark_width_, benchmark_width_, benchmark_height_);
}
for (int i = 0; i < kPixels; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(dst_pixels_c);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(src_pixels);
}
TEST_F(LibYUVPlanarTest, TestARGBCopyYToAlpha) {
const int kPixels = benchmark_width_ * benchmark_height_;
align_buffer_page_end(orig_pixels, kPixels);
align_buffer_page_end(dst_pixels_opt, kPixels * 4);
align_buffer_page_end(dst_pixels_c, kPixels * 4);
MemRandomize(orig_pixels, kPixels);
MemRandomize(dst_pixels_opt, kPixels * 4);
memcpy(dst_pixels_c, dst_pixels_opt, kPixels * 4);
MaskCpuFlags(disable_cpu_flags_);
ARGBCopyYToAlpha(orig_pixels, benchmark_width_, dst_pixels_c,
benchmark_width_ * 4, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
ARGBCopyYToAlpha(orig_pixels, benchmark_width_, dst_pixels_opt,
benchmark_width_ * 4, benchmark_width_, benchmark_height_);
}
for (int i = 0; i < kPixels * 4; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(dst_pixels_c);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(orig_pixels);
}
static int TestARGBRect(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off,
int bpp) {
if (width < 1) {
width = 1;
}
const int kStride = width * bpp;
const int kSize = kStride * height;
const uint32 v32 = fastrand() & (bpp == 4 ? 0xffffffff : 0xff);
align_buffer_page_end(dst_argb_c, kSize + off);
align_buffer_page_end(dst_argb_opt, kSize + off);
MemRandomize(dst_argb_c + off, kSize);
memcpy(dst_argb_opt + off, dst_argb_c + off, kSize);
MaskCpuFlags(disable_cpu_flags);
if (bpp == 4) {
ARGBRect(dst_argb_c + off, kStride, 0, 0, width, invert * height, v32);
} else {
SetPlane(dst_argb_c + off, kStride, width, invert * height, v32);
}
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
if (bpp == 4) {
ARGBRect(dst_argb_opt + off, kStride, 0, 0, width, invert * height, v32);
} else {
SetPlane(dst_argb_opt + off, kStride, width, invert * height, v32);
}
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i + off]) -
static_cast<int>(dst_argb_opt[i + off]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBRect_Any) {
int max_diff = TestARGBRect(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0, 4);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBRect_Unaligned) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1, 4);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBRect_Invert) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0, 4);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBRect_Opt) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, 4);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, SetPlane_Any) {
int max_diff = TestARGBRect(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, SetPlane_Unaligned) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, SetPlane_Invert) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, SetPlane_Opt) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, MergeUVPlane_Opt) {
const int kPixels = benchmark_width_ * benchmark_height_;
align_buffer_page_end(src_pixels, kPixels * 2);
align_buffer_page_end(tmp_pixels_u, kPixels);
align_buffer_page_end(tmp_pixels_v, kPixels);
align_buffer_page_end(dst_pixels_opt, kPixels * 2);
align_buffer_page_end(dst_pixels_c, kPixels * 2);
MemRandomize(src_pixels, kPixels * 2);
MemRandomize(tmp_pixels_u, kPixels);
MemRandomize(tmp_pixels_v, kPixels);
MemRandomize(dst_pixels_opt, kPixels * 2);
MemRandomize(dst_pixels_c, kPixels * 2);
MaskCpuFlags(disable_cpu_flags_);
SplitUVPlane(src_pixels, benchmark_width_ * 2, tmp_pixels_u, benchmark_width_,
tmp_pixels_v, benchmark_width_, benchmark_width_,
benchmark_height_);
