mirror of
https://chromium.googlesource.com/libyuv/libyuv
synced 2025-12-07 01:06:46 +08:00
BUG=none TEST=none Review URL: https://webrtc-codereview.appspot.com/675004 git-svn-id: http://libyuv.googlecode.com/svn/trunk@292 16f28f9a-4ce2-e073-06de-1de4eb20be90
1857 lines
60 KiB
C++
1857 lines
60 KiB
C++
/*
|
|
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "libyuv/planar_functions.h"
|
|
|
|
#include <string.h> // for memset()
|
|
|
|
#include "libyuv/cpu_id.h"
|
|
#ifdef HAVE_JPEG
|
|
#include "libyuv/mjpeg_decoder.h"
|
|
#endif
|
|
#include "source/row.h"
|
|
|
|
#ifdef __cplusplus
|
|
namespace libyuv {
|
|
extern "C" {
|
|
#endif
|
|
|
|
// Copy a plane of data
|
|
void CopyPlane(const uint8* src_y, int src_stride_y,
|
|
uint8* dst_y, int dst_stride_y,
|
|
int width, int height) {
|
|
void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C;
|
|
#if defined(HAS_COPYROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 64)) {
|
|
CopyRow = CopyRow_NEON;
|
|
}
|
|
#endif
|
|
#if defined(HAS_COPYROW_X86)
|
|
if (TestCpuFlag(kCpuHasX86) && IS_ALIGNED(width, 4)) {
|
|
CopyRow = CopyRow_X86;
|
|
}
|
|
#endif
|
|
#if defined(HAS_COPYROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32) &&
|
|
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) &&
|
|
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
|
|
CopyRow = CopyRow_SSE2;
|
|
}
|
|
#endif
|
|
|
|
// Copy plane
|
|
for (int y = 0; y < height; ++y) {
|
|
CopyRow(src_y, dst_y, width);
|
|
src_y += src_stride_y;
|
|
dst_y += dst_stride_y;
|
|
}
|
|
}
|
|
|
|
// Convert I420 to I400. (calls CopyPlane ignoring u/v)
|
|
int I420ToI400(const uint8* src_y, int src_stride_y,
|
|
uint8* dst_y, int dst_stride_y,
|
|
uint8*, int,
|
|
uint8*, int,
|
|
int width, int height) {
|
|
if (!src_y || !dst_y ||
|
|
width <= 0 || height == 0) {
|
|
return -1;
|
|
}
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_y = src_y + (height - 1) * src_stride_y;
|
|
src_stride_y = -src_stride_y;
|
|
}
|
|
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
|
|
return 0;
|
|
}
|
|
|
|
// Mirror a plane of data
|
|
void MirrorPlane(const uint8* src_y, int src_stride_y,
|
|
uint8* dst_y, int dst_stride_y,
|
|
int width, int height) {
|
|
void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C;
|
|
#if defined(HAS_MIRRORROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16)) {
|
|
MirrorRow = MirrorRow_NEON;
|
|
}
|
|
#endif
|
|
#if defined(HAS_MIRRORROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16)) {
|
|
MirrorRow = MirrorRow_SSE2;
|
|
#if defined(HAS_MIRRORROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) &&
|
|
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16)) {
|
|
MirrorRow = MirrorRow_SSSE3;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Mirror plane
|
|
for (int y = 0; y < height; ++y) {
|
|
MirrorRow(src_y, dst_y, width);
|
|
src_y += src_stride_y;
|
|
dst_y += dst_stride_y;
|
|
}
|
|
}
|
|
|
|
// Mirror I420 with optional flipping
|
|
int I420Mirror(const uint8* src_y, int src_stride_y,
|
|
const uint8* src_u, int src_stride_u,
|
|
const uint8* src_v, int src_stride_v,
|
|
uint8* dst_y, int dst_stride_y,
|
|
uint8* dst_u, int dst_stride_u,
|
|
uint8* dst_v, int dst_stride_v,
|
|
int width, int height) {
|
|
if (!src_y || !src_u || !src_v ||
|
|
!dst_y || !dst_u || !dst_v ||
|
|
width <= 0 || height == 0) {
|
|
return -1;
|
|
}
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
int halfheight = (height + 1) >> 1;
|
|
src_y = src_y + (height - 1) * src_stride_y;
|
|
src_u = src_u + (halfheight - 1) * src_stride_u;
|
|
src_v = src_v + (halfheight - 1) * src_stride_v;
|
|
src_stride_y = -src_stride_y;
|
|
src_stride_u = -src_stride_u;
|
|
src_stride_v = -src_stride_v;
|
|
}
|
|
|
|
int halfwidth = (width + 1) >> 1;
|
|
int halfheight = (height + 1) >> 1;
|
|
if (dst_y) {
|
|
MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
|
|
}
|
|
MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight);
|
|
MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight);
|
|
return 0;
|
|
}
|
|
|
|
// ARGB mirror.
|
|
int ARGBMirror(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (!src_argb ||
|
|
!dst_argb ||
|
|
width <= 0 || height == 0) {
|
|
return -1;
|
|
}
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
|
|
void (*ARGBMirrorRow)(const uint8* src, uint8* dst, int width) =
|
|
ARGBMirrorRow_C;
|
|
#if defined(HAS_ARGBMIRRORROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) &&
|
|
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ARGBMirrorRow = ARGBMirrorRow_SSSE3;
|
|
}
|
|
#endif
|
|
|
|
// Mirror plane
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBMirrorRow(src_argb, dst_argb, width);
|
|
src_argb += src_stride_argb;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Copy ARGB with optional flipping
|
|
int ARGBCopy(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (!src_argb ||
|
|
!dst_argb ||
|
|
width <= 0 || height == 0) {
|
|
return -1;
|
|
}
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
|
|
CopyPlane(src_argb, src_stride_argb, dst_argb, dst_stride_argb,
|
|
width * 4, height);
|
|
return 0;
|
|
}
|
|
|
|
// Get a blender that optimized for the CPU, alignment and pixel count.
|
|
// As there are 6 blenders to choose from, the caller should try to use
|
|
// the same blend function for all pixels if possible.
|
|
ARGBBlendRow GetARGBBlend() {
|
|
void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1,
|
|
uint8* dst_argb, int width) = ARGBBlendRow_C;
|
|
#if defined(HAS_ARGBBLENDROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3)) {
|
|
ARGBBlendRow = ARGBBlendRow_SSSE3;
|
|
return ARGBBlendRow;
|
|
}
|
|
#endif
|
|
#if defined(HAS_ARGBBLENDROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2)) {
|
|
ARGBBlendRow = ARGBBlendRow_SSE2;
|
|
}
|
|
#endif
|
|
return ARGBBlendRow;
|
|
}
|
|
|
|
// Alpha Blend 2 ARGB images and store to destination.
|
|
int ARGBBlend(const uint8* src_argb0, int src_stride_argb0,
|
|
const uint8* src_argb1, int src_stride_argb1,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
|
|
return -1;
|
|
}
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
|
|
dst_stride_argb = -dst_stride_argb;
|
|
}
|
|
void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1,
|
|
uint8* dst_argb, int width) = GetARGBBlend();
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBBlendRow(src_argb0, src_argb1, dst_argb, width);
|
|
src_argb0 += src_stride_argb0;
|
|
src_argb1 += src_stride_argb1;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert I444 to ARGB.
