libyuv/unit_test/cpu_test.cc
George Steed ba0bba5b2b [AArch64] Use getauxval(AT_HWCAP{,2}) for feature detection
This has the advantage of also working under emulation where
faking /proc/cpuinfo is not supported.

For the Chromium sandbox, getauxval is supported since API version 18.
The minimum supported API version at time of writing is 21 so we should
be able to use getauxval unconditionally. On the off-chance the call
fails it will return 0 and we will correctly fall-back to using only
Neon.

Change-Id: Ibbaa9caec1915ac0725c42d6cd2abc7ce19786c7
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5453620
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
2024-04-19 06:37:04 +00:00

361 lines
11 KiB
C++

/*
* Copyright 2012 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <string.h>
#include "../unit_test/unit_test.h"
#include "libyuv/basic_types.h"
#include "libyuv/cpu_id.h"
#include "libyuv/version.h"
namespace libyuv {
TEST_F(LibYUVBaseTest, TestCpuHas) {
int cpu_flags = TestCpuFlag(-1);
printf("Cpu Flags 0x%x\n", cpu_flags);
#if defined(__arm__) || defined(__aarch64__)
int has_arm = TestCpuFlag(kCpuHasARM);
printf("Has ARM 0x%x\n", has_arm);
int has_neon = TestCpuFlag(kCpuHasNEON);
printf("Has NEON 0x%x\n", has_neon);
#endif
#if defined(__riscv) && defined(__linux__)
int has_riscv = TestCpuFlag(kCpuHasRISCV);
printf("Has RISCV 0x%x\n", has_riscv);
int has_rvv = TestCpuFlag(kCpuHasRVV);
printf("Has RVV 0x%x\n", has_rvv);
int has_rvvzvfh = TestCpuFlag(kCpuHasRVVZVFH);
printf("Has RVVZVFH 0x%x\n", has_rvvzvfh);
#endif
#if defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
defined(_M_X64)
int has_x86 = TestCpuFlag(kCpuHasX86);
int has_sse2 = TestCpuFlag(kCpuHasSSE2);
int has_ssse3 = TestCpuFlag(kCpuHasSSSE3);
int has_sse41 = TestCpuFlag(kCpuHasSSE41);
int has_sse42 = TestCpuFlag(kCpuHasSSE42);
int has_avx = TestCpuFlag(kCpuHasAVX);
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
int has_erms = TestCpuFlag(kCpuHasERMS);
int has_fma3 = TestCpuFlag(kCpuHasFMA3);
int has_f16c = TestCpuFlag(kCpuHasF16C);
int has_avx512bw = TestCpuFlag(kCpuHasAVX512BW);
int has_avx512vl = TestCpuFlag(kCpuHasAVX512VL);
int has_avx512vnni = TestCpuFlag(kCpuHasAVX512VNNI);
int has_avx512vbmi = TestCpuFlag(kCpuHasAVX512VBMI);
int has_avx512vbmi2 = TestCpuFlag(kCpuHasAVX512VBMI2);
int has_avx512vbitalg = TestCpuFlag(kCpuHasAVX512VBITALG);
int has_avx10 = TestCpuFlag(kCpuHasAVX10);
int has_avxvnni = TestCpuFlag(kCpuHasAVXVNNI);
int has_avxvnniint8 = TestCpuFlag(kCpuHasAVXVNNIINT8);
int has_amxint8 = TestCpuFlag(kCpuHasAMXINT8);
printf("Has X86 0x%x\n", has_x86);
printf("Has SSE2 0x%x\n", has_sse2);
printf("Has SSSE3 0x%x\n", has_ssse3);
printf("Has SSE41 0x%x\n", has_sse41);
printf("Has SSE42 0x%x\n", has_sse42);
printf("Has AVX 0x%x\n", has_avx);
printf("Has AVX2 0x%x\n", has_avx2);
