libyuv/unit_test/planar_test.cc
fbarchard@google.com 2d9fe08225 direct conversion from NV12 to ARGB
BUG=none
TEST=none
Review URL: https://webrtc-codereview.appspot.com/645004

git-svn-id: http://libyuv.googlecode.com/svn/trunk@281 16f28f9a-4ce2-e073-06de-1de4eb20be90
2012-06-05 22:11:34 +00:00

491 lines
24 KiB
C++

/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <time.h>
#include "libyuv/convert_from.h"
#include "libyuv/cpu_id.h"
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
#include "unit_test/unit_test.h"
#if defined(_MSC_VER)
#define SIMD_ALIGNED(var) __declspec(align(16)) var
#else // __GNUC__
#define SIMD_ALIGNED(var) var __attribute__((aligned(16)))
#endif
namespace libyuv {
#define TESTPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B) \
TEST_F(libyuvTest, ##FMT_PLANAR##To##FMT_B##_OptVsC) { \
const int kWidth = 1280; \
const int kHeight = 720; \
align_buffer_16(src_y, kWidth * kHeight); \
align_buffer_16(src_u, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(src_v, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_argb_c, (kWidth * BPP_B) * kHeight); \
align_buffer_16(dst_argb_opt, (kWidth * BPP_B) * kHeight); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[(i * kWidth) + j] = (random() & 0xff); \
for (int i = 0; i < kHeight / SUBSAMP_X; ++i) \
for (int j = 0; j < kWidth / SUBSAMP_Y; ++j) { \
src_u[(i * kWidth / SUBSAMP_X) + j] = (random() & 0xff); \
src_v[(i * kWidth / SUBSAMP_X) + j] = (random() & 0xff); \
} \
MaskCpuFlags(kCpuInitialized); \
##FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_u, kWidth / SUBSAMP_X, \
src_v, kWidth / SUBSAMP_X, \
dst_argb_c, kWidth * BPP_B, \
kWidth, kHeight); \
MaskCpuFlags(-1); \
const int runs = 1000; \
for (int i = 0; i < runs; ++i) { \
##FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_u, kWidth / SUBSAMP_X, \
src_v, kWidth / SUBSAMP_X, \
dst_argb_opt, kWidth * BPP_B, \
kWidth, kHeight); \
} \
int err = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth * BPP_B; ++j) { \
int diff = static_cast<int>(dst_argb_c[i * kWidth * BPP_B + j]) - \
static_cast<int>(dst_argb_opt[i * kWidth * BPP_B + j]); \
if (abs(diff) > 2) { \
++err; \
} \
} \
} \
EXPECT_EQ(err, 0); \
free_aligned_buffer_16(src_y) \
free_aligned_buffer_16(src_u) \
free_aligned_buffer_16(src_v) \
free_aligned_buffer_16(dst_argb_c) \
free_aligned_buffer_16(dst_argb_opt) \
}
TESTPLANARTOB(I420, 2, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, BGRA, 4)
TESTPLANARTOB(I420, 2, 2, ABGR, 4)
TESTPLANARTOB(I420, 2, 2, RAW, 3)
TESTPLANARTOB(I420, 2, 2, RGB24, 3)
TESTPLANARTOB(I420, 2, 2, RGB565, 2)
TESTPLANARTOB(I420, 2, 2, ARGB1555, 2)
TESTPLANARTOB(I420, 2, 2, ARGB4444, 2)
TESTPLANARTOB(I411, 4, 1, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, ARGB, 4)
TESTPLANARTOB(I444, 1, 1, ARGB, 4)
#define TESTBIPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B) \
TEST_F(libyuvTest, ##FMT_PLANAR##To##FMT_B##_OptVsC) { \
const int kWidth = 1280; \
const int kHeight = 720; \
align_buffer_16(src_y, kWidth * kHeight); \
align_buffer_16(src_uv, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y * 2); \
align_buffer_16(dst_argb_c, (kWidth * BPP_B) * kHeight); \
align_buffer_16(dst_argb_opt, (kWidth * BPP_B) * kHeight); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[(i * kWidth) + j] = (random() & 0xff); \
for (int i = 0; i < kHeight / SUBSAMP_X; ++i) \
for (int j = 0; j < kWidth / SUBSAMP_Y * 2; ++j) { \
src_uv[(i * kWidth / SUBSAMP_X) * 2 + j] = (random() & 0xff); \
} \
MaskCpuFlags(kCpuInitialized); \
##FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_uv, kWidth / SUBSAMP_X * 2, \
dst_argb_c, kWidth * BPP_B, \
kWidth, kHeight); \
MaskCpuFlags(-1); \
const int runs = 1000; \
for (int i = 0; i < runs; ++i) { \
##FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_uv, kWidth / SUBSAMP_X * 2, \
dst_argb_opt, kWidth * BPP_B, \
kWidth, kHeight); \
} \
int err = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth * BPP_B; ++j) { \
int diff = static_cast<int>(dst_argb_c[i * kWidth * BPP_B + j]) - \
static_cast<int>(dst_argb_opt[i * kWidth * BPP_B + j]); \
if (abs(diff) > 2) { \
++err; \
} \
} \
} \
EXPECT_EQ(err, 0); \
free_aligned_buffer_16(src_y) \
free_aligned_buffer_16(src_uv) \
free_aligned_buffer_16(dst_argb_c) \
free_aligned_buffer_16(dst_argb_opt) \
}
TESTBIPLANARTOB(NV12, 2, 2, ARGB, 4)
TESTBIPLANARTOB(NV21, 2, 2, ARGB, 4)
TESTBIPLANARTOB(NV12, 2, 2, RGB565, 2)
TESTBIPLANARTOB(NV21, 2, 2, RGB565, 2)
#define TESTATOPLANAR(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
TEST_F(libyuvTest, ##FMT_A##To##FMT_PLANAR##_OptVsC) { \
const int kWidth = 1280; \
const int kHeight = 720; \
align_buffer_16(src_argb, (kWidth * BPP_A) * kHeight); \
align_buffer_16(dst_y_c, kWidth * kHeight); \
align_buffer_16(dst_u_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_v_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_y_opt, kWidth * kHeight); \
align_buffer_16(dst_u_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_v_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth * BPP_A; ++j) \
src_argb[(i * kWidth * BPP_A) + j] = (random() & 0xff); \
MaskCpuFlags(kCpuInitialized); \
##FMT_A##To##FMT_PLANAR(src_argb, kWidth * BPP_A, \
dst_y_c, kWidth, \
dst_u_c, kWidth / SUBSAMP_X, \
dst_v_c, kWidth / SUBSAMP_X, \
kWidth, kHeight); \
MaskCpuFlags(-1); \
const int runs = 1000; \
for (int i = 0; i < runs; ++i) { \
##FMT_A##To##FMT_PLANAR(src_argb, kWidth * BPP_A, \
dst_y_opt, kWidth, \
dst_u_opt, kWidth / SUBSAMP_X, \
dst_v_opt, kWidth / SUBSAMP_X, \
kWidth, kHeight); \
} \
int err = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
int diff = static_cast<int>(dst_y_c[i * kWidth + j]) - \
static_cast<int>(dst_y_opt[i * kWidth + j]); \
if (abs(diff) > 2) { \
++err; \
} \
} \
} \
EXPECT_EQ(err, 0); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
int diff = static_cast<int>(dst_u_c[i * kWidth / SUBSAMP_X + j]) - \
static_cast<int>(dst_u_opt[i * kWidth / SUBSAMP_X + j]); \
if (abs(diff) > 2) { \
++err; \
} \
} \
} \
EXPECT_EQ(err, 0); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
int diff = static_cast<int>(dst_v_c[i * kWidth / SUBSAMP_X + j]) - \
static_cast<int>(dst_v_opt[i * kWidth / SUBSAMP_X + j]); \
if (abs(diff) > 2) { \
++err; \
} \
} \
} \
EXPECT_EQ(err, 0); \
free_aligned_buffer_16(dst_y_c) \
free_aligned_buffer_16(dst_u_c) \
free_aligned_buffer_16(dst_v_c) \
free_aligned_buffer_16(dst_y_opt) \
free_aligned_buffer_16(dst_u_opt) \
free_aligned_buffer_16(dst_v_opt) \
free_aligned_buffer_16(src_argb) \
}
TESTATOPLANAR(ARGB, 4, I420, 2, 2)
TESTATOPLANAR(BGRA, 4, I420, 2, 2)
TESTATOPLANAR(ABGR, 4, I420, 2, 2)
TESTATOPLANAR(RAW, 3, I420, 2, 2)
TESTATOPLANAR(RGB24, 3, I420, 2, 2)
TESTATOPLANAR(RGB565, 2, I420, 2, 2)
TESTATOPLANAR(ARGB1555, 2, I420, 2, 2)
TESTATOPLANAR(ARGB4444, 2, I420, 2, 2)
//TESTATOPLANAR(ARGB, 4, I411, 4, 1)
TESTATOPLANAR(ARGB, 4, I422, 2, 1)
//TESTATOPLANAR(ARGB, 4, I444, 1, 1)
// TODO(fbarchard): Implement and test 411 and 444
#define TESTATOB(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B) \
TEST_F(libyuvTest, ##FMT_A##To##FMT_B##_OptVsC) { \
const int kWidth = 1280; \