|
|
int I444ToARGB(const uint8* src_y, int src_stride_y,
|
|
const uint8* src_u, int src_stride_u,
|
|
const uint8* src_v, int src_stride_v,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
|
|
dst_stride_argb = -dst_stride_argb;
|
|
}
|
|
void (*I444ToARGBRow)(const uint8* y_buf,
|
|
const uint8* u_buf,
|
|
const uint8* v_buf,
|
|
uint8* rgb_buf,
|
|
int width) = I444ToARGBRow_C;
|
|
#if defined(HAS_I444TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
|
|
I444ToARGBRow = I444ToARGBRow_Any_SSSE3;
|
|
if (IS_ALIGNED(width, 8)) {
|
|
I444ToARGBRow = I444ToARGBRow_Unaligned_SSSE3;
|
|
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
I444ToARGBRow = I444ToARGBRow_SSSE3;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
I444ToARGBRow(src_y, src_u, src_v, dst_argb, width);
|
|
dst_argb += dst_stride_argb;
|
|
src_y += src_stride_y;
|
|
src_u += src_stride_u;
|
|
src_v += src_stride_v;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert I422 to ARGB.
|
|
int I422ToARGB(const uint8* src_y, int src_stride_y,
|
|
const uint8* src_u, int src_stride_u,
|
|
const uint8* src_v, int src_stride_v,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
|
|
dst_stride_argb = -dst_stride_argb;
|
|
}
|
|
void (*I422ToARGBRow)(const uint8* y_buf,
|
|
const uint8* u_buf,
|
|
const uint8* v_buf,
|
|
uint8* rgb_buf,
|
|
int width) = I422ToARGBRow_C;
|
|
#if defined(HAS_I422TOARGBROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON)) {
|
|
I422ToARGBRow = I422ToARGBRow_Any_NEON;
|
|
if (IS_ALIGNED(width, 16)) {
|
|
I422ToARGBRow = I422ToARGBRow_NEON;
|
|
}
|
|
}
|
|
#elif defined(HAS_I422TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
|
|
I422ToARGBRow = I422ToARGBRow_Any_SSSE3;
|
|
if (IS_ALIGNED(width, 8)) {
|
|
I422ToARGBRow = I422ToARGBRow_Unaligned_SSSE3;
|
|
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
I422ToARGBRow = I422ToARGBRow_SSSE3;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
I422ToARGBRow(src_y, src_u, src_v, dst_argb, width);
|
|
dst_argb += dst_stride_argb;
|
|
src_y += src_stride_y;
|
|
src_u += src_stride_u;
|
|
src_v += src_stride_v;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert I411 to ARGB.
|
|
int I411ToARGB(const uint8* src_y, int src_stride_y,
|
|
const uint8* src_u, int src_stride_u,
|
|
const uint8* src_v, int src_stride_v,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
|
|
dst_stride_argb = -dst_stride_argb;
|
|
}
|
|
void (*I411ToARGBRow)(const uint8* y_buf,
|
|
const uint8* u_buf,
|
|
const uint8* v_buf,
|
|
uint8* rgb_buf,
|
|
int width) = I411ToARGBRow_C;
|
|
#if defined(HAS_I411TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
|
|
I411ToARGBRow = I411ToARGBRow_Any_SSSE3;
|
|
if (IS_ALIGNED(width, 8)) {
|
|
I411ToARGBRow = I411ToARGBRow_Unaligned_SSSE3;
|
|
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
I411ToARGBRow = I411ToARGBRow_SSSE3;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
I411ToARGBRow(src_y, src_u, src_v, dst_argb, width);
|
|
dst_argb += dst_stride_argb;
|
|
src_y += src_stride_y;
|
|
src_u += src_stride_u;
|
|
src_v += src_stride_v;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Convert I400 to ARGB.
|
|
int I400ToARGB_Reference(const uint8* src_y, int src_stride_y,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
|
|
dst_stride_argb = -dst_stride_argb;
|
|
}
|
|
void (*YToARGBRow)(const uint8* y_buf,
|
|
uint8* rgb_buf,
|
|
int width) = YToARGBRow_C;
|
|
#if defined(HAS_YTOARGBROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) &&
|
|
IS_ALIGNED(width, 8) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
YToARGBRow = YToARGBRow_SSE2;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
YToARGBRow(src_y, dst_argb, width);
|
|
dst_argb += dst_stride_argb;
|
|
src_y += src_stride_y;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert I400 to ARGB.
|
|
int I400ToARGB(const uint8* src_y, int src_stride_y,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_y = src_y + (height - 1) * src_stride_y;
|
|
src_stride_y = -src_stride_y;
|
|
}
|
|
void (*I400ToARGBRow)(const uint8* src_y, uint8* dst_argb, int pix) =
|
|
I400ToARGBRow_C;
|
|
#if defined(HAS_I400TOARGBROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) &&
|
|
IS_ALIGNED(width, 8) &&
|
|
IS_ALIGNED(src_y, 8) && IS_ALIGNED(src_stride_y, 8) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
I400ToARGBRow = I400ToARGBRow_SSE2;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
I400ToARGBRow(src_y, dst_argb, width);
|
|
src_y += src_stride_y;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert ARGB to I400.
|
|
int ARGBToI400(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_y, int dst_stride_y,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix) =
|
|
ARGBToYRow_C;
|
|
#if defined(HAS_ARGBTOYROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) &&
|
|
IS_ALIGNED(width, 4) &&
|
|
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
|
|
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
|
|
ARGBToYRow = ARGBToYRow_SSSE3;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBToYRow(src_argb, dst_y, width);
|
|
src_argb += src_stride_argb;
|
|
dst_y += dst_stride_y;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// ARGB little endian (bgra in memory) to I422
|
|
// same as I420 except UV plane is full height
|
|
int ARGBToI422(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_y, int dst_stride_y,
|
|
uint8* dst_u, int dst_stride_u,
|
|
uint8* dst_v, int dst_stride_v,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix) =
|
|
ARGBToYRow_C;
|
|
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
|
|
uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C;
|
|
#if defined(HAS_ARGBTOYROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3)) {
|
|
if (width > 16) {
|
|
ARGBToUVRow = ARGBToUVRow_Any_SSSE3;
|
|
ARGBToYRow = ARGBToYRow_Any_SSSE3;
|
|
}
|
|
if (IS_ALIGNED(width, 16)) {
|
|
ARGBToUVRow = ARGBToUVRow_Unaligned_SSSE3;
|
|
ARGBToYRow = ARGBToYRow_Unaligned_SSSE3;
|
|
if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
|
|
ARGBToUVRow = ARGBToUVRow_SSSE3;
|
|
if (IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
|
|
ARGBToYRow = ARGBToYRow_SSSE3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBToUVRow(src_argb, 0, dst_u, dst_v, width);
|
|
ARGBToYRow(src_argb, dst_y, width);
|
|
src_argb += src_stride_argb;
|
|
dst_y += dst_stride_y;
|
|
dst_u += dst_stride_u;
|
|
dst_v += dst_stride_v;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int ABGRToARGB(const uint8* src_abgr, int src_stride_abgr,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_abgr = src_abgr + (height - 1) * src_stride_abgr;
|
|
src_stride_abgr = -src_stride_abgr;
|
|
}
|
|
void (*ABGRToARGBRow)(const uint8* src_abgr, uint8* dst_argb, int pix) =
|
|
ABGRToARGBRow_C;
|
|
#if defined(HAS_ABGRTOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) &&
|
|
IS_ALIGNED(width, 4) &&
|
|
IS_ALIGNED(src_abgr, 16) && IS_ALIGNED(src_stride_abgr, 16) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ABGRToARGBRow = ABGRToARGBRow_SSSE3;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ABGRToARGBRow(src_abgr, dst_argb, width);
|
|
src_abgr += src_stride_abgr;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert BGRA to ARGB.