printf("Has ERMS 0x%x\n", has_erms);
printf("Has FMA3 0x%x\n", has_fma3);
printf("Has F16C 0x%x\n", has_f16c);
printf("Has AVX512BW 0x%x\n", has_avx512bw);
printf("Has AVX512VL 0x%x\n", has_avx512vl);
printf("Has AVX512VNNI 0x%x\n", has_avx512vnni);
printf("Has AVX512VBMI 0x%x\n", has_avx512vbmi);
printf("Has AVX512VBMI2 0x%x\n", has_avx512vbmi2);
printf("Has AVX512VBITALG 0x%x\n", has_avx512vbitalg);
printf("Has AVX10 0x%x\n", has_avx10);
printf("HAS AVXVNNI 0x%x\n", has_avxvnni);
printf("Has AVXVNNIINT8 0x%x\n", has_avxvnniint8);
printf("Has AMXINT8 0x%x\n", has_amxint8);
#endif
#if defined(__mips__)
int has_mips = TestCpuFlag(kCpuHasMIPS);
printf("Has MIPS 0x%x\n", has_mips);
int has_msa = TestCpuFlag(kCpuHasMSA);
printf("Has MSA 0x%x\n", has_msa);
#endif
#if defined(__loongarch__)
int has_loongarch = TestCpuFlag(kCpuHasLOONGARCH);
printf("Has LOONGARCH 0x%x\n", has_loongarch);
int has_lsx = TestCpuFlag(kCpuHasLSX);
printf("Has LSX 0x%x\n", has_lsx);
int has_lasx = TestCpuFlag(kCpuHasLASX);
printf("Has LASX 0x%x\n", has_lasx);
#endif
}
TEST_F(LibYUVBaseTest, TestCompilerMacros) {
// Tests all macros used in public headers.
#ifdef __ATOMIC_RELAXED
printf("__ATOMIC_RELAXED %d\n", __ATOMIC_RELAXED);
#endif
#ifdef __cplusplus
printf("__cplusplus %ld\n", __cplusplus);
#endif
#ifdef __clang_major__
printf("__clang_major__ %d\n", __clang_major__);
#endif
#ifdef __clang_minor__
printf("__clang_minor__ %d\n", __clang_minor__);
#endif
#ifdef __GNUC__
printf("__GNUC__ %d\n", __GNUC__);
#endif
#ifdef __GNUC_MINOR__
printf("__GNUC_MINOR__ %d\n", __GNUC_MINOR__);
#endif
#ifdef __i386__
printf("__i386__ %d\n", __i386__);
#endif
#ifdef __x86_64__
printf("__x86_64__ %d\n", __x86_64__);
#endif
#ifdef _M_IX86
printf("_M_IX86 %d\n", _M_IX86);
#endif
#ifdef _M_X64
printf("_M_X64 %d\n", _M_X64);
#endif
#ifdef _MSC_VER
printf("_MSC_VER %d\n", _MSC_VER);
#endif
#ifdef __aarch64__
printf("__aarch64__ %d\n", __aarch64__);
#endif
#ifdef __arm__
printf("__arm__ %d\n", __arm__);
#endif
#ifdef __riscv
printf("__riscv %d\n", __riscv);
#endif
#ifdef __riscv_vector
printf("__riscv_vector %d\n", __riscv_vector);
#endif
#ifdef __riscv_v_intrinsic
printf("__riscv_v_intrinsic %d\n", __riscv_v_intrinsic);
#endif
#ifdef __APPLE__
printf("__APPLE__ %d\n", __APPLE__);
#endif
#ifdef __clang__
printf("__clang__ %d\n", __clang__);
#endif
#ifdef __CLR_VER
printf("__CLR_VER %d\n", __CLR_VER);
#endif
#ifdef __CYGWIN__
printf("__CYGWIN__ %d\n", __CYGWIN__);
#endif
#ifdef __llvm__
printf("__llvm__ %d\n", __llvm__);
#endif
#ifdef __mips_msa
printf("__mips_msa %d\n", __mips_msa);
#endif
#ifdef __mips
printf("__mips %d\n", __mips);
#endif
#ifdef __mips_isa_rev
printf("__mips_isa_rev %d\n", __mips_isa_rev);
#endif
#ifdef _MIPS_ARCH_LOONGSON3A
printf("_MIPS_ARCH_LOONGSON3A %d\n", _MIPS_ARCH_LOONGSON3A);
#endif
#ifdef __loongarch__
printf("__loongarch__ %d\n", __loongarch__);