MergeUVPlane(tmp_pixels_u, benchmark_width_, tmp_pixels_v, benchmark_width_,
dst_pixels_c, benchmark_width_ * 2, benchmark_width_,
benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
SplitUVPlane(src_pixels, benchmark_width_ * 2, tmp_pixels_u, benchmark_width_,
tmp_pixels_v, benchmark_width_, benchmark_width_,
benchmark_height_);
for (int i = 0; i < benchmark_iterations_; ++i) {
MergeUVPlane(tmp_pixels_u, benchmark_width_, tmp_pixels_v, benchmark_width_,
dst_pixels_opt, benchmark_width_ * 2, benchmark_width_,
benchmark_height_);
}
for (int i = 0; i < kPixels * 2; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(src_pixels);
free_aligned_buffer_page_end(tmp_pixels_u);
free_aligned_buffer_page_end(tmp_pixels_v);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(dst_pixels_c);
}
TEST_F(LibYUVPlanarTest, SplitUVPlane_Opt) {
const int kPixels = benchmark_width_ * benchmark_height_;
align_buffer_page_end(src_pixels, kPixels * 2);
align_buffer_page_end(tmp_pixels_u, kPixels);
align_buffer_page_end(tmp_pixels_v, kPixels);
align_buffer_page_end(dst_pixels_opt, kPixels * 2);
align_buffer_page_end(dst_pixels_c, kPixels * 2);
MemRandomize(src_pixels, kPixels * 2);
MemRandomize(tmp_pixels_u, kPixels);
MemRandomize(tmp_pixels_v, kPixels);
MemRandomize(dst_pixels_opt, kPixels * 2);
MemRandomize(dst_pixels_c, kPixels * 2);
MaskCpuFlags(disable_cpu_flags_);
SplitUVPlane(src_pixels, benchmark_width_ * 2, tmp_pixels_u, benchmark_width_,
tmp_pixels_v, benchmark_width_, benchmark_width_,
benchmark_height_);
MergeUVPlane(tmp_pixels_u, benchmark_width_, tmp_pixels_v, benchmark_width_,
dst_pixels_c, benchmark_width_ * 2, benchmark_width_,
benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
SplitUVPlane(src_pixels, benchmark_width_ * 2, tmp_pixels_u,
benchmark_width_, tmp_pixels_v, benchmark_width_,
benchmark_width_, benchmark_height_);
}
MergeUVPlane(tmp_pixels_u, benchmark_width_, tmp_pixels_v, benchmark_width_,
dst_pixels_opt, benchmark_width_ * 2, benchmark_width_,
benchmark_height_);
for (int i = 0; i < kPixels * 2; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(src_pixels);
free_aligned_buffer_page_end(tmp_pixels_u);
free_aligned_buffer_page_end(tmp_pixels_v);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(dst_pixels_c);
}
TEST_F(LibYUVPlanarTest, MergeRGBPlane_Opt) {
const int kPixels = benchmark_width_ * benchmark_height_;
align_buffer_page_end(src_pixels, kPixels * 3);
align_buffer_page_end(tmp_pixels_r, kPixels);
align_buffer_page_end(tmp_pixels_g, kPixels);
align_buffer_page_end(tmp_pixels_b, kPixels);
align_buffer_page_end(dst_pixels_opt, kPixels * 3);
align_buffer_page_end(dst_pixels_c, kPixels * 3);
MemRandomize(src_pixels, kPixels * 3);
MemRandomize(tmp_pixels_r, kPixels);
MemRandomize(tmp_pixels_g, kPixels);
MemRandomize(tmp_pixels_b, kPixels);
MemRandomize(dst_pixels_opt, kPixels * 3);
MemRandomize(dst_pixels_c, kPixels * 3);
MaskCpuFlags(disable_cpu_flags_);
SplitRGBPlane(src_pixels, benchmark_width_ * 3, tmp_pixels_r,
benchmark_width_, tmp_pixels_g, benchmark_width_, tmp_pixels_b,
benchmark_width_, benchmark_width_, benchmark_height_);
MergeRGBPlane(tmp_pixels_r, benchmark_width_, tmp_pixels_g, benchmark_width_,
tmp_pixels_b, benchmark_width_, dst_pixels_c,
benchmark_width_ * 3, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
SplitRGBPlane(src_pixels, benchmark_width_ * 3, tmp_pixels_r,
benchmark_width_, tmp_pixels_g, benchmark_width_, tmp_pixels_b,
benchmark_width_, benchmark_width_, benchmark_height_);
for (int i = 0; i < benchmark_iterations_; ++i) {
MergeRGBPlane(tmp_pixels_r, benchmark_width_, tmp_pixels_g,
benchmark_width_, tmp_pixels_b, benchmark_width_,