|
|
int BGRAToARGB(const uint8* src_bgra, int src_stride_bgra,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_bgra = src_bgra + (height - 1) * src_stride_bgra;
|
|
src_stride_bgra = -src_stride_bgra;
|
|
}
|
|
void (*BGRAToARGBRow)(const uint8* src_bgra, uint8* dst_argb, int pix) =
|
|
BGRAToARGBRow_C;
|
|
#if defined(HAS_BGRATOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) &&
|
|
IS_ALIGNED(width, 4) &&
|
|
IS_ALIGNED(src_bgra, 16) && IS_ALIGNED(src_stride_bgra, 16) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
BGRAToARGBRow = BGRAToARGBRow_SSSE3;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
BGRAToARGBRow(src_bgra, dst_argb, width);
|
|
src_bgra += src_stride_bgra;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert RAW to ARGB.
|
|
int RAWToARGB(const uint8* src_raw, int src_stride_raw,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_raw = src_raw + (height - 1) * src_stride_raw;
|
|
src_stride_raw = -src_stride_raw;
|
|
}
|
|
void (*RAWToARGBRow)(const uint8* src_raw, uint8* dst_argb, int pix) =
|
|
RAWToARGBRow_C;
|
|
#if defined(HAS_RAWTOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) &&
|
|
IS_ALIGNED(width, 16) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
RAWToARGBRow = RAWToARGBRow_SSSE3;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
RAWToARGBRow(src_raw, dst_argb, width);
|
|
src_raw += src_stride_raw;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert RGB24 to ARGB.
|
|
int RGB24ToARGB(const uint8* src_rgb24, int src_stride_rgb24,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24;
|
|
src_stride_rgb24 = -src_stride_rgb24;
|
|
}
|
|
void (*RGB24ToARGBRow)(const uint8* src_rgb24, uint8* dst_argb, int pix) =
|
|
RGB24ToARGBRow_C;
|
|
#if defined(HAS_RGB24TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) &&
|
|
IS_ALIGNED(width, 16) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
RGB24ToARGBRow = RGB24ToARGBRow_SSSE3;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
RGB24ToARGBRow(src_rgb24, dst_argb, width);
|
|
src_rgb24 += src_stride_rgb24;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert RGB565 to ARGB.
|
|
int RGB565ToARGB(const uint8* src_rgb565, int src_stride_rgb565,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_rgb565 = src_rgb565 + (height - 1) * src_stride_rgb565;
|
|
src_stride_rgb565 = -src_stride_rgb565;
|
|
}
|
|
void (*RGB565ToARGBRow)(const uint8* src_rgb565, uint8* dst_argb, int pix) =
|
|
RGB565ToARGBRow_C;
|
|
#if defined(HAS_RGB565TOARGBROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) &&
|
|
IS_ALIGNED(width, 8) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
RGB565ToARGBRow = RGB565ToARGBRow_SSE2;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
RGB565ToARGBRow(src_rgb565, dst_argb, width);
|
|
src_rgb565 += src_stride_rgb565;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert ARGB1555 to ARGB.
|
|
int ARGB1555ToARGB(const uint8* src_argb1555, int src_stride_argb1555,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb1555 = src_argb1555 + (height - 1) * src_stride_argb1555;
|
|
src_stride_argb1555 = -src_stride_argb1555;
|
|
}
|
|
void (*ARGB1555ToARGBRow)(const uint8* src_argb1555, uint8* dst_argb,
|
|
int pix) = ARGB1555ToARGBRow_C;
|
|
#if defined(HAS_ARGB1555TOARGBROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) &&
|
|
IS_ALIGNED(width, 8) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ARGB1555ToARGBRow = ARGB1555ToARGBRow_SSE2;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGB1555ToARGBRow(src_argb1555, dst_argb, width);
|
|
src_argb1555 += src_stride_argb1555;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert ARGB4444 to ARGB.
|
|
int ARGB4444ToARGB(const uint8* src_argb4444, int src_stride_argb4444,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb4444 = src_argb4444 + (height - 1) * src_stride_argb4444;
|
|
src_stride_argb4444 = -src_stride_argb4444;
|
|
}
|
|
void (*ARGB4444ToARGBRow)(const uint8* src_argb4444, uint8* dst_argb,
|
|
int pix) = ARGB4444ToARGBRow_C;
|
|
#if defined(HAS_ARGB4444TOARGBROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) &&
|
|
IS_ALIGNED(width, 8) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ARGB4444ToARGBRow = ARGB4444ToARGBRow_SSE2;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGB4444ToARGBRow(src_argb4444, dst_argb, width);
|
|
src_argb4444 += src_stride_argb4444;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert ARGB To RGB24.
|
|
int ARGBToRGB24(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_rgb24, int dst_stride_rgb24,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
void (*ARGBToRGB24Row)(const uint8* src_argb, uint8* dst_rgb, int pix) =
|
|
ARGBToRGB24Row_C;
|
|
#if defined(HAS_ARGBTORGB24ROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) &&
|
|
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
|
|
if (width * 3 <= kMaxStride) {
|
|
ARGBToRGB24Row = ARGBToRGB24Row_Any_SSSE3;
|
|
}
|
|
if (IS_ALIGNED(width, 16) &&
|
|
IS_ALIGNED(dst_rgb24, 16) && IS_ALIGNED(dst_stride_rgb24, 16)) {
|
|
ARGBToRGB24Row = ARGBToRGB24Row_SSSE3;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBToRGB24Row(src_argb, dst_rgb24, width);
|
|
src_argb += src_stride_argb;
|
|
dst_rgb24 += dst_stride_rgb24;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert ARGB To RAW.
|
|
int ARGBToRAW(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_raw, int dst_stride_raw,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
void (*ARGBToRAWRow)(const uint8* src_argb, uint8* dst_rgb, int pix) =
|
|
ARGBToRAWRow_C;
|
|
#if defined(HAS_ARGBTORAWROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) &&
|
|
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
|
|
if (width * 3 <= kMaxStride) {
|
|
ARGBToRAWRow = ARGBToRAWRow_Any_SSSE3;
|
|
}
|
|
if (IS_ALIGNED(width, 16) &&
|
|
IS_ALIGNED(dst_raw, 16) && IS_ALIGNED(dst_stride_raw, 16)) {
|
|
ARGBToRAWRow = ARGBToRAWRow_SSSE3;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBToRAWRow(src_argb, dst_raw, width);
|
|
src_argb += src_stride_argb;
|
|
dst_raw += dst_stride_raw;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert ARGB To RGB565.
|
|
int ARGBToRGB565(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_rgb565, int dst_stride_rgb565,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int pix) =
|
|
ARGBToRGB565Row_C;
|
|
#if defined(HAS_ARGBTORGB565ROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) &&
|
|
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
|
|
if (width * 2 <= kMaxStride) {
|
|
ARGBToRGB565Row = ARGBToRGB565Row_Any_SSE2;
|
|
}
|
|
if (IS_ALIGNED(width, 4)) {
|
|
ARGBToRGB565Row = ARGBToRGB565Row_SSE2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBToRGB565Row(src_argb, dst_rgb565, width);
|
|
src_argb += src_stride_argb;
|
|
dst_rgb565 += dst_stride_rgb565;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert ARGB To ARGB1555.
|
|
int ARGBToARGB1555(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_argb1555, int dst_stride_argb1555,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
void (*ARGBToARGB1555Row)(const uint8* src_argb, uint8* dst_rgb, int pix) =
|
|
ARGBToARGB1555Row_C;
|
|
#if defined(HAS_ARGBTOARGB1555ROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) &&
|
|
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
|
|
if (width * 2 <= kMaxStride) {
|
|
ARGBToARGB1555Row = ARGBToARGB1555Row_Any_SSE2;
|
|
}
|
|
if (IS_ALIGNED(width, 4)) {
|
|
ARGBToARGB1555Row = ARGBToARGB1555Row_SSE2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBToARGB1555Row(src_argb, dst_argb1555, width);
|
|
src_argb += src_stride_argb;
|
|
dst_argb1555 += dst_stride_argb1555;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert ARGB To ARGB4444.
