mirror of
https://chromium.googlesource.com/libyuv/libyuv
synced 2025-12-06 08:46:47 +08:00
- clang-format applied Bug: None Change-Id: If8aec0bbb3d3461886f176a77e029833f5dc197d Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/6805445 Reviewed-by: Wan-Teh Chang <wtc@google.com>
370 lines
11 KiB
C
370 lines
11 KiB
C
/*
|
|
* Copyright 2012 The LibYuv Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
// For hybrid detect.
|
|
#if defined(__linux__) && !defined(_GNU_SOURCE) && \
|
|
(defined(__i386__) || defined(__x86_64__))
|
|
#define _GNU_SOURCE
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#ifdef __linux__
|
|
#include <ctype.h>
|
|
#include <pthread.h>
|
|
#include <sys/utsname.h>
|
|
#include <unistd.h> // for sysconf
|
|
#include <sched.h> // For hybrid detect CPU_ZERO()
|
|
#endif
|
|
|
|
// For hybrid detect
|
|
#if defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
|
|
defined(_M_X64)
|
|
#include <stdbool.h>
|
|
#endif // defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
|
|
// defined(_M_X64)
|
|
|
|
#if defined(_WIN32)
|
|
#include <windows.h> // for GetSystemInfo
|
|
#endif
|
|
#if defined(__APPLE__)
|
|
#include <sys/sysctl.h> // for sysctlbyname
|
|
#endif
|
|
|
|
#include "libyuv/cpu_id.h"
|
|
|
|
#if defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
|
|
defined(_M_X64)
|
|
// Start of Intel Hybrid Detect
|
|
|
|
// test Intel and AMD cpuid flags for hybrid cpu
|
|
void isHybridCPU(bool* isaHybrid) {
|
|
int cpu_info[4];
|
|
|
|
// Check EDX bit 15 for hybrid design indication
|
|
CpuId(7, 0, &cpu_info[0]);
|
|
int hybrid = (cpu_info[3] >> 15) & 1;
|
|
|
|
if (hybrid) {
|
|
*isaHybrid = true;
|
|
} else {
|
|
*isaHybrid = false;
|
|
}
|
|
}
|
|
|
|
// tests Intel and AMD cpuid flags for performance core
|
|
// 0x40 = performance core, 0x20 = efficient core
|
|
bool isPerformanceCore(void) {
|
|
int cpu_info[4];
|
|
|
|
// Check EDX bit 15 for hybrid design indication
|
|
CpuId(0x1A, 0, &cpu_info[0]);
|
|
|
|
// core type from eax 24-31
|
|
int core_type = (cpu_info[0] >> 24) & 0xFF;
|
|
bool isaPCore = core_type != 0x20;
|
|
return isaPCore;
|
|
}
|
|
|
|
// TODO(fbarchard): Use common function to query Nth core
|
|
#if defined(__linux__)
|
|
void* core_thread(void* arg) {
|
|
int core_id = *(int*)arg;
|
|
cpu_set_t cpuset;
|
|
CPU_ZERO(&cpuset);
|
|
CPU_SET(core_id, &cpuset);
|
|
pthread_t thread = pthread_self();
|
|
bool runningCoreThread;
|
|
if (pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset) == 0) {
|
|
runningCoreThread = true;
|
|
} else {
|
|
runningCoreThread = false;
|
|
}
|
|
// confirm affinity
|
|
CPU_ZERO(&cpuset);
|
|
pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
|
|
printf("thread running on cpu: ");
|
|
for (int i = 0; i < CPU_SETSIZE; i++) {
|
|
if (CPU_ISSET(i, &cpuset)) {
|
|
printf("%d ", i);
|
|
if (runningCoreThread) {
|
|
const bool isaPerformanceCore = isPerformanceCore();
|
|
if (isaPerformanceCore) {
|
|
printf("Core[%d] - Performance\n", i);
|
|
} else {
|
|
printf("Core[%d] - Efficient\n", i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#endif // defined(__linux__)
|
|
|
|
// Detect cpuid for Nth core
|
|
void detectCoreType(int num_cpus) {
|
|
#if defined(_WIN32)
|
|
for (int i = 0; i < num_cpus; i++) {
|
|