const int kHeight = 720; \
align_buffer_16(src_argb, (kWidth * BPP_A) * kHeight); \
align_buffer_16(dst_argb_c, (kWidth * BPP_B) * kHeight); \
align_buffer_16(dst_argb_opt, (kWidth * BPP_B) * kHeight); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight * kWidth * BPP_A; ++i) { \
src_argb[i] = (random() & 0xff); \
} \
MaskCpuFlags(kCpuInitialized); \
##FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \
dst_argb_c, kWidth * BPP_B, \
kWidth, kHeight); \
MaskCpuFlags(-1); \
const int runs = 1000; \
for (int i = 0; i < runs; ++i) { \
##FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \
dst_argb_opt, kWidth * BPP_B, \
kWidth, kHeight); \
} \
int err = 0; \
for (int i = 0; i < kHeight * kWidth * BPP_B; ++i) { \
int diff = static_cast<int>(dst_argb_c[i]) - \
static_cast<int>(dst_argb_opt[i]); \
if (abs(diff) > 2) \
err++; \
} \
EXPECT_EQ(err, 0); \
free_aligned_buffer_16(src_argb) \
free_aligned_buffer_16(dst_argb_c) \
free_aligned_buffer_16(dst_argb_opt) \
}
TESTATOB(ARGB, 4, 4, ARGB, 4)
TESTATOB(ARGB, 4, 4, BGRA, 4)
TESTATOB(ARGB, 4, 4, ABGR, 4)
TESTATOB(ARGB, 4, 4, RAW, 3)
TESTATOB(ARGB, 4, 4, RGB24, 3)
TESTATOB(ARGB, 4, 4, RGB565, 2)
TESTATOB(ARGB, 4, 4, ARGB1555, 2)
TESTATOB(ARGB, 4, 4, ARGB4444, 2)
TESTATOB(BGRA, 4, 4, ARGB, 4)
TESTATOB(ABGR, 4, 4, ARGB, 4)
TESTATOB(RAW, 3, 3, ARGB, 4)
TESTATOB(RGB24, 3, 3, ARGB, 4)
TESTATOB(RGB565, 2, 2, ARGB, 4)
TESTATOB(ARGB1555, 2, 2, ARGB, 4)
TESTATOB(ARGB4444, 2, 2, ARGB, 4)
TESTATOB(YUY2, 2, 2, ARGB, 4)
TESTATOB(UYVY, 2, 2, ARGB, 4)
TESTATOB(M420, 3 / 2, 1, ARGB, 4)
TEST_F(libyuvTest, TestAttenuate) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
SIMD_ALIGNED(uint8 atten_pixels[256][4]);
SIMD_ALIGNED(uint8 unatten_pixels[256][4]);
SIMD_ALIGNED(uint8 atten2_pixels[256][4]);
// Test unattenuation clamps
orig_pixels[0][0] = 200u;
orig_pixels[0][1] = 129u;
orig_pixels[0][2] = 127u;
orig_pixels[0][3] = 128u;
// Test unattenuation transparent and opaque are unaffected
orig_pixels[1][0] = 16u;
orig_pixels[1][1] = 64u;
orig_pixels[1][2] = 192u;
orig_pixels[1][3] = 0u;
orig_pixels[2][0] = 16u;
orig_pixels[2][1] = 64u;
orig_pixels[2][2] = 192u;
orig_pixels[2][3] = 255u;
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 128u;
ARGBUnattenuate(&orig_pixels[0][0], 0, &unatten_pixels[0][0], 0, 4, 1);
EXPECT_EQ(255u, unatten_pixels[0][0]);
EXPECT_EQ(255u, unatten_pixels[0][1]);
EXPECT_EQ(254u, unatten_pixels[0][2]);
EXPECT_EQ(128u, unatten_pixels[0][3]);
EXPECT_EQ(16u, unatten_pixels[1][0]);
EXPECT_EQ(64u, unatten_pixels[1][1]);
EXPECT_EQ(192u, unatten_pixels[1][2]);
EXPECT_EQ(0u, unatten_pixels[1][3]);
EXPECT_EQ(16u, unatten_pixels[2][0]);
EXPECT_EQ(64u, unatten_pixels[2][1]);
EXPECT_EQ(192u, unatten_pixels[2][2]);
EXPECT_EQ(255u, unatten_pixels[2][3]);
EXPECT_EQ(32u, unatten_pixels[3][0]);
EXPECT_EQ(128u, unatten_pixels[3][1]);
EXPECT_EQ(255u, unatten_pixels[3][2]);
EXPECT_EQ(128u, unatten_pixels[3][3]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
ARGBAttenuate(&orig_pixels[0][0], 0, &atten_pixels[0][0], 0, 256, 1);
ARGBUnattenuate(&atten_pixels[0][0], 0, &unatten_pixels[0][0], 0, 256, 1);
for (int i = 0; i < 1000 * 1280 * 720 / 256; ++i) {
ARGBAttenuate(&unatten_pixels[0][0], 0, &atten2_pixels[0][0], 0, 256, 1);
}
for (int i = 0; i < 256; ++i) {
EXPECT_NEAR(atten_pixels[i][0], atten2_pixels[i][0], 2);
EXPECT_NEAR(atten_pixels[i][1], atten2_pixels[i][1], 2);
EXPECT_NEAR(atten_pixels[i][2], atten2_pixels[i][2], 2);
EXPECT_NEAR(atten_pixels[i][3], atten2_pixels[i][3], 2);
}
// Make sure transparent, 50% and opaque are fully accurate.