|
|
int ARGBToARGB4444(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_argb4444, int dst_stride_argb4444,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
void (*ARGBToARGB4444Row)(const uint8* src_argb, uint8* dst_rgb, int pix) =
|
|
ARGBToARGB4444Row_C;
|
|
#if defined(HAS_ARGBTOARGB4444ROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) &&
|
|
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
|
|
if (width * 2 <= kMaxStride) {
|
|
ARGBToARGB4444Row = ARGBToARGB4444Row_Any_SSE2;
|
|
}
|
|
if (IS_ALIGNED(width, 4)) {
|
|
ARGBToARGB4444Row = ARGBToARGB4444Row_SSE2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBToARGB4444Row(src_argb, dst_argb4444, width);
|
|
src_argb += src_stride_argb;
|
|
dst_argb4444 += dst_stride_argb4444;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert NV12 to ARGB.
|
|
int NV12ToARGB(const uint8* src_y, int src_stride_y,
|
|
const uint8* src_uv, int src_stride_uv,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
|
|
dst_stride_argb = -dst_stride_argb;
|
|
}
|
|
void (*NV12ToARGBRow)(const uint8* y_buf,
|
|
const uint8* uv_buf,
|
|
uint8* rgb_buf,
|
|
int width) = NV12ToARGBRow_C;
|
|
#if defined(HAS_NV12TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
|
|
NV12ToARGBRow = NV12ToARGBRow_Any_SSSE3;
|
|
if (IS_ALIGNED(width, 8)) {
|
|
NV12ToARGBRow = NV12ToARGBRow_Unaligned_SSSE3;
|
|
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
NV12ToARGBRow = NV12ToARGBRow_SSSE3;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
NV12ToARGBRow(src_y, src_uv, dst_argb, width);
|
|
dst_argb += dst_stride_argb;
|
|
src_y += src_stride_y;
|
|
if (y & 1) {
|
|
src_uv += src_stride_uv;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert NV21 to ARGB.
|
|
int NV21ToARGB(const uint8* src_y, int src_stride_y,
|
|
const uint8* src_vu, int src_stride_vu,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
|
|
dst_stride_argb = -dst_stride_argb;
|
|
}
|
|
void (*NV21ToARGBRow)(const uint8* y_buf,
|
|
const uint8* vu_buf,
|
|
uint8* rgb_buf,
|
|
int width) = NV21ToARGBRow_C;
|
|
#if defined(HAS_NV21TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
|
|
NV21ToARGBRow = NV21ToARGBRow_Any_SSSE3;
|
|
if (IS_ALIGNED(width, 8)) {
|
|
NV21ToARGBRow = NV21ToARGBRow_Unaligned_SSSE3;
|
|
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
NV21ToARGBRow = NV21ToARGBRow_SSSE3;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
NV21ToARGBRow(src_y, src_vu, dst_argb, width);
|
|
dst_argb += dst_stride_argb;
|
|
src_y += src_stride_y;
|
|
if (y & 1) {
|
|
src_vu += src_stride_vu;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert M420 to ARGB.
|
|
int M420ToARGB(const uint8* src_m420, int src_stride_m420,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
|
|
dst_stride_argb = -dst_stride_argb;
|
|
}
|
|
void (*NV12ToARGBRow)(const uint8* y_buf,
|
|
const uint8* uv_buf,
|
|
uint8* rgb_buf,
|
|
int width) = NV12ToARGBRow_C;
|
|
#if defined(HAS_NV12TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
|
|
NV12ToARGBRow = NV12ToARGBRow_Any_SSSE3;
|
|
if (IS_ALIGNED(width, 8)) {
|
|
NV12ToARGBRow = NV12ToARGBRow_Unaligned_SSSE3;
|
|
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
NV12ToARGBRow = NV12ToARGBRow_SSSE3;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height - 1; y += 2) {
|
|
NV12ToARGBRow(src_m420, src_m420 + src_stride_m420 * 2, dst_argb, width);
|
|
NV12ToARGBRow(src_m420 + src_stride_m420, src_m420 + src_stride_m420 * 2,
|
|
dst_argb + dst_stride_argb, width);
|
|
dst_argb += dst_stride_argb * 2;
|
|
src_m420 += src_stride_m420 * 3;
|
|
}
|
|
if (height & 1) {
|
|
NV12ToARGBRow(src_m420, src_m420 + src_stride_m420 * 2, dst_argb, width);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert NV12 to RGB565.
|
|
// TODO(fbarchard): (Re) Optimize for Neon.
|
|
int NV12ToRGB565(const uint8* src_y, int src_stride_y,
|
|
const uint8* src_uv, int src_stride_uv,
|
|
uint8* dst_rgb565, int dst_stride_rgb565,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565;
|
|
dst_stride_rgb565 = -dst_stride_rgb565;
|
|
}
|
|
void (*NV12ToARGBRow)(const uint8* y_buf,
|
|
const uint8* uv_buf,
|
|
uint8* rgb_buf,
|
|
int width) = NV12ToARGBRow_C;
|
|
#if defined(HAS_NV12TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && width * 4 <= kMaxStride) {
|
|
NV12ToARGBRow = NV12ToARGBRow_SSSE3;
|
|
}
|
|
#endif
|
|
|
|
SIMD_ALIGNED(uint8 row[kMaxStride]);
|
|
void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int pix) =
|
|
ARGBToRGB565Row_C;
|
|
#if defined(HAS_ARGBTORGB565ROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) {
|
|
ARGBToRGB565Row = ARGBToRGB565Row_SSE2;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
NV12ToARGBRow(src_y, src_uv, row, width);
|
|
ARGBToRGB565Row(row, dst_rgb565, width);
|
|
dst_rgb565 += dst_stride_rgb565;
|
|
src_y += src_stride_y;
|
|
if (y & 1) {
|
|
src_uv += src_stride_uv;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert NV21 to RGB565.
|
|
int NV21ToRGB565(const uint8* src_y, int src_stride_y,
|
|
const uint8* src_vu, int src_stride_vu,
|
|
uint8* dst_rgb565, int dst_stride_rgb565,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565;
|
|
dst_stride_rgb565 = -dst_stride_rgb565;
|
|
}
|
|
void (*NV21ToARGBRow)(const uint8* y_buf,
|
|
const uint8* uv_buf,
|
|
uint8* rgb_buf,
|
|
int width) = NV21ToARGBRow_C;
|
|
#if defined(HAS_NV21TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && width * 4 <= kMaxStride) {
|
|
NV21ToARGBRow = NV21ToARGBRow_SSSE3;
|
|
}
|
|
#endif
|
|
|
|
SIMD_ALIGNED(uint8 row[kMaxStride]);
|
|
void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int pix) =
|
|
ARGBToRGB565Row_C;
|
|
#if defined(HAS_ARGBTORGB565ROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) {
|
|
ARGBToRGB565Row = ARGBToRGB565Row_SSE2;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
NV21ToARGBRow(src_y, src_vu, row, width);
|
|
ARGBToRGB565Row(row, dst_rgb565, width);
|
|
dst_rgb565 += dst_stride_rgb565;
|
|
src_y += src_stride_y;
|
|
if (y & 1) {
|
|
src_vu += src_stride_vu;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert YUY2 to ARGB.