#endif
#ifdef _WIN32
printf("_WIN32 %d\n", _WIN32);
#endif
#ifdef __native_client__
printf("__native_client__ %d\n", __native_client__);
#endif
#ifdef __pic__
printf("__pic__ %d\n", __pic__);
#endif
#ifdef __pnacl__
printf("__pnacl__ %d\n", __pnacl__);
#endif
#ifdef GG_LONGLONG
printf("GG_LONGLONG %lld\n", GG_LONGLONG(1));
#endif
#ifdef INT_TYPES_DEFINED
printf("INT_TYPES_DEFINED\n");
#endif
#ifdef __has_feature
printf("__has_feature\n");
#if __has_feature(memory_sanitizer)
printf("__has_feature(memory_sanitizer) %d\n",
__has_feature(memory_sanitizer));
#endif
#endif
}
#if defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
defined(_M_X64)
TEST_F(LibYUVBaseTest, TestCpuId) {
int has_x86 = TestCpuFlag(kCpuHasX86);
if (has_x86) {
int cpu_info[4];
// Vendor ID:
// AuthenticAMD AMD processor
// CentaurHauls Centaur processor
// CyrixInstead Cyrix processor
// GenuineIntel Intel processor
// GenuineTMx86 Transmeta processor
// Geode by NSC National Semiconductor processor
// NexGenDriven NexGen processor
// RiseRiseRise Rise Technology processor
// SiS SiS SiS SiS processor
// UMC UMC UMC UMC processor
CpuId(0, 0, cpu_info);
cpu_info[0] = cpu_info[1]; // Reorder output
cpu_info[1] = cpu_info[3];
cpu_info[3] = 0;
printf("Cpu Vendor: %s 0x%x 0x%x 0x%x\n",
reinterpret_cast<char*>(&cpu_info[0]), cpu_info[0], cpu_info[1],
cpu_info[2]);
EXPECT_EQ(12u, strlen(reinterpret_cast<char*>(&cpu_info[0])));
// CPU Family and Model
// 3:0 - Stepping
// 7:4 - Model
// 11:8 - Family
// 13:12 - Processor Type
// 19:16 - Extended Model
// 27:20 - Extended Family
CpuId(1, 0, cpu_info);
int family = ((cpu_info[0] >> 8) & 0x0f) | ((cpu_info[0] >> 16) & 0xff0);
int model = ((cpu_info[0] >> 4) & 0x0f) | ((cpu_info[0] >> 12) & 0xf0);
printf("Cpu Family %d (0x%x), Model %d (0x%x)\n", family, family, model,
model);
}
}
#endif
static int FileExists(const char* file_name) {
FILE* f = fopen(file_name, "r");
if (!f) {
return 0;
}
fclose(f);
return 1;
}
TEST_F(LibYUVBaseTest, TestLinuxArm) {
if (FileExists("../../unit_test/testdata/arm_v7.txt")) {
printf("Note: testing to load \"../../unit_test/testdata/arm_v7.txt\"\n");
EXPECT_EQ(0, ArmCpuCaps("../../unit_test/testdata/arm_v7.txt"));
EXPECT_EQ(kCpuHasNEON, ArmCpuCaps("../../unit_test/testdata/tegra3.txt"));
} else {
printf("WARNING: unable to load \"../../unit_test/testdata/arm_v7.txt\"\n");
}
#if defined(__linux__) && defined(__ARM_NEON__) && !defined(__aarch64__)
if (FileExists("/proc/cpuinfo")) {
if (kCpuHasNEON != ArmCpuCaps("/proc/cpuinfo")) {
// This can happen on Arm emulator but /proc/cpuinfo is from host.
printf("WARNING: Neon build enabled but CPU does not have Neon\n");
}
} else {
printf("WARNING: unable to load \"/proc/cpuinfo\"\n");
}
#endif
}
TEST_F(LibYUVBaseTest, TestLinuxAArch64) {
// Values taken from a Cortex-A57 machine, only Neon available.