EXPECT_EQ(0, atten_pixels[0][0]);
EXPECT_EQ(0, atten_pixels[0][1]);
EXPECT_EQ(0, atten_pixels[0][2]);
EXPECT_EQ(0, atten_pixels[0][3]);
EXPECT_EQ(64, atten_pixels[128][0]);
EXPECT_EQ(32, atten_pixels[128][1]);
EXPECT_EQ(21, atten_pixels[128][2]);
EXPECT_EQ(128, atten_pixels[128][3]);
EXPECT_EQ(255, atten_pixels[255][0]);
EXPECT_EQ(127, atten_pixels[255][1]);
EXPECT_EQ(85, atten_pixels[255][2]);
EXPECT_EQ(255, atten_pixels[255][3]);
}
TEST_F(libyuvTest, TestAddRow) {
SIMD_ALIGNED(uint8 orig_pixels[256]);
SIMD_ALIGNED(uint16 added_pixels[256]);
libyuv::AddRow AddRow = GetAddRow(added_pixels, 256);
libyuv::AddRow SubRow = GetSubRow(added_pixels, 256);
for (int i = 0; i < 256; ++i) {
orig_pixels[i] = i;
}
memset(added_pixels, 0, sizeof(uint16) * 256);
AddRow(orig_pixels, added_pixels, 256);
EXPECT_EQ(7u, added_pixels[7]);
EXPECT_EQ(250u, added_pixels[250]);
AddRow(orig_pixels, added_pixels, 256);
EXPECT_EQ(14u, added_pixels[7]);
EXPECT_EQ(500u, added_pixels[250]);
SubRow(orig_pixels, added_pixels, 256);
EXPECT_EQ(7u, added_pixels[7]);
EXPECT_EQ(250u, added_pixels[250]);
for (int i = 0; i < 1000 * (1280 * 720 * 4 / 256); ++i) {
AddRow(orig_pixels, added_pixels, 256);
}
}
TEST_F(libyuvTest, TestARGBGray) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 16, 1);
EXPECT_EQ(27u, orig_pixels[0][0]);
EXPECT_EQ(27u, orig_pixels[0][1]);
EXPECT_EQ(27u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(151u, orig_pixels[1][0]);
EXPECT_EQ(151u, orig_pixels[1][1]);
EXPECT_EQ(151u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(75u, orig_pixels[2][0]);
EXPECT_EQ(75u, orig_pixels[2][1]);
EXPECT_EQ(75u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(96u, orig_pixels[3][0]);
EXPECT_EQ(96u, orig_pixels[3][1]);
EXPECT_EQ(96u, orig_pixels[3][2]);
EXPECT_EQ(224u, orig_pixels[3][3]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < 1000 * 1280 * 720 / 256; ++i) {
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 256, 1);
}
}
TEST_F(libyuvTest, TestARGBSepia) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 16, 1);
EXPECT_EQ(33u, orig_pixels[0][0]);
EXPECT_EQ(43u, orig_pixels[0][1]);
EXPECT_EQ(47u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(135u, orig_pixels[1][0]);
EXPECT_EQ(175u, orig_pixels[1][1]);
EXPECT_EQ(195u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(69u, orig_pixels[2][0]);
EXPECT_EQ(89u, orig_pixels[2][1]);
EXPECT_EQ(99u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(88u, orig_pixels[3][0]);
EXPECT_EQ(114u, orig_pixels[3][1]);
EXPECT_EQ(127u, orig_pixels[3][2]);
EXPECT_EQ(224u, orig_pixels[3][3]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < 1000 * 1280 * 720 / 256; ++i) {
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 256, 1);
}
}
} // namespace libyuv