|
|
int YUY2ToARGB(const uint8* src_yuy2, int src_stride_yuy2,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
|
|
src_stride_yuy2 = -src_stride_yuy2;
|
|
}
|
|
void (*YUY2ToUVRow)(const uint8* src_yuy2, int src_stride_yuy2,
|
|
uint8* dst_u, uint8* dst_v, int pix) = YUY2ToUVRow_C;
|
|
void (*YUY2ToYRow)(const uint8* src_yuy2,
|
|
uint8* dst_y, int pix) = YUY2ToYRow_C;
|
|
#if defined(HAS_YUY2TOYROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2)) {
|
|
if (width > 16) {
|
|
YUY2ToUVRow = YUY2ToUVRow_Any_SSE2;
|
|
YUY2ToYRow = YUY2ToYRow_Any_SSE2;
|
|
}
|
|
if (IS_ALIGNED(width, 16)) {
|
|
YUY2ToUVRow = YUY2ToUVRow_Unaligned_SSE2;
|
|
YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2;
|
|
if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) {
|
|
YUY2ToUVRow = YUY2ToUVRow_SSE2;
|
|
YUY2ToYRow = YUY2ToYRow_SSE2;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
void (*I422ToARGBRow)(const uint8* y_buf,
|
|
const uint8* u_buf,
|
|
const uint8* v_buf,
|
|
uint8* argb_buf,
|
|
int width) = I422ToARGBRow_C;
|
|
#if defined(HAS_I422TOARGBROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON)) {
|
|
I422ToARGBRow = I422ToARGBRow_Any_NEON;
|
|
if (IS_ALIGNED(width, 16)) {
|
|
I422ToARGBRow = I422ToARGBRow_NEON;
|
|
}
|
|
}
|
|
#elif defined(HAS_I422TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
|
|
I422ToARGBRow = I422ToARGBRow_Any_SSSE3;
|
|
if (IS_ALIGNED(width, 8) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
I422ToARGBRow = I422ToARGBRow_SSSE3;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
SIMD_ALIGNED(uint8 rowy[kMaxStride]);
|
|
SIMD_ALIGNED(uint8 rowu[kMaxStride]);
|
|
SIMD_ALIGNED(uint8 rowv[kMaxStride]);
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
YUY2ToUVRow(src_yuy2, src_stride_yuy2, rowu, rowv, width);
|
|
YUY2ToYRow(src_yuy2, rowy, width);
|
|
I422ToARGBRow(rowy, rowu, rowv, dst_argb, width);
|
|
src_yuy2 += src_stride_yuy2;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert UYVY to ARGB.
|
|
int UYVYToARGB(const uint8* src_uyvy, int src_stride_uyvy,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
// Negative height means invert the image.
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
|
|
src_stride_uyvy = -src_stride_uyvy;
|
|
}
|
|
void (*UYVYToUVRow)(const uint8* src_uyvy, int src_stride_uyvy,
|
|
uint8* dst_u, uint8* dst_v, int pix) = UYVYToUVRow_C;
|
|
void (*UYVYToYRow)(const uint8* src_uyvy,
|
|
uint8* dst_y, int pix) = UYVYToYRow_C;
|
|
#if defined(HAS_UYVYTOYROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2)) {
|
|
if (width > 16) {
|
|
UYVYToUVRow = UYVYToUVRow_Any_SSE2;
|
|
UYVYToYRow = UYVYToYRow_Any_SSE2;
|
|
}
|
|
if (IS_ALIGNED(width, 16)) {
|
|
UYVYToUVRow = UYVYToUVRow_Unaligned_SSE2;
|
|
UYVYToYRow = UYVYToYRow_Unaligned_SSE2;
|
|
if (IS_ALIGNED(src_uyvy, 16) && IS_ALIGNED(src_stride_uyvy, 16)) {
|
|
UYVYToUVRow = UYVYToUVRow_SSE2;
|
|
UYVYToYRow = UYVYToYRow_SSE2;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
void (*I422ToARGBRow)(const uint8* y_buf,
|
|
const uint8* u_buf,
|
|
const uint8* v_buf,
|
|
uint8* argb_buf,
|
|
int width) = I422ToARGBRow_C;
|
|
#if defined(HAS_I422TOARGBROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON)) {
|
|
I422ToARGBRow = I422ToARGBRow_Any_NEON;
|
|
if (IS_ALIGNED(width, 16)) {
|
|
I422ToARGBRow = I422ToARGBRow_NEON;
|
|
}
|
|
}
|
|
#elif defined(HAS_I422TOARGBROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
|
|
I422ToARGBRow = I422ToARGBRow_Any_SSSE3;
|
|
if (IS_ALIGNED(width, 8) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
I422ToARGBRow = I422ToARGBRow_SSSE3;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
SIMD_ALIGNED(uint8 rowy[kMaxStride]);
|
|
SIMD_ALIGNED(uint8 rowu[kMaxStride]);
|
|
SIMD_ALIGNED(uint8 rowv[kMaxStride]);
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
UYVYToUVRow(src_uyvy, src_stride_uyvy, rowu, rowv, width);
|
|
UYVYToYRow(src_uyvy, rowy, width);
|
|
I422ToARGBRow(rowy, rowu, rowv, dst_argb, width);
|
|
src_uyvy += src_stride_uyvy;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// SetRow8 writes 'count' bytes using a 32 bit value repeated
|
|
// SetRow32 writes 'count' words using a 32 bit value repeated
|
|
|
|
#if !defined(YUV_DISABLE_ASM) && defined(__ARM_NEON__)
|
|
#define HAS_SETROW_NEON
|
|
static void SetRow8_NEON(uint8* dst, uint32 v32, int count) {
|
|
asm volatile (
|
|
"vdup.u32 q0, %2 \n" // duplicate 4 ints
|
|
"1: \n"
|
|
"subs %1, %1, #16 \n" // 16 bytes per loop
|
|
"vst1.u32 {q0}, [%0]! \n" // store
|
|
"bgt 1b \n"
|
|
: "+r"(dst), // %0
|
|
"+r"(count) // %1
|
|
: "r"(v32) // %2
|
|
: "q0", "memory", "cc");
|
|
}
|
|
|
|
// TODO(fbarchard): Make fully assembler
|
|
static void SetRows32_NEON(uint8* dst, uint32 v32, int width,
|
|
int dst_stride, int height) {
|
|
for (int y = 0; y < height; ++y) {
|
|
SetRow8_NEON(dst, v32, width << 2);
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
|
|
#elif !defined(YUV_DISABLE_ASM) && defined(_M_IX86)
|
|
#define HAS_SETROW_X86
|
|
__declspec(naked) __declspec(align(16))
|
|
static void SetRow8_X86(uint8* dst, uint32 v32, int count) {
|
|
__asm {
|
|
mov edx, edi
|
|
mov edi, [esp + 4] // dst
|
|
mov eax, [esp + 8] // v32
|
|
mov ecx, [esp + 12] // count
|
|
shr ecx, 2
|
|
rep stosd
|
|
mov edi, edx
|
|
ret
|
|
}
|
|
}
|
|
|
|
__declspec(naked) __declspec(align(16))
|
|
static void SetRows32_X86(uint8* dst, uint32 v32, int width,
|
|
int dst_stride, int height) {
|
|
__asm {
|
|
push esi
|
|
push edi
|
|
push ebp
|
|
mov edi, [esp + 12 + 4] // dst
|
|
mov eax, [esp + 12 + 8] // v32
|
|
mov ebp, [esp + 12 + 12] // width
|
|
mov edx, [esp + 12 + 16] // dst_stride
|
|
mov esi, [esp + 12 + 20] // height
|
|
lea ecx, [ebp * 4]
|
|
sub edx, ecx // stride - width * 4
|
|
|
|
align 16
|
|
convertloop:
|
|
mov ecx, ebp
|
|
rep stosd
|
|
add edi, edx
|
|
sub esi, 1
|
|
jg convertloop
|
|
|
|
pop ebp
|
|
pop edi
|
|
pop esi
|
|
ret
|
|
}
|
|
}
|
|
|
|
#elif !defined(YUV_DISABLE_ASM) && (defined(__x86_64__) || defined(__i386__))
|
|
#define HAS_SETROW_X86
|
|
static void SetRow8_X86(uint8* dst, uint32 v32, int width) {
|
|
size_t width_tmp = static_cast<size_t>(width);
|
|
asm volatile (
|
|
"shr $0x2,%1 \n"
|
|
"rep stosl \n"
|
|