dst_pixels_opt, benchmark_width_ * 3, benchmark_width_,
benchmark_height_);
}
for (int i = 0; i < kPixels * 3; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(src_pixels);
free_aligned_buffer_page_end(tmp_pixels_r);
free_aligned_buffer_page_end(tmp_pixels_g);
free_aligned_buffer_page_end(tmp_pixels_b);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(dst_pixels_c);
}
TEST_F(LibYUVPlanarTest, SplitRGBPlane_Opt) {
const int kPixels = benchmark_width_ * benchmark_height_;
align_buffer_page_end(src_pixels, kPixels * 3);
align_buffer_page_end(tmp_pixels_r, kPixels);
align_buffer_page_end(tmp_pixels_g, kPixels);
align_buffer_page_end(tmp_pixels_b, kPixels);
align_buffer_page_end(dst_pixels_opt, kPixels * 3);
align_buffer_page_end(dst_pixels_c, kPixels * 3);
MemRandomize(src_pixels, kPixels * 3);
MemRandomize(tmp_pixels_r, kPixels);
MemRandomize(tmp_pixels_g, kPixels);
MemRandomize(tmp_pixels_b, kPixels);
MemRandomize(dst_pixels_opt, kPixels * 3);
MemRandomize(dst_pixels_c, kPixels * 3);
MaskCpuFlags(disable_cpu_flags_);
SplitRGBPlane(src_pixels, benchmark_width_ * 3, tmp_pixels_r,
benchmark_width_, tmp_pixels_g, benchmark_width_, tmp_pixels_b,
benchmark_width_, benchmark_width_, benchmark_height_);
MergeRGBPlane(tmp_pixels_r, benchmark_width_, tmp_pixels_g, benchmark_width_,
tmp_pixels_b, benchmark_width_, dst_pixels_c,
benchmark_width_ * 3, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
SplitRGBPlane(src_pixels, benchmark_width_ * 3, tmp_pixels_r,
benchmark_width_, tmp_pixels_g, benchmark_width_,
tmp_pixels_b, benchmark_width_, benchmark_width_,
benchmark_height_);
}
MergeRGBPlane(tmp_pixels_r, benchmark_width_, tmp_pixels_g, benchmark_width_,
tmp_pixels_b, benchmark_width_, dst_pixels_opt,
benchmark_width_ * 3, benchmark_width_, benchmark_height_);
for (int i = 0; i < kPixels * 3; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(src_pixels);
free_aligned_buffer_page_end(tmp_pixels_r);
free_aligned_buffer_page_end(tmp_pixels_g);
free_aligned_buffer_page_end(tmp_pixels_b);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(dst_pixels_c);
}
// TODO(fbarchard): improve test for platforms and cpu detect
#ifdef HAS_MERGEUVROW_16_AVX2
TEST_F(LibYUVPlanarTest, MergeUVRow_16_Opt) {
const int kPixels = benchmark_width_ * benchmark_height_;
align_buffer_page_end(src_pixels_u, kPixels * 2);
align_buffer_page_end(src_pixels_v, kPixels * 2);
align_buffer_page_end(dst_pixels_uv_opt, kPixels * 2 * 2);
align_buffer_page_end(dst_pixels_uv_c, kPixels * 2 * 2);
MemRandomize(src_pixels_u, kPixels * 2);
MemRandomize(src_pixels_v, kPixels * 2);
memset(dst_pixels_uv_opt, 0, kPixels * 2 * 2);
memset(dst_pixels_uv_c, 1, kPixels * 2 * 2);
MergeUVRow_16_C(reinterpret_cast<const uint16*>(src_pixels_u),
reinterpret_cast<const uint16*>(src_pixels_v),
reinterpret_cast<uint16*>(dst_pixels_uv_c), 64, kPixels);
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
for (int i = 0; i < benchmark_iterations_; ++i) {
if (has_avx2) {
MergeUVRow_16_AVX2(reinterpret_cast<const uint16*>(src_pixels_u),
reinterpret_cast<const uint16*>(src_pixels_v),
reinterpret_cast<uint16*>(dst_pixels_uv_opt), 64,
kPixels);
} else {
MergeUVRow_16_C(reinterpret_cast<const uint16*>(src_pixels_u),
reinterpret_cast<const uint16*>(src_pixels_v),
reinterpret_cast<uint16*>(dst_pixels_uv_opt), 64,
kPixels);
}
}
for (int i = 0; i < kPixels * 2 * 2; ++i) {
EXPECT_EQ(dst_pixels_uv_opt[i], dst_pixels_uv_c[i]);
}
free_aligned_buffer_page_end(src_pixels_u);
free_aligned_buffer_page_end(src_pixels_v);
free_aligned_buffer_page_end(dst_pixels_uv_opt);
free_aligned_buffer_page_end(dst_pixels_uv_c);
}
#endif
// TODO(fbarchard): Improve test for more platforms.
