libyuv/unit_test/cpu_test.cc
George Steed a038cda7b8 [AArch64] Enable detection of additional architecture features
In particular there are a few extensions that are interesting for us:

* FEAT_DotProd adds 4-way dot-product instructions which are useful in
  e.g. ARGBToY.

* FEAT_I8MM adds additional mixed-sign dot-product instructions which
  could be useful in e.g. ARGBToUV.

* FEAT_SVE and FEAT_SVE2 add support for the Scalable Vector Extension,
  which adds an array of new instructions including new widening loads
  and narrowing stores for dealing with mixed-width integer arithmetic
  efficiently and predication for avoiding the need for "any" cleanup
  loops.

This commit simply adds support for detecting the presence of these
features by extending the existing /proc/cpuinfo parsing, splitting it
into separate Arm and AArch64 functions for simplicity.

Since we have no space left in the bitset entries between Arm and X86
entries, we reuse some of the X86 entries for new AArch64 extensions.
This doesn't seem obviously problematic as long as we avoid setting
kCpuHasX86.

Bug: libyuv:973
Bug: libyuv:977
Change-Id: I8e256225fe12a4ba5da24460f54061e16eab6c57
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5378150
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
2024-04-05 17:48:22 +00:00

362 lines
11 KiB
C++

/*
* Copyright 2012 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <string.h>
#include "../unit_test/unit_test.h"
#include "libyuv/basic_types.h"
#include "libyuv/cpu_id.h"
#include "libyuv/version.h"
namespace libyuv {
TEST_F(LibYUVBaseTest, TestCpuHas) {
int cpu_flags = TestCpuFlag(-1);
printf("Cpu Flags 0x%x\n", cpu_flags);
#if defined(__arm__) || defined(__aarch64__)
int has_arm = TestCpuFlag(kCpuHasARM);
printf("Has ARM 0x%x\n", has_arm);
int has_neon = TestCpuFlag(kCpuHasNEON);
printf("Has NEON 0x%x\n", has_neon);
#endif
#if defined(__riscv) && defined(__linux__)
int has_riscv = TestCpuFlag(kCpuHasRISCV);
printf("Has RISCV 0x%x\n", has_riscv);
int has_rvv = TestCpuFlag(kCpuHasRVV);
printf("Has RVV 0x%x\n", has_rvv);
int has_rvvzvfh = TestCpuFlag(kCpuHasRVVZVFH);
printf("Has RVVZVFH 0x%x\n", has_rvvzvfh);
#endif
#if defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
defined(_M_X64)
int has_x86 = TestCpuFlag(kCpuHasX86);
int has_sse2 = TestCpuFlag(kCpuHasSSE2);
int has_ssse3 = TestCpuFlag(kCpuHasSSSE3);
int has_sse41 = TestCpuFlag(kCpuHasSSE41);
int has_sse42 = TestCpuFlag(kCpuHasSSE42);
int has_avx = TestCpuFlag(kCpuHasAVX);
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
int has_erms = TestCpuFlag(kCpuHasERMS);
int has_fma3 = TestCpuFlag(kCpuHasFMA3);
int has_f16c = TestCpuFlag(kCpuHasF16C);
int has_avx512bw = TestCpuFlag(kCpuHasAVX512BW);
int has_avx512vl = TestCpuFlag(kCpuHasAVX512VL);
int has_avx512vnni = TestCpuFlag(kCpuHasAVX512VNNI);
int has_avx512vbmi = TestCpuFlag(kCpuHasAVX512VBMI);
int has_avx512vbmi2 = TestCpuFlag(kCpuHasAVX512VBMI2);
