mirror of
https://chromium.googlesource.com/libyuv/libyuv
synced 2025-12-06 16:56:55 +08:00
BUG=160 TEST=libyuvTest.ARGBBlend_Unaligned Review URL: https://webrtc-codereview.appspot.com/935019 git-svn-id: http://libyuv.googlecode.com/svn/trunk@498 16f28f9a-4ce2-e073-06de-1de4eb20be90
837 lines
28 KiB
C++
837 lines
28 KiB
C++
/*
|
|
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#include "libyuv/compare.h"
|
|
#include "libyuv/convert.h"
|
|
#include "libyuv/convert_argb.h"
|
|
#include "libyuv/convert_from.h"
|
|
#include "libyuv/convert_from_argb.h"
|
|
#include "libyuv/cpu_id.h"
|
|
#include "libyuv/format_conversion.h"
|
|
#include "libyuv/planar_functions.h"
|
|
#include "libyuv/rotate.h"
|
|
#include "../unit_test/unit_test.h"
|
|
|
|
#if defined(_MSC_VER)
|
|
#define SIMD_ALIGNED(var) __declspec(align(16)) var
|
|
#else // __GNUC__
|
|
#define SIMD_ALIGNED(var) var __attribute__((aligned(16)))
|
|
#endif
|
|
|
|
namespace libyuv {
|
|
|
|
TEST_F(libyuvTest, TestAttenuate) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
|
|
SIMD_ALIGNED(uint8 atten_pixels[256][4]);
|
|
SIMD_ALIGNED(uint8 unatten_pixels[256][4]);
|
|
SIMD_ALIGNED(uint8 atten2_pixels[256][4]);
|
|
|
|
// Test unattenuation clamps
|
|
orig_pixels[0][0] = 200u;
|
|
orig_pixels[0][1] = 129u;
|
|
orig_pixels[0][2] = 127u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test unattenuation transparent and opaque are unaffected
|
|
orig_pixels[1][0] = 16u;
|
|
orig_pixels[1][1] = 64u;
|
|
orig_pixels[1][2] = 192u;
|
|
orig_pixels[1][3] = 0u;
|
|
orig_pixels[2][0] = 16u;
|
|
orig_pixels[2][1] = 64u;
|
|
orig_pixels[2][2] = 192u;
|
|
orig_pixels[2][3] = 255u;
|
|
orig_pixels[3][0] = 16u;
|
|
orig_pixels[3][1] = 64u;
|
|
orig_pixels[3][2] = 192u;
|
|
orig_pixels[3][3] = 128u;
|
|
ARGBUnattenuate(&orig_pixels[0][0], 0, &unatten_pixels[0][0], 0, 4, 1);
|
|
EXPECT_EQ(255u, unatten_pixels[0][0]);
|
|
EXPECT_EQ(255u, unatten_pixels[0][1]);
|
|
EXPECT_EQ(254u, unatten_pixels[0][2]);
|
|
EXPECT_EQ(128u, unatten_pixels[0][3]);
|
|
EXPECT_EQ(16u, unatten_pixels[1][0]);
|
|
EXPECT_EQ(64u, unatten_pixels[1][1]);
|
|
EXPECT_EQ(192u, unatten_pixels[1][2]);
|
|
EXPECT_EQ(0u, unatten_pixels[1][3]);
|
|
EXPECT_EQ(16u, unatten_pixels[2][0]);
|
|
EXPECT_EQ(64u, unatten_pixels[2][1]);
|
|
EXPECT_EQ(192u, unatten_pixels[2][2]);
|
|
EXPECT_EQ(255u, unatten_pixels[2][3]);
|
|
EXPECT_EQ(32u, unatten_pixels[3][0]);
|
|
EXPECT_EQ(128u, unatten_pixels[3][1]);
|
|
EXPECT_EQ(255u, unatten_pixels[3][2]);
|
|
EXPECT_EQ(128u, unatten_pixels[3][3]);
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
ARGBAttenuate(&orig_pixels[0][0], 0, &atten_pixels[0][0], 0, 256, 1);
|
|
ARGBUnattenuate(&atten_pixels[0][0], 0, &unatten_pixels[0][0], 0, 256, 1);
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBAttenuate(&unatten_pixels[0][0], 0, &atten2_pixels[0][0], 0, 256, 1);
|
|
}
|
|
for (int i = 0; i < 256; ++i) {
|
|
EXPECT_NEAR(atten_pixels[i][0], atten2_pixels[i][0], 2);
|
|
EXPECT_NEAR(atten