EXPECT_EQ(kCpuHasNEON, AArch64CpuCaps(0xffU, 0x0U));
// Values taken from a Google Pixel 7.
int expected = kCpuHasNEON | kCpuHasNeonDotProd;
EXPECT_EQ(expected, AArch64CpuCaps(0x119fffU, 0x0U));
// Values taken from a Google Pixel 8.
expected = kCpuHasNEON | kCpuHasNeonDotProd | kCpuHasNeonI8MM | kCpuHasSVE |
kCpuHasSVE2;
EXPECT_EQ(expected, AArch64CpuCaps(0x3fffffffU, 0x2f33fU));
// Values taken from a Neoverse N2 machine.
EXPECT_EQ(expected, AArch64CpuCaps(0x3fffffffU, 0x2f3ffU));
}
TEST_F(LibYUVBaseTest, TestLinuxMipsMsa) {
if (FileExists("../../unit_test/testdata/mips.txt")) {
printf("Note: testing to load \"../../unit_test/testdata/mips.txt\"\n");
EXPECT_EQ(0, MipsCpuCaps("../../unit_test/testdata/mips.txt"));
EXPECT_EQ(kCpuHasMSA, MipsCpuCaps("../../unit_test/testdata/mips_msa.txt"));
EXPECT_EQ(kCpuHasMSA,
MipsCpuCaps("../../unit_test/testdata/mips_loongson2k.txt"));
} else {
printf("WARNING: unable to load \"../../unit_test/testdata/mips.txt\"\n");
}
}
TEST_F(LibYUVBaseTest, TestLinuxRVV) {
if (FileExists("../../unit_test/testdata/riscv64.txt")) {
printf("Note: testing to load \"../../unit_test/testdata/riscv64.txt\"\n");
EXPECT_EQ(0, RiscvCpuCaps("../../unit_test/testdata/riscv64.txt"));
EXPECT_EQ(kCpuHasRVV,
RiscvCpuCaps("../../unit_test/testdata/riscv64_rvv.txt"));
EXPECT_EQ(kCpuHasRVV | kCpuHasRVVZVFH,
RiscvCpuCaps("../../unit_test/testdata/riscv64_rvv_zvfh.txt"));
} else {
printf(
"WARNING: unable to load "
"\"../../unit_test/testdata/riscv64.txt\"\n");
}
#if defined(__linux__) && defined(__riscv)
if (FileExists("/proc/cpuinfo")) {
if (!(kCpuHasRVV & RiscvCpuCaps("/proc/cpuinfo"))) {
// This can happen on RVV emulator but /proc/cpuinfo is from host.
printf("WARNING: RVV build enabled but CPU does not have RVV\n");
}
} else {
printf("WARNING: unable to load \"/proc/cpuinfo\"\n");
}
#endif
}
// TODO(fbarchard): Fix clangcl test of cpuflags.
#ifdef _MSC_VER
TEST_F(LibYUVBaseTest, DISABLED_TestSetCpuFlags) {
#else
TEST_F(LibYUVBaseTest, TestSetCpuFlags) {
#endif
// Reset any masked flags that may have been set so auto init is enabled.
MaskCpuFlags(0);
int original_cpu_flags = TestCpuFlag(-1);
// Test setting different CPU configurations.
int cpu_flags = kCpuHasARM | kCpuHasNEON | kCpuInitialized;
SetCpuFlags(cpu_flags);
EXPECT_EQ(cpu_flags, TestCpuFlag(-1));
cpu_flags = kCpuHasX86 | kCpuInitialized;
SetCpuFlags(cpu_flags);
EXPECT_EQ(cpu_flags, TestCpuFlag(-1));
// Test that setting 0 turns auto-init back on.
SetCpuFlags(0);
EXPECT_EQ(original_cpu_flags, TestCpuFlag(-1));
// Restore the CPU flag mask.
MaskCpuFlags(benchmark_cpu_info_);
}
} // namespace libyuv