int has_avx512vbitalg = TestCpuFlag(kCpuHasAVX512VBITALG);
int has_avx10 = TestCpuFlag(kCpuHasAVX10);
int has_avxvnni = TestCpuFlag(kCpuHasAVXVNNI);
int has_avxvnniint8 = TestCpuFlag(kCpuHasAVXVNNIINT8);
int has_amxint8 = TestCpuFlag(kCpuHasAMXINT8);
printf("Has X86 0x%x\n", has_x86);
printf("Has SSE2 0x%x\n", has_sse2);
printf("Has SSSE3 0x%x\n", has_ssse3);
printf("Has SSE41 0x%x\n", has_sse41);
printf("Has SSE42 0x%x\n", has_sse42);
printf("Has AVX 0x%x\n", has_avx);
printf("Has AVX2 0x%x\n", has_avx2);
printf("Has ERMS 0x%x\n", has_erms);
printf("Has FMA3 0x%x\n", has_fma3);
printf("Has F16C 0x%x\n", has_f16c);
printf("Has AVX512BW 0x%x\n", has_avx512bw);
printf("Has AVX512VL 0x%x\n", has_avx512vl);
printf("Has AVX512VNNI 0x%x\n", has_avx512vnni);
printf("Has AVX512VBMI 0x%x\n", has_avx512vbmi);
printf("Has AVX512VBMI2 0x%x\n", has_avx512vbmi2);
printf("Has AVX512VBITALG 0x%x\n", has_avx512vbitalg);
printf("Has AVX10 0x%x\n", has_avx10);
printf("HAS AVXVNNI 0x%x\n", has_avxvnni);
printf("Has AVXVNNIINT8 0x%x\n", has_avxvnniint8);
printf("Has AMXINT8 0x%x\n", has_amxint8);
#endif
#if defined(__mips__)
int has_mips = TestCpuFlag(kCpuHasMIPS);
printf("Has MIPS 0x%x\n", has_mips);
int has_msa = TestCpuFlag(kCpuHasMSA);
printf("Has MSA 0x%x\n", has_msa);
#endif
#if defined(__loongarch__)
int has_loongarch = TestCpuFlag(kCpuHasLOONGARCH);
printf("Has LOONGARCH 0x%x\n", has_loongarch);
int has_lsx = TestCpuFlag(kCpuHasLSX);
printf("Has LSX 0x%x\n", has_lsx);
int has_lasx = TestCpuFlag(kCpuHasLASX);
printf("Has LASX 0x%x\n", has_lasx);
#endif
}
TEST_F(LibYUVBaseTest, TestCompilerMacros) {
// Tests all macros used in public headers.
#ifdef __ATOMIC_RELAXED
printf("__ATOMIC_RELAXED %d\n", __ATOMIC_RELAXED);
#endif
#ifdef __cplusplus
printf("__cplusplus %ld\n", __cplusplus);
#endif
#ifdef __clang_major__
printf("__clang_major__ %d\n", __clang_major__);
#endif
#ifdef __clang_minor__
printf("__clang_minor__ %d\n", __clang_minor__);
#endif
#ifdef __GNUC__
printf("__GNUC__ %d\n", __GNUC__);
#endif
#ifdef __GNUC_MINOR__
printf("__GNUC_MINOR__ %d\n", __GNUC_MINOR__);
#endif
#ifdef __i386__
printf("__i386__ %d\n", __i386__);
#endif
#ifdef __x86_64__
printf("__x86_64__ %d\n", __x86_64__);
#endif
#ifdef _M_IX86
printf("_M_IX86 %d\n", _M_IX86);
#endif
#ifdef _M_X64
printf("_M_X64 %d\n", _M_X64);
#endif
#ifdef _MSC_VER
printf("_MSC_VER %d\n", _MSC_VER);
#endif
#ifdef __aarch64__
printf("__aarch64__ %d\n", __aarch64__);
#endif
#ifdef __arm__
printf("__arm__ %d\n", __arm__);
#endif
#ifdef __riscv
printf("__riscv %d\n", __riscv);
#endif
#ifdef __riscv_vector
printf("__riscv_vector %d\n", __riscv_vector);
#endif
#ifdef __riscv_v_intrinsic
printf("__riscv_v_intrinsic %d\n", __riscv_v_intrinsic);
#endif
#ifdef __APPLE__
printf("__APPLE__ %d\n", __APPLE__);
#endif
#ifdef __clang__
printf("__clang__ %d\n", __clang__);
#endif
#ifdef __CLR_VER
printf("__CLR_VER %d\n", __CLR_VER);
#endif
#ifdef __CYGWIN__
printf("__CYGWIN__ %d\n", __CYGWIN__);
#endif
#ifdef __llvm__