HANDLE hThread = NULL;
|
|
DWORD_PTR prevThreadPtr = 0;
|
|
DWORD_PTR affinityMask = 0;
|
|
|
|
hThread = GetCurrentThread();
|
|
affinityMask = 1ULL << i; // Select core (0-based index)
|
|
prevThreadPtr = SetThreadAffinityMask(hThread, affinityMask);
|
|
if (prevThreadPtr != 0) {
|
|
const bool isaPerformanceCore = isPerformanceCore();
|
|
if (isaPerformanceCore) {
|
|
printf("Core[%d] - Performance\n", i);
|
|
} else {
|
|
printf("Core[%d] - Efficient\n", i);
|
|
}
|
|
} else {
|
|
printf("Core[%d] - Error setting affinity\n", i);
|
|
}
|
|
}
|
|
#elif defined(__linux__)
|
|
pthread_t thread_id;
|
|
int core_id;
|
|
|
|
for (int i = 0; i < num_cpus; i++) {
|
|
core_id = i;
|
|
if (pthread_create(&thread_id, NULL, core_thread, &core_id) != 0) {
|
|
printf("WARNING: Error creating thread %d\n", i);
|
|
fflush(stdout);
|
|
return;
|
|
}
|
|
if (pthread_join(thread_id, NULL) != 0) {
|
|
printf("WARNING: Error joining thread %d\n", i);
|
|
fflush(stdout);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
// End of Hybrid Detect
|
|
#endif // defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
|
|
// defined(_M_X64)
|
|
|
|
#if defined(__linux__)
|
|
void KernelVersion(int version[2]) {
|
|
struct utsname buffer;
|
|
int i = 0;
|
|
|
|
version[0] = version[1] = 0;
|
|
if (uname(&buffer) == 0) {
|
|
char* v = buffer.release;
|
|
for (i = 0; *v && i < 2; ++v) {
|
|
if (isdigit(*v)) {
|
|
version[i++] = (int)strtol(v, &v, 10);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // defined(__linux__)
|
|
|
|
int main(int argc, const char* argv[]) {
|
|
(void)argc;
|
|
(void)argv;
|
|
#if defined(__linux__)
|
|
{
|
|
int kernelversion[2];
|
|
KernelVersion(kernelversion);
|
|
printf("Kernel Version %d.%d\n", kernelversion[0], kernelversion[1]);
|
|
}
|
|
#endif // defined(__linux__)
|
|
#if defined(_WIN32)
|
|
SYSTEM_INFO sysInfo;
|
|
GetSystemInfo(&sysInfo);
|
|
int num_cpus = (int)sysInfo.dwNumberOfProcessors;
|
|
#elif defined(__linux__)
|
|
int num_cpus = sysconf(_SC_NPROCESSORS_ONLN);
|
|
#elif defined(__APPLE__)
|
|
int num_cpus = 0;
|
|
size_t num_cpus_len = sizeof(num_cpus);
|
|
// Get the number of logical CPU cores
|
|
if (sysctlbyname("hw.logicalcpu", &num_cpus, &num_cpus_len, NULL, 0) == -1) {
|
|
printf("sysctlbyname failed to get hw.logicalcpu\n");
|
|
}
|
|
#else
|
|
int num_cpus = 0; // unknown OS
|
|
#endif
|
|
printf("Number of cpus: %d\n", num_cpus);
|
|
|
|
#if defined(__arm__) || defined(__aarch64__)
|
|
int has_arm = TestCpuFlag(kCpuHasARM);
|
|
if (has_arm) {
|
|
int has_neon = TestCpuFlag(kCpuHasNEON);
|
|
int has_neon_dotprod = TestCpuFlag(kCpuHasNeonDotProd);
|
|
int has_neon_i8mm = TestCpuFlag(kCpuHasNeonI8MM);
|
|
int has_sve = TestCpuFlag(kCpuHasSVE);
|
|
int has_sve2 = TestCpuFlag(kCpuHasSVE2);
|
|
int has_sme = TestCpuFlag(kCpuHasSME);
|
|
int has_sme2 = TestCpuFlag(kCpuHasSME2);
|
|
printf("Has Arm 0x%x\n", has_arm);
|
|
printf("Has Neon 0x%x\n", has_neon);
|
|
printf("Has Neon DotProd 0x%x\n", has_neon_dotprod);
|
|
printf("Has Neon I8MM 0x%x\n", has_neon_i8mm);
|
|
printf("Has SVE 0x%x\n", has_sve);
|
|
printf("Has SVE2 0x%x\n", has_sve2);
|
|
printf("Has SME 0x%x\n", has_sme);
|
|
printf("Has SME2 0x%x\n", has_sme2);
|
|
|
|
#if __aarch64__
|
|
// Read and print the SVE and SME vector lengths.