#ifdef HAS_MULTIPLYROW_16_AVX2
TEST_F(LibYUVPlanarTest, MultiplyRow_16_Opt) {
const int kPixels = benchmark_width_ * benchmark_height_;
align_buffer_page_end(src_pixels_y, kPixels * 2);
align_buffer_page_end(dst_pixels_y_opt, kPixels * 2);
align_buffer_page_end(dst_pixels_y_c, kPixels * 2);
MemRandomize(src_pixels_y, kPixels * 2);
memset(dst_pixels_y_opt, 0, kPixels * 2);
memset(dst_pixels_y_c, 1, kPixels * 2);
MultiplyRow_16_C(reinterpret_cast<const uint16*>(src_pixels_y),
reinterpret_cast<uint16*>(dst_pixels_y_c), 64, kPixels);
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
for (int i = 0; i < benchmark_iterations_; ++i) {
if (has_avx2) {
MultiplyRow_16_AVX2(reinterpret_cast<const uint16*>(src_pixels_y),
reinterpret_cast<uint16*>(dst_pixels_y_opt), 64,
kPixels);
} else {
MultiplyRow_16_C(reinterpret_cast<const uint16*>(src_pixels_y),
reinterpret_cast<uint16*>(dst_pixels_y_opt), 64,
kPixels);
}
}
for (int i = 0; i < kPixels * 2; ++i) {
EXPECT_EQ(dst_pixels_y_opt[i], dst_pixels_y_c[i]);
}
free_aligned_buffer_page_end(src_pixels_y);
free_aligned_buffer_page_end(dst_pixels_y_opt);
free_aligned_buffer_page_end(dst_pixels_y_c);
}
#endif // HAS_MULTIPLYROW_16_AVX2
// TODO(fbarchard): Improve test for more platforms.
#ifdef HAS_CONVERT16TO8ROW_AVX2
TEST_F(LibYUVPlanarTest, Convert16To8Row_Opt) {
const int kPixels = benchmark_width_ * benchmark_height_;
align_buffer_page_end(src_pixels_y, kPixels * 2);
align_buffer_page_end(dst_pixels_y_opt, kPixels);
align_buffer_page_end(dst_pixels_y_c, kPixels);
MemRandomize(src_pixels_y, kPixels * 2);
// C code does not clamp so limit source range to 10 bits.