: "+D"(dst), // %0
|
|
"+c"(width_tmp) // %1
|
|
: "a"(v32) // %2
|
|
: "memory", "cc");
|
|
}
|
|
|
|
static void SetRows32_X86(uint8* dst, uint32 v32, int width,
|
|
int dst_stride, int height) {
|
|
for (int y = 0; y < height; ++y) {
|
|
size_t width_tmp = static_cast<size_t>(width);
|
|
uint32* d = reinterpret_cast<uint32*>(dst);
|
|
asm volatile (
|
|
"rep stosl \n"
|
|
: "+D"(d), // %0
|
|
"+c"(width_tmp) // %1
|
|
: "a"(v32) // %2
|
|
: "memory", "cc");
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void SetRow8_C(uint8* dst, uint32 v8, int count) {
|
|
#ifdef _MSC_VER
|
|
for (int x = 0; x < count; ++x) {
|
|
dst[x] = v8;
|
|
}
|
|
#else
|
|
memset(dst, v8, count);
|
|
#endif
|
|
}
|
|
|
|
static void SetRows32_C(uint8* dst, uint32 v32, int width,
|
|
int dst_stride, int height) {
|
|
for (int y = 0; y < height; ++y) {
|
|
uint32* d = reinterpret_cast<uint32*>(dst);
|
|
for (int x = 0; x < width; ++x) {
|
|
d[x] = v32;
|
|
}
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
|
|
void SetPlane(uint8* dst_y, int dst_stride_y,
|
|
int width, int height,
|
|
uint32 value) {
|
|
void (*SetRow)(uint8* dst, uint32 value, int pix) = SetRow8_C;
|
|
#if defined(HAS_SETROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON) &&
|
|
IS_ALIGNED(width, 16) &&
|
|
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
|
|
SetRow = SetRow8_NEON;
|
|
}
|
|
#endif
|
|
#if defined(HAS_SETROW_X86)
|
|
if (TestCpuFlag(kCpuHasX86) && IS_ALIGNED(width, 4)) {
|
|
SetRow = SetRow8_X86;
|
|
}
|
|
#endif
|
|
#if defined(HAS_SETROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) &&
|
|
IS_ALIGNED(width, 16) &&
|
|
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
|
|
SetRow = SetRow8_SSE2;
|
|
}
|
|
#endif
|
|
|
|
uint32 v32 = value | (value << 8) | (value << 16) | (value << 24);
|
|
// Set plane
|
|
for (int y = 0; y < height; ++y) {
|
|
SetRow(dst_y, v32, width);
|
|
dst_y += dst_stride_y;
|
|
}
|
|
}
|
|
|
|
// Draw a rectangle into I420
|
|
int I420Rect(uint8* dst_y, int dst_stride_y,
|
|
uint8* dst_u, int dst_stride_u,
|
|
uint8* dst_v, int dst_stride_v,
|
|
int x, int y,
|
|
int width, int height,
|
|
int value_y, int value_u, int value_v) {
|
|
if (!dst_y || !dst_u || !dst_v ||
|
|
width <= 0 || height <= 0 ||
|
|
x < 0 || y < 0 ||
|
|
value_y < 0 || value_y > 255 ||
|
|
value_u < 0 || value_u > 255 ||
|
|
value_v < 0 || value_v > 255) {
|
|
return -1;
|
|
}
|
|
int halfwidth = (width + 1) >> 1;
|
|
int halfheight = (height + 1) >> 1;
|
|
uint8* start_y = dst_y + y * dst_stride_y + x;
|
|
uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2);
|
|
uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2);
|
|
|
|
SetPlane(start_y, dst_stride_y, width, height, value_y);
|
|
SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u);
|
|
SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v);
|
|
return 0;
|
|
}
|
|
|
|
// Draw a rectangle into ARGB
|
|
int ARGBRect(uint8* dst_argb, int dst_stride_argb,
|
|
int dst_x, int dst_y,
|
|
int width, int height,
|
|
uint32 value) {
|
|
if (!dst_argb ||
|
|
width <= 0 || height <= 0 ||
|
|
dst_x < 0 || dst_y < 0) {
|
|
return -1;
|
|
}
|
|
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
|
|
#if defined(HAS_SETROW_NEON)
|
|
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16) &&
|
|
IS_ALIGNED(dst, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
SetRows32_NEON(dst, value, width, dst_stride_argb, height);
|
|
return 0;
|
|
}
|
|
#endif
|
|
#if defined(HAS_SETROW_X86)
|
|
if (TestCpuFlag(kCpuHasX86)) {
|
|
SetRows32_X86(dst, value, width, dst_stride_argb, height);
|
|
return 0;
|
|
}
|
|
#endif
|
|
SetRows32_C(dst, value, width, dst_stride_argb, height);
|
|
return 0;
|
|
}
|
|
|
|
// Convert unattentuated ARGB to preattenuated ARGB.
|
|
// An unattenutated ARGB alpha blend uses the formula
|
|
// p = a * f + (1 - a) * b
|
|
// where
|
|
// p is output pixel
|
|
// f is foreground pixel
|
|
// b is background pixel
|
|
// a is alpha value from foreground pixel
|
|
// An preattenutated ARGB alpha blend uses the formula
|
|
// p = f + (1 - a) * b
|
|
// where
|
|
// f is foreground pixel premultiplied by alpha
|
|
|
|
int ARGBAttenuate(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb,
|
|
int width) = ARGBAttenuateRow_C;
|
|
#if defined(HAS_ARGBATTENUATE_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) &&
|
|
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ARGBAttenuateRow = ARGBAttenuateRow_SSE2;
|
|
}
|
|
#endif
|
|
#if defined(HAS_ARGBATTENUATE_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) &&
|
|
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ARGBAttenuateRow = ARGBAttenuateRow_SSSE3;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBAttenuateRow(src_argb, dst_argb, width);
|
|
src_argb += src_stride_argb;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Convert preattentuated ARGB to unattenuated ARGB.
|
|
int ARGBUnattenuate(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int width, int height) {
|
|
if (height < 0) {
|
|
height = -height;
|
|
src_argb = src_argb + (height - 1) * src_stride_argb;
|
|
src_stride_argb = -src_stride_argb;
|
|
}
|
|
void (*ARGBUnattenuateRow)(const uint8* src_argb, uint8* dst_argb,
|
|
int width) = ARGBUnattenuateRow_C;
|
|
#if defined(HAS_ARGBUNATTENUATE_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) &&
|
|
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2;
|
|
}
|
|
#endif
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBUnattenuateRow(src_argb, dst_argb, width);
|
|
src_argb += src_stride_argb;
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Make a rectangle of ARGB gray scale.
|
|
int ARGBGray(uint8* dst_argb, int dst_stride_argb,
|
|
int dst_x, int dst_y,
|
|
int width, int height) {
|
|
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
|
|
return -1;
|
|
}
|
|
void (*ARGBGrayRow)(uint8* dst_argb, int width) = ARGBGrayRow_C;
|
|
#if defined(HAS_ARGBGRAYROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ARGBGrayRow = ARGBGrayRow_SSSE3;
|
|
}
|
|
#endif
|
|
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBGrayRow(dst, width);
|
|
dst += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Make a rectangle of ARGB Sepia tone.