|
|
if (has_sve) {
|
|
int sve_vl;
|
|
__asm__(
|
|
".inst 0x04bf5020 \n" // rdvl x0, #1
|
|
"mov %w[sve_vl], w0 \n"
|
|
: [sve_vl] "=r"(sve_vl) // %[sve_vl]
|
|
:
|
|
: "x0");
|
|
printf("SVE vector length: %d bytes\n", sve_vl);
|
|
}
|
|
if (has_sme) {
|
|
int sme_vl;
|
|
__asm__(
|
|
".inst 0x04bf5820 \n" // rdsvl x0, #1
|
|
"mov %w[sme_vl], w0 \n"
|
|
: [sme_vl] "=r"(sme_vl) // %[sme_vl]
|
|
:
|
|
: "x0");
|
|
printf("SME vector length: %d bytes\n", sme_vl);
|
|
}
|
|
#endif // defined(__aarch64__)
|
|
}
|
|
#endif // if defined(__arm__) || defined(__aarch64__)
|
|
|
|
#if defined(__riscv)
|
|
int has_riscv = TestCpuFlag(kCpuHasRISCV);
|
|
if (has_riscv) {
|
|
int has_rvv = TestCpuFlag(kCpuHasRVV);
|
|
printf("Has RISCV 0x%x\n", has_riscv);
|
|
printf("Has RVV 0x%x\n", has_rvv);
|
|
|
|
// Read and print the RVV vector length.
|
|
if (has_rvv) {
|
|
register uint32_t vlenb __asm__("t0");
|
|
__asm__(".word 0xC22022F3" /* CSRR t0, vlenb */ : "=r"(vlenb));
|
|
printf("RVV vector length: %d bytes\n", vlenb);
|
|
}
|
|
}
|
|
#endif // defined(__riscv)
|
|
|
|
#if defined(__mips__)
|
|
int has_mips = TestCpuFlag(kCpuHasMIPS);
|
|
if (has_mips) {
|
|
int has_msa = TestCpuFlag(kCpuHasMSA);
|
|
printf("Has MIPS 0x%x\n", has_mips);
|
|
printf("Has MSA 0x%x\n", has_msa);
|
|
}
|
|
#endif // defined(__mips__)
|
|
|
|
#if defined(__loongarch__)
|
|
int has_loongarch = TestCpuFlag(kCpuHasLOONGARCH);
|
|
if (has_loongarch) {
|
|
int has_lsx = TestCpuFlag(kCpuHasLSX);
|
|
int has_lasx = TestCpuFlag(kCpuHasLASX);
|
|
printf("Has LOONGARCH 0x%x\n", has_loongarch);
|
|
printf("Has LSX 0x%x\n", has_lsx);
|
|
printf("Has LASX 0x%x\n", has_lasx);
|
|
}
|
|
#endif // defined(__loongarch__)
|
|
|
|
#if defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
|
|
defined(_M_X64)
|
|
int has_x86 = TestCpuFlag(kCpuHasX86);
|
|
if (has_x86) {
|
|
int family, model, cpu_info[4];
|
|
// Vendor ID:
|
|
// AuthenticAMD AMD processor
|
|
// CentaurHauls Centaur processor
|
|
// CyrixInstead Cyrix processor
|
|
// GenuineIntel Intel processor
|
|
// GenuineTMx86 Transmeta processor
|
|
// Geode by NSC National Semiconductor processor
|
|
// NexGenDriven NexGen processor
|
|
// RiseRiseRise Rise Technology processor
|
|
// SiS SiS SiS SiS processor
|
|
// UMC UMC UMC UMC processor
|
|
CpuId(0, 0, &cpu_info[0]);
|
|
cpu_info[0] = cpu_info[1]; // Reorder output
|
|
cpu_info[1] = cpu_info[3];
|
|
cpu_info[3] = 0;
|
|
printf("Cpu Vendor: %s\n", (char*)(&cpu_info[0]));
|
|
|
|
detectCoreType(num_cpus);
|
|
|
|
// CPU Family and Model
|
|
// 3:0 - Stepping
|
|
// 7:4 - Model