printf("__llvm__ %d\n", __llvm__);
#endif
#ifdef __mips_msa
printf("__mips_msa %d\n", __mips_msa);
#endif
#ifdef __mips
printf("__mips %d\n", __mips);
#endif
#ifdef __mips_isa_rev
printf("__mips_isa_rev %d\n", __mips_isa_rev);
#endif
#ifdef _MIPS_ARCH_LOONGSON3A
printf("_MIPS_ARCH_LOONGSON3A %d\n", _MIPS_ARCH_LOONGSON3A);
#endif
#ifdef __loongarch__
printf("__loongarch__ %d\n", __loongarch__);
#endif
#ifdef _WIN32
printf("_WIN32 %d\n", _WIN32);
#endif
#ifdef __native_client__
printf("__native_client__ %d\n", __native_client__);
#endif
#ifdef __pic__
printf("__pic__ %d\n", __pic__);
#endif
#ifdef __pnacl__
printf("__pnacl__ %d\n", __pnacl__);
#endif
#ifdef GG_LONGLONG
printf("GG_LONGLONG %lld\n", GG_LONGLONG(1));
#endif
#ifdef INT_TYPES_DEFINED
printf("INT_TYPES_DEFINED\n");
#endif
#ifdef __has_feature
printf("__has_feature\n");
#if __has_feature(memory_sanitizer)
printf("__has_feature(memory_sanitizer) %d\n",
__has_feature(memory_sanitizer));
#endif
#endif
}
#if defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
defined(_M_X64)
TEST_F(LibYUVBaseTest, TestCpuId) {
int has_x86 = TestCpuFlag(kCpuHasX86);
if (has_x86) {
int cpu_info[4];
// Vendor ID:
// AuthenticAMD AMD processor
// CentaurHauls Centaur processor
// CyrixInstead Cyrix processor
// GenuineIntel Intel processor
// GenuineTMx86 Transmeta processor
// Geode by NSC National Semiconductor processor
// NexGenDriven NexGen processor
// RiseRiseRise Rise Technology processor
// SiS SiS SiS SiS processor
// UMC UMC UMC UMC processor
CpuId(0, 0, cpu_info);
cpu_info[0] = cpu_info[1]; // Reorder output
cpu_info[1] = cpu_info[3];
cpu_info[3] = 0;
printf("Cpu Vendor: %s 0x%x 0x%x 0x%x\n",
reinterpret_cast<char*>(&cpu_info[0]), cpu_info[0], cpu_info[1],
cpu_info[2]);
EXPECT_EQ(12u, strlen(reinterpret_cast<char*>(&cpu_info[0])));
// CPU Family and Model
// 3:0 - Stepping
// 7:4 - Model
// 11:8 - Family
// 13:12 - Processor Type
// 19:16 - Extended Model
// 27:20 - Extended Family
CpuId(1, 0, cpu_info);
int family = ((cpu_info[0] >> 8) & 0x0f) | ((cpu_info[0] >> 16) & 0xff0);
int model = ((cpu_info[0] >> 4) & 0x0f) | ((cpu_info[0] >> 12) & 0xf0);
printf("Cpu Family %d (0x%x), Model %d (0x%x)\n", family, family, model,
model);
}
}
#endif
static int FileExists(const char* file_name) {
FILE* f = fopen(file_name, "r");
if (!f) {
return 0;
}
fclose(f);
return 1;
}
TEST_F(LibYUVBaseTest, TestLinuxArm) {
if (FileExists("../../unit_test/testdata/arm_v7.txt")) {
printf("Note: testing to load \"../../unit_test/testdata/arm_v7.txt\"\n");
EXPECT_EQ(0, ArmCpuCaps("../../unit_test/testdata/arm_v7.txt"));
EXPECT_EQ(kCpuHasNEON, ArmCpuCaps("../../unit_test/testdata/tegra3.txt"));
} else {
printf("WARNING: unable to load \"../../unit_test/testdata/arm_v7.txt\"\n");
}
#if defined(__linux__) && defined(__ARM_NEON__) && !defined(__aarch64__)
if (FileExists("/proc/cpuinfo")) {
if (kCpuHasNEON != ArmCpuCaps("/proc/cpuinfo")) {
// This can happen on Arm emulator but /proc/cpuinfo is from host.