|
|
int ARGBSepia(uint8* dst_argb, int dst_stride_argb,
|
|
int dst_x, int dst_y, int width, int height) {
|
|
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
|
|
return -1;
|
|
}
|
|
void (*ARGBSepiaRow)(uint8* dst_argb, int width) = ARGBSepiaRow_C;
|
|
#if defined(HAS_ARGBSEPIAROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ARGBSepiaRow = ARGBSepiaRow_SSSE3;
|
|
}
|
|
#endif
|
|
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBSepiaRow(dst, width);
|
|
dst += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Apply a 4x3 matrix rotation to each ARGB pixel.
|
|
int ARGBColorMatrix(uint8* dst_argb, int dst_stride_argb,
|
|
const int8* matrix_argb,
|
|
int dst_x, int dst_y, int width, int height) {
|
|
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
|
|
return -1;
|
|
}
|
|
void (*ARGBColorMatrixRow)(uint8* dst_argb, const int8* matrix_argb,
|
|
int width) = ARGBColorMatrixRow_C;
|
|
#if defined(HAS_ARGBCOLORMATRIXROW_SSSE3)
|
|
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ARGBColorMatrixRow = ARGBColorMatrixRow_SSSE3;
|
|
}
|
|
#endif
|
|
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBColorMatrixRow(dst, matrix_argb, width);
|
|
dst += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Apply a color table each ARGB pixel.
|
|
// Table contains 256 ARGB values.
|
|
int ARGBColorTable(uint8* dst_argb, int dst_stride_argb,
|
|
const uint8* table_argb,
|
|
int dst_x, int dst_y, int width, int height) {
|
|
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
|
|
return -1;
|
|
}
|
|
void (*ARGBColorTableRow)(uint8* dst_argb, const uint8* table_argb,
|
|
int width) = ARGBColorTableRow_C;
|
|
#if defined(HAS_ARGBCOLORTABLEROW_X86)
|
|
if (TestCpuFlag(kCpuHasX86)) {
|
|
ARGBColorTableRow = ARGBColorTableRow_X86;
|
|
}
|
|
#endif
|
|
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBColorTableRow(dst, table_argb, width);
|
|
dst += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// ARGBQuantize is used to posterize art.
|
|
// e.g. rgb / qvalue * qvalue + qvalue / 2
|
|
// But the low levels implement efficiently with 3 parameters, and could be
|
|
// used for other high level operations.
|
|
// The divide is replaces with a multiply by reciprocal fixed point multiply.
|
|
// Caveat - although SSE2 saturates, the C function does not and should be used
|
|
// with care if doing anything but quantization.
|
|
int ARGBQuantize(uint8* dst_argb, int dst_stride_argb,
|
|
int scale, int interval_size, int interval_offset,
|
|
int dst_x, int dst_y, int width, int height) {
|
|
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0 ||
|
|
interval_size < 1 || interval_size > 255) {
|
|
return -1;
|
|
}
|
|
void (*ARGBQuantizeRow)(uint8* dst_argb, int scale, int interval_size,
|
|
int interval_offset, int width) = ARGBQuantizeRow_C;
|
|
#if defined(HAS_ARGBQUANTIZEROW_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) &&
|
|
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
|
|
ARGBQuantizeRow = ARGBQuantizeRow_SSE2;
|
|
}
|
|
#endif
|
|
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
|
|
for (int y = 0; y < height; ++y) {
|
|
ARGBQuantizeRow(dst, scale, interval_size, interval_offset, width);
|
|
dst += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef HAVE_JPEG
|
|
struct ARGBBuffers {
|
|
uint8* argb;
|
|
int argb_stride;
|
|
int w;
|
|
int h;
|
|
};
|
|
|
|
static void JpegI420ToARGB(void* opaque,
|
|
const uint8* const* data,
|
|
const int* strides,
|
|
int rows) {
|
|
ARGBBuffers* dest = static_cast<ARGBBuffers*>(opaque);
|
|
I420ToARGB(data[0], strides[0],
|
|
data[1], strides[1],
|
|
data[2], strides[2],
|
|
dest->argb, dest->argb_stride,
|
|
dest->w, rows);
|
|
dest->argb += rows * dest->argb_stride;
|
|
dest->h -= rows;
|
|
}
|
|
|
|
static void JpegI422ToARGB(void* opaque,
|
|
const uint8* const* data,
|
|
const int* strides,
|
|
int rows) {
|
|
ARGBBuffers* dest = static_cast<ARGBBuffers*>(opaque);
|
|
I422ToARGB(data[0], strides[0],
|
|
data[1], strides[1],
|
|
data[2], strides[2],
|
|
dest->argb, dest->argb_stride,
|
|
dest->w, rows);
|
|
dest->argb += rows * dest->argb_stride;
|
|
dest->h -= rows;
|
|
}
|
|
|
|
static void JpegI444ToARGB(void* opaque,
|
|
const uint8* const* data,
|
|
const int* strides,
|
|
int rows) {
|
|
ARGBBuffers* dest = static_cast<ARGBBuffers*>(opaque);
|
|
I444ToARGB(data[0], strides[0],
|
|
data[1], strides[1],
|
|
data[2], strides[2],
|
|
dest->argb, dest->argb_stride,
|
|
dest->w, rows);
|
|
dest->argb += rows * dest->argb_stride;
|
|
dest->h -= rows;
|
|
}
|
|
|
|
static void JpegI411ToARGB(void* opaque,
|
|
const uint8* const* data,
|
|
const int* strides,
|
|
int rows) {
|
|
ARGBBuffers* dest = static_cast<ARGBBuffers*>(opaque);
|
|
I411ToARGB(data[0], strides[0],
|
|
data[1], strides[1],
|
|
data[2], strides[2],
|
|
dest->argb, dest->argb_stride,
|
|
dest->w, rows);
|
|
dest->argb += rows * dest->argb_stride;
|
|
dest->h -= rows;
|
|
}
|
|
|
|
static void JpegI400ToARGB(void* opaque,
|
|
const uint8* const* data,
|
|
const int* strides,
|
|
int rows) {
|
|
ARGBBuffers* dest = static_cast<ARGBBuffers*>(opaque);
|
|
I400ToARGB(data[0], strides[0],
|
|
dest->argb, dest->argb_stride,
|
|
dest->w, rows);
|
|
dest->argb += rows * dest->argb_stride;
|
|
dest->h -= rows;
|
|
}
|
|
|
|
// MJPG (Motion JPeg) to ARGB
|
|
// TODO(fbarchard): review w and h requirement. dw and dh may be enough.