for (int i = 0; i < kPixels; ++i) {
reinterpret_cast<uint16*>(src_pixels_y)[i] &= 1023;
}
memset(dst_pixels_y_opt, 0, kPixels);
memset(dst_pixels_y_c, 1, kPixels);
Convert16To8Row_C(reinterpret_cast<const uint16*>(src_pixels_y),
dst_pixels_y_c, 16384, kPixels);
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
int has_ssse3 = TestCpuFlag(kCpuHasSSSE3);
for (int i = 0; i < benchmark_iterations_; ++i) {
if (has_avx2) {
Convert16To8Row_AVX2(reinterpret_cast<const uint16*>(src_pixels_y),
dst_pixels_y_opt, 16384, kPixels);
} else if (has_ssse3) {
Convert16To8Row_SSSE3(reinterpret_cast<const uint16*>(src_pixels_y),
dst_pixels_y_opt, 16384, kPixels);
} else {
Convert16To8Row_C(reinterpret_cast<const uint16*>(src_pixels_y),
dst_pixels_y_opt, 16384, kPixels);
}
}
for (int i = 0; i < kPixels; ++i) {
EXPECT_EQ(dst_pixels_y_opt[i], dst_pixels_y_c[i]);
}
free_aligned_buffer_page_end(src_pixels_y);
free_aligned_buffer_page_end(dst_pixels_y_opt);
free_aligned_buffer_page_end(dst_pixels_y_c);
}
#endif // HAS_CONVERT16TO8ROW_AVX2
float TestScaleMaxSamples(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
float scale,
bool opt) {
int i, j;
float max_c, max_opt = 0.f;
// NEON does multiple of 8, so round count up
const int kPixels = (benchmark_width * benchmark_height + 7) & ~7;
align_buffer_page_end(orig_y, kPixels * 4 * 3 + 48);
uint8* dst_c = orig_y + kPixels * 4 + 16;
uint8* dst_opt = orig_y + kPixels * 4 * 2 + 32;
// Randomize works but may contain some denormals affecting performance.
// MemRandomize(orig_y, kPixels * 4);
// large values are problematic. audio is really -1 to 1.
for (i = 0; i < kPixels; ++i) {
(reinterpret_cast<float*>(orig_y))[i] = sinf(static_cast<float>(i) * 0.1f);
}
memset(dst_c, 0, kPixels * 4);
memset(dst_opt, 1, kPixels * 4);
max_c = ScaleMaxSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_c), scale, kPixels);
for (j = 0; j < benchmark_iterations; j++) {
if (opt) {
#ifdef HAS_SCALESUMSAMPLES_NEON
max_opt = ScaleMaxSamples_NEON(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale,
kPixels);
#else
max_opt =
ScaleMaxSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
#endif
} else {
max_opt =
ScaleMaxSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
}
}
float max_diff = FAbs(max_opt - max_c);
for (i = 0; i < kPixels; ++i) {
float abs_diff = FAbs((reinterpret_cast<float*>(dst_c)[i]) -
(reinterpret_cast<float*>(dst_opt)[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
TEST_F(LibYUVPlanarTest, TestScaleMaxSamples_C) {
float diff = TestScaleMaxSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, false);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestScaleMaxSamples_Opt) {
float diff = TestScaleMaxSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, true);
EXPECT_EQ(0, diff);
}
float TestScaleSumSamples(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
float scale,
bool opt) {
int i, j;
float sum_c, sum_opt = 0.f;
// NEON does multiple of 8, so round count up
const int kPixels = (benchmark_width * benchmark_height + 7) & ~7;
align_buffer_page_end(orig_y, kPixels * 4 * 3);
uint8* dst_c = orig_y + kPixels * 4;
uint8* dst_opt = orig_y + kPixels * 4 * 2;
// Randomize works but may contain some denormals affecting performance.
// MemRandomize(orig_y, kPixels * 4);
// large values are problematic. audio is really -1 to 1.
for (i = 0; i < kPixels; ++i) {
(reinterpret_cast<float*>(orig_y))[i] = sinf(static_cast<float>(i) * 0.1f);
}
memset(dst_c, 0, kPixels * 4);
memset(dst_opt, 1, kPixels * 4);
sum_c = ScaleSumSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_c), scale, kPixels);
for (j = 0; j < benchmark_iterations; j++) {
if (opt) {
#ifdef HAS_SCALESUMSAMPLES_NEON
sum_opt = ScaleSumSamples_NEON(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale,
kPixels);
#else
sum_opt =
ScaleSumSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
#endif
} else {
sum_opt =
ScaleSumSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
}
}
float mse_opt = sum_opt / kPixels * 4;
float mse_c = sum_c / kPixels * 4;
float mse_error = FAbs(mse_opt - mse_c) / mse_c;
// If the sum of a float is more than 4 million, small adds are round down on
// float and produce different results with vectorized sum vs scalar sum.