printf("WARNING: Neon build enabled but CPU does not have Neon\n");
}
} else {
printf("WARNING: unable to load \"/proc/cpuinfo\"\n");
}
#endif
}
TEST_F(LibYUVBaseTest, TestLinuxAArch64) {
if (FileExists("../../unit_test/testdata/juno.txt")) {
printf("Note: testing to load \"../../unit_test/testdata/juno.txt\"\n");
EXPECT_EQ(kCpuHasNEON, AArch64CpuCaps("../../unit_test/testdata/juno.txt"));
int v9_expected = kCpuHasNEON | kCpuHasNeonDotProd | kCpuHasNeonI8MM |
kCpuHasSVE | kCpuHasSVE2;
EXPECT_EQ(v9_expected,
AArch64CpuCaps("../../unit_test/testdata/cortex_a510.txt"));
EXPECT_EQ(v9_expected,
AArch64CpuCaps("../../unit_test/testdata/cortex_a715.txt"));
EXPECT_EQ(v9_expected,
AArch64CpuCaps("../../unit_test/testdata/cortex_x3.txt"));
} else {
printf("WARNING: unable to load \"../../unit_test/testdata/juno.txt\"\n");
}
}
TEST_F(LibYUVBaseTest, TestLinuxMipsMsa) {
if (FileExists("../../unit_test/testdata/mips.txt")) {
printf("Note: testing to load \"../../unit_test/testdata/mips.txt\"\n");
EXPECT_EQ(0, MipsCpuCaps("../../unit_test/testdata/mips.txt"));
EXPECT_EQ(kCpuHasMSA, MipsCpuCaps("../../unit_test/testdata/mips_msa.txt"));
EXPECT_EQ(kCpuHasMSA,
MipsCpuCaps("../../unit_test/testdata/mips_loongson2k.txt"));
} else {
printf("WARNING: unable to load \"../../unit_test/testdata/mips.txt\"\n");
}
}
TEST_F(LibYUVBaseTest, TestLinuxRVV) {
if (FileExists("../../unit_test/testdata/riscv64.txt")) {
printf("Note: testing to load \"../../unit_test/testdata/riscv64.txt\"\n");
EXPECT_EQ(0, RiscvCpuCaps("../../unit_test/testdata/riscv64.txt"));
EXPECT_EQ(kCpuHasRVV,
RiscvCpuCaps("../../unit_test/testdata/riscv64_rvv.txt"));
EXPECT_EQ(kCpuHasRVV | kCpuHasRVVZVFH,
RiscvCpuCaps("../../unit_test/testdata/riscv64_rvv_zvfh.txt"));
} else {
printf(
"WARNING: unable to load "
"\"../../unit_test/testdata/riscv64.txt\"\n");
}
#if defined(__linux__) && defined(__riscv)
if (FileExists("/proc/cpuinfo")) {
if (!(kCpuHasRVV & RiscvCpuCaps("/proc/cpuinfo"))) {
// This can happen on RVV emulator but /proc/cpuinfo is from host.
printf("WARNING: RVV build enabled but CPU does not have RVV\n");
}
} else {
printf("WARNING: unable to load \"/proc/cpuinfo\"\n");
}
#endif
}
// TODO(fbarchard): Fix clangcl test of cpuflags.
#ifdef _MSC_VER
TEST_F(LibYUVBaseTest, DISABLED_TestSetCpuFlags) {
#else
TEST_F(LibYUVBaseTest, TestSetCpuFlags) {
#endif
// Reset any masked flags that may have been set so auto init is enabled.
MaskCpuFlags(0);
int original_cpu_flags = TestCpuFlag(-1);
// Test setting different CPU configurations.
int cpu_flags = kCpuHasARM | kCpuHasNEON | kCpuInitialized;
SetCpuFlags(cpu_flags);
EXPECT_EQ(cpu_flags, TestCpuFlag(-1));
cpu_flags = kCpuHasX86 | kCpuInitialized;
SetCpuFlags(cpu_flags);
EXPECT_EQ(cpu_flags, TestCpuFlag(-1));
// Test that setting 0 turns auto-init back on.
SetCpuFlags(0);
EXPECT_EQ(original_cpu_flags, TestCpuFlag(-1));
// Restore the CPU flag mask.
MaskCpuFlags(benchmark_cpu_info_);
}
} // namespace libyuv