|
|
int MJPGToARGB(const uint8* sample,
|
|
size_t sample_size,
|
|
uint8* argb, int argb_stride,
|
|
int w, int h,
|
|
int dw, int dh) {
|
|
if (sample_size == kUnknownDataSize) {
|
|
// ERROR: MJPEG frame size unknown
|
|
return -1;
|
|
}
|
|
|
|
// TODO(fbarchard): Port to C
|
|
MJpegDecoder mjpeg_decoder;
|
|
bool ret = mjpeg_decoder.LoadFrame(sample, sample_size);
|
|
if (ret && (mjpeg_decoder.GetWidth() != w ||
|
|
mjpeg_decoder.GetHeight() != h)) {
|
|
// ERROR: MJPEG frame has unexpected dimensions
|
|
mjpeg_decoder.UnloadFrame();
|
|
return 1; // runtime failure
|
|
}
|
|
if (ret) {
|
|
ARGBBuffers bufs = { argb, argb_stride, dw, dh };
|
|
// YUV420
|
|
if (mjpeg_decoder.GetColorSpace() ==
|
|
MJpegDecoder::kColorSpaceYCbCr &&
|
|
mjpeg_decoder.GetNumComponents() == 3 &&
|
|
mjpeg_decoder.GetVertSampFactor(0) == 2 &&
|
|
mjpeg_decoder.GetHorizSampFactor(0) == 2 &&
|
|
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
|
|
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
|
|
ret = mjpeg_decoder.DecodeToCallback(&JpegI420ToARGB, &bufs, dw, dh);
|
|
// YUV422
|
|
} else if (mjpeg_decoder.GetColorSpace() ==
|
|
MJpegDecoder::kColorSpaceYCbCr &&
|
|
mjpeg_decoder.GetNumComponents() == 3 &&
|
|
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(0) == 2 &&
|
|
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
|
|
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
|
|
ret = mjpeg_decoder.DecodeToCallback(&JpegI422ToARGB, &bufs, dw, dh);
|
|
// YUV444
|
|
} else if (mjpeg_decoder.GetColorSpace() ==
|
|
MJpegDecoder::kColorSpaceYCbCr &&
|
|
mjpeg_decoder.GetNumComponents() == 3 &&
|
|
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(0) == 1 &&
|
|
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
|
|
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
|
|
ret = mjpeg_decoder.DecodeToCallback(&JpegI444ToARGB, &bufs, dw, dh);
|
|
// YUV411
|
|
} else if (mjpeg_decoder.GetColorSpace() ==
|
|
MJpegDecoder::kColorSpaceYCbCr &&
|
|
mjpeg_decoder.GetNumComponents() == 3 &&
|
|
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(0) == 4 &&
|
|
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
|
|
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
|
|
ret = mjpeg_decoder.DecodeToCallback(&JpegI411ToARGB, &bufs, dw, dh);
|
|
// YUV400
|
|
} else if (mjpeg_decoder.GetColorSpace() ==
|
|
MJpegDecoder::kColorSpaceGrayscale &&
|
|
mjpeg_decoder.GetNumComponents() == 1 &&
|
|
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
|
|
mjpeg_decoder.GetHorizSampFactor(0) == 1) {
|
|
ret = mjpeg_decoder.DecodeToCallback(&JpegI400ToARGB, &bufs, dw, dh);
|
|
} else {
|
|
// TODO(fbarchard): Implement conversion for any other colorspace/sample
|
|
// factors that occur in practice. 411 is supported by libjpeg
|
|
// ERROR: Unable to convert MJPEG frame because format is not supported
|
|
mjpeg_decoder.UnloadFrame();
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
// Computes table of cumulative sum for image where the value is the sum
|
|
// of all values above and to the left of the entry. Used by ARGBBlur.
|
|
int ARGBComputeCumulativeSum(const uint8* src_argb, int src_stride_argb,
|
|
int32* dst_cumsum, int dst_stride32_cumsum,
|
|
int width, int height) {
|
|
if (!dst_cumsum || !src_argb || width <= 0 || height <= 0) {
|
|
return -1;
|
|
}
|
|
void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum,
|
|
const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C;
|
|
#if defined(HAS_CUMULATIVESUMTOAVERAGE_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2)) {
|
|
ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2;
|
|
}
|
|
#endif
|
|
memset(dst_cumsum, 0, width * sizeof(dst_cumsum[0]) * 4); // 4 int per pixel.
|
|
int32* previous_cumsum = dst_cumsum;
|
|
for (int y = 0; y < height; ++y) {
|
|
ComputeCumulativeSumRow(src_argb, dst_cumsum, previous_cumsum, width);
|
|
previous_cumsum = dst_cumsum;
|
|
dst_cumsum += dst_stride32_cumsum;
|
|
src_argb += src_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Blur ARGB image.
|
|
// Caller should allocate CumulativeSum table of width * height * 16 bytes
|
|
// aligned to 16 byte boundary. height can be radius * 2 + 2 to save memory
|
|
// as the buffer is treated as circular.
|
|
int ARGBBlur(const uint8* src_argb, int src_stride_argb,
|
|
uint8* dst_argb, int dst_stride_argb,
|
|
int32* dst_cumsum, int dst_stride32_cumsum,
|
|
int width, int height, int radius) {
|
|
void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum,
|
|
const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C;
|
|
void (*CumulativeSumToAverage)(const int32* topleft, const int32* botleft,
|
|
int width, int area, uint8* dst, int count) = CumulativeSumToAverage_C;
|
|
#if defined(HAS_CUMULATIVESUMTOAVERAGE_SSE2)
|
|
if (TestCpuFlag(kCpuHasSSE2)) {
|
|
ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2;
|
|
CumulativeSumToAverage = CumulativeSumToAverage_SSE2;
|
|
}
|
|
#endif
|
|
// Compute enough CumulativeSum for first row to be blurred. After this
|
|
// one row of CumulativeSum is updated at a time.
|
|
ARGBComputeCumulativeSum(src_argb, src_stride_argb,
|
|
dst_cumsum, dst_stride32_cumsum,
|
|
width, radius);
|
|
|
|
src_argb = src_argb + radius * src_stride_argb;
|
|
int32* cumsum_bot_row = &dst_cumsum[(radius - 1) * dst_stride32_cumsum];
|
|
|
|
const int32* max_cumsum_bot_row =
|
|
&dst_cumsum[(radius * 2 + 2) * dst_stride32_cumsum];
|
|
const int32* cumsum_top_row = &dst_cumsum[0];
|
|
|
|
for (int y = 0; y < height; ++y) {
|
|
int top_y = ((y - radius - 1) >= 0) ? (y - radius - 1) : 0;
|
|
int bot_y = ((y + radius) < height) ? (y + radius) : (height - 1);
|
|
int area = radius * (bot_y - top_y);
|
|
|
|
// Increment cumsum_top_row pointer with circular buffer wrap around.
|
|
if (top_y) {
|
|
cumsum_top_row += dst_stride32_cumsum;
|
|
if (cumsum_top_row >= max_cumsum_bot_row) {
|
|
cumsum_top_row = dst_cumsum;
|
|
}
|
|
}
|
|
// Increment cumsum_bot_row pointer with circular buffer wrap around and
|
|
// then fill in a row of CumulativeSum.
|
|
if ((y + radius) < height) {
|
|
const int32* prev_cumsum_bot_row = cumsum_bot_row;
|
|
cumsum_bot_row += dst_stride32_cumsum;
|
|
if (cumsum_bot_row >= max_cumsum_bot_row) {
|
|
cumsum_bot_row = dst_cumsum;
|
|
}
|
|
ComputeCumulativeSumRow(src_argb, cumsum_bot_row, prev_cumsum_bot_row,
|
|
width);
|
|
src_argb += src_stride_argb;
|
|
}
|
|
|
|
// Left clipped.
|
|
int boxwidth = radius * 4;
|
|
int x;
|
|
for (x = 0; x < radius + 1; ++x) {
|
|
CumulativeSumToAverage(cumsum_top_row, cumsum_bot_row,
|
|
boxwidth, area, &dst_argb[x * 4], 1);
|
|
area += (bot_y - top_y);
|
|
boxwidth += 4;
|
|
}
|
|
|
|
// Middle unclipped.
|
|
int n = (width - 1) - radius - x + 1;
|
|
CumulativeSumToAverage(cumsum_top_row, cumsum_bot_row,
|
|
boxwidth, area, &dst_argb[x * 4], n);
|
|
|
|
// Right clipped.
|
|
for (x += n; x <= width - 1; ++x) {
|
|
area -= (bot_y - top_y);
|
|
boxwidth -= 4;
|
|
CumulativeSumToAverage(cumsum_top_row + (x - radius - 1) * 4,
|
|
cumsum_bot_row + (x - radius - 1) * 4,
|
|
boxwidth, area, &dst_argb[x * 4], 1);
|
|
}
|
|
dst_argb += dst_stride_argb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
} // extern "C"
|
|
} // namespace libyuv
|
|
#endif
|