// Ignore the difference if the sum is large.
float max_diff = 0.f;
if (mse_error > 0.0001 && sum_c < 4000000) { // allow .01% difference of mse
max_diff = mse_error;
}
for (i = 0; i < kPixels; ++i) {
float abs_diff = FAbs((reinterpret_cast<float*>(dst_c)[i]) -
(reinterpret_cast<float*>(dst_opt)[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
TEST_F(LibYUVPlanarTest, TestScaleSumSamples_C) {
float diff = TestScaleSumSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, false);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestScaleSumSamples_Opt) {
float diff = TestScaleSumSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, true);
EXPECT_EQ(0, diff);
}
float TestScaleSamples(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
float scale,
bool opt) {
int i, j;
// NEON does multiple of 8, so round count up
const int kPixels = (benchmark_width * benchmark_height + 7) & ~7;
align_buffer_page_end(orig_y, kPixels * 4 * 3);
uint8* dst_c = orig_y + kPixels * 4;
uint8* dst_opt = orig_y + kPixels * 4 * 2;
// Randomize works but may contain some denormals affecting performance.
// MemRandomize(orig_y, kPixels * 4);
// large values are problematic. audio is really -1 to 1.
for (i = 0; i < kPixels; ++i) {
(reinterpret_cast<float*>(orig_y))[i] = sinf(static_cast<float>(i) * 0.1f);
}
memset(dst_c, 0, kPixels * 4);
memset(dst_opt, 1, kPixels * 4);
ScaleSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_c), scale, kPixels);
for (j = 0; j < benchmark_iterations; j++) {
if (opt) {
#ifdef HAS_SCALESUMSAMPLES_NEON
ScaleSamples_NEON(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
#else
ScaleSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
#endif
} else {
ScaleSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
}
}
float max_diff = 0.f;
for (i = 0; i < kPixels; ++i) {
float abs_diff = FAbs((reinterpret_cast<float*>(dst_c)[i]) -
(reinterpret_cast<float*>(dst_opt)[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
TEST_F(LibYUVPlanarTest, TestScaleSamples_C) {
float diff = TestScaleSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, false);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestScaleSamples_Opt) {
float diff = TestScaleSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, true);
EXPECT_EQ(0, diff);
}
float TestCopySamples(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
bool opt) {
int i, j;
// NEON does multiple of 16 floats, so round count up
const int kPixels = (benchmark_width * benchmark_height + 15) & ~15;
align_buffer_page_end(orig_y, kPixels * 4 * 3);
uint8* dst_c = orig_y + kPixels * 4;
uint8* dst_opt = orig_y + kPixels * 4 * 2;
// Randomize works but may contain some denormals affecting performance.
// MemRandomize(orig_y, kPixels * 4);
// large values are problematic. audio is really -1 to 1.
for (i = 0; i < kPixels; ++i) {
(reinterpret_cast<float*>(orig_y))[i] = sinf(static_cast<float>(i) * 0.1f);
}
memset(dst_c, 0, kPixels * 4);
memset(dst_opt, 1, kPixels * 4);
memcpy(reinterpret_cast<void*>(dst_c), reinterpret_cast<void*>(orig_y),
kPixels * 4);
for (j = 0; j < benchmark_iterations; j++) {
if (opt) {
#ifdef HAS_COPYROW_NEON
CopyRow_NEON(orig_y, dst_opt, kPixels * 4);
#else
CopyRow_C(orig_y, dst_opt, kPixels * 4);
#endif
} else {
CopyRow_C(orig_y, dst_opt, kPixels * 4);
}
}
float max_diff = 0.f;
for (i = 0; i < kPixels; ++i) {
float abs_diff = FAbs((reinterpret_cast<float*>(dst_c)[i]) -
(reinterpret_cast<float*>(dst_opt)[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
TEST_F(LibYUVPlanarTest, TestCopySamples_C) {
float diff = TestCopySamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, false);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestCopySamples_Opt) {
float diff = TestCopySamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, true);
EXPECT_EQ(0, diff);
}
extern "C" void GaussRow_NEON(const uint32* src, uint16* dst, int width);
extern "C" void GaussRow_C(const uint32* src, uint16* dst, int width);
TEST_F(LibYUVPlanarTest, TestGaussRow_Opt) {
SIMD_ALIGNED(uint32 orig_pixels[640 + 4]);
SIMD_ALIGNED(uint16 dst_pixels_c[640]);
SIMD_ALIGNED(uint16 dst_pixels_opt[640]);
memset(orig_pixels, 0, sizeof(orig_pixels));
memset(dst_pixels_c, 1, sizeof(dst_pixels_c));
memset(dst_pixels_opt, 2, sizeof(dst_pixels_opt));
for (int i = 0; i < 640 + 4; ++i) {
orig_pixels[i] = i * 256;
}
GaussRow_C(&orig_pixels[0], &dst_pixels_c[0], 640);
for (int i = 0; i < benchmark_pixels_div1280_ * 2; ++i) {
#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__)
int has_neon = TestCpuFlag(kCpuHasNEON);
if (has_neon) {
GaussRow_NEON(&orig_pixels[0], &dst_pixels_opt[0], 640);
} else {
GaussRow_C(&orig_pixels[0], &dst_pixels_opt[0], 640);
}
#else
GaussRow_C(&orig_pixels[0], &dst_pixels_opt[0], 640);
#endif
}
for (int i = 0; i < 640; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
EXPECT_EQ(dst_pixels_c[0],
static_cast<uint16>(0 * 1 + 1 * 4 + 2 * 6 + 3 * 4 + 4 * 1));
EXPECT_EQ(dst_pixels_c[639], static_cast<uint16>(10256));
}
extern "C" void GaussCol_NEON(const uint16* src0,
const uint16* src1,
const uint16* src2,
const uint16* src3,
const uint16* src4,
uint32* dst,
int width);
extern "C" void GaussCol_C(const uint16* src0,
const uint16* src1,
const uint16* src2,
const uint16* src3,
const uint16* src4,
uint32* dst,
int width);
TEST_F(LibYUVPlanarTest, TestGaussCol_Opt) {
SIMD_ALIGNED(uint16 orig_pixels[640 * 5]);
SIMD_ALIGNED(uint32 dst_pixels_c[640]);
SIMD_ALIGNED(uint32 dst_pixels_opt[640]);
memset(orig_pixels, 0, sizeof(orig_pixels));
memset(dst_pixels_c, 1, sizeof(dst_pixels_c));
memset(dst_pixels_opt, 2, sizeof(dst_pixels_opt));
for (int i = 0; i < 640 * 5; ++i) {
orig_pixels[i] = i;
}
GaussCol_C(&orig_pixels[0], &orig_pixels[640], &orig_pixels[640 * 2],
&orig_pixels[640 * 3], &orig_pixels[640 * 4], &dst_pixels_c[0],
640);
for (int i = 0; i < benchmark_pixels_div1280_ * 2; ++i) {
#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__)
int has_neon = TestCpuFlag(kCpuHasNEON);
if (has_neon) {
GaussCol_NEON(&orig_pixels[0], &orig_pixels[640], &orig_pixels[640 * 2],
&orig_pixels[640 * 3], &orig_pixels[640 * 4],
&dst_pixels_opt[0], 640);
} else {
GaussCol_C(&orig_pixels[0], &orig_pixels[640], &orig_pixels[640 * 2],
&orig_pixels[640 * 3], &orig_pixels[640 * 4],
&dst_pixels_opt[0], 640);
}
#else
GaussCol_C(&orig_pixels[0], &orig_pixels[640], &orig_pixels[640 * 2],
&orig_pixels[640 * 3], &orig_pixels[640 * 4], &dst_pixels_opt[0],
640);
#endif
}
for (int i = 0; i < 640; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
EXPECT_EQ(dst_pixels_c[0], static_cast<uint32>(0 * 1 + 640 * 4 + 640 * 2 * 6 +
640 * 3 * 4 + 640 * 4 * 1));
EXPECT_EQ(dst_pixels_c[639], static_cast<uint32>(30704));
}
} // namespace libyuv