|
|
// 11:8 - Family
|
|
// 13:12 - Processor Type
|
|
// 19:16 - Extended Model
|
|
// 27:20 - Extended Family
|
|
CpuId(1, 0, &cpu_info[0]);
|
|
family = ((cpu_info[0] >> 8) & 0x0f) | ((cpu_info[0] >> 16) & 0xff0);
|
|
model = ((cpu_info[0] >> 4) & 0x0f) | ((cpu_info[0] >> 12) & 0xf0);
|
|
printf("Cpu Family %d (0x%x), Model %d (0x%x)\n", family, family, model,
|
|
model);
|
|
|
|
int has_sse2 = TestCpuFlag(kCpuHasSSE2);
|
|
int has_ssse3 = TestCpuFlag(kCpuHasSSSE3);
|
|
int has_sse41 = TestCpuFlag(kCpuHasSSE41);
|
|
int has_sse42 = TestCpuFlag(kCpuHasSSE42);
|
|
int has_avx = TestCpuFlag(kCpuHasAVX);
|
|
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
|
|
int has_erms = TestCpuFlag(kCpuHasERMS);
|
|
int has_fsmr = TestCpuFlag(kCpuHasFSMR);
|
|
int has_fma3 = TestCpuFlag(kCpuHasFMA3);
|
|
int has_f16c = TestCpuFlag(kCpuHasF16C);
|
|
int has_avx512bw = TestCpuFlag(kCpuHasAVX512BW);
|
|
int has_avx512vl = TestCpuFlag(kCpuHasAVX512VL);
|
|
int has_avx512vnni = TestCpuFlag(kCpuHasAVX512VNNI);
|
|
int has_avx512vbmi = TestCpuFlag(kCpuHasAVX512VBMI);
|
|
int has_avx512vbmi2 = TestCpuFlag(kCpuHasAVX512VBMI2);
|
|
int has_avx512vbitalg = TestCpuFlag(kCpuHasAVX512VBITALG);
|
|
int has_avx10 = TestCpuFlag(kCpuHasAVX10);
|
|
int has_avx10_2 = TestCpuFlag(kCpuHasAVX10_2);
|
|
int has_avxvnni = TestCpuFlag(kCpuHasAVXVNNI);
|
|
int has_avxvnniint8 = TestCpuFlag(kCpuHasAVXVNNIINT8);
|
|
int has_amxint8 = TestCpuFlag(kCpuHasAMXINT8);
|
|
printf("Has X86 0x%x\n", has_x86);
|
|
printf("Has SSE2 0x%x\n", has_sse2);
|
|
printf("Has SSSE3 0x%x\n", has_ssse3);
|
|
printf("Has SSE4.1 0x%x\n", has_sse41);
|
|
printf("Has SSE4.2 0x%x\n", has_sse42);
|
|
printf("Has AVX 0x%x\n", has_avx);
|
|
printf("Has AVX2 0x%x\n", has_avx2);
|
|
printf("Has ERMS 0x%x\n", has_erms);
|
|
printf("Has FSMR 0x%x\n", has_fsmr);
|
|
printf("Has FMA3 0x%x\n", has_fma3);
|
|
printf("Has F16C 0x%x\n", has_f16c);
|
|
printf("Has AVX512BW 0x%x\n", has_avx512bw);
|
|
printf("Has AVX512VL 0x%x\n", has_avx512vl);
|
|
printf("Has AVX512VNNI 0x%x\n", has_avx512vnni);
|
|
printf("Has AVX512VBMI 0x%x\n", has_avx512vbmi);
|
|
printf("Has AVX512VBMI2 0x%x\n", has_avx512vbmi2);
|
|
printf("Has AVX512VBITALG 0x%x\n", has_avx512vbitalg);
|
|
printf("Has AVX10 0x%x\n", has_avx10);
|
|
printf("Has AVX10_2 0x%x\n", has_avx10_2);
|
|
printf("HAS AVXVNNI 0x%x\n", has_avxvnni);
|
|
printf("Has AVXVNNIINT8 0x%x\n", has_avxvnniint8);
|
|
printf("Has AMXINT8 0x%x\n", has_amxint8);
|
|
}
|
|
#endif // defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) ||
|
|
// defined(_M_X64)
|
|
return 0;
|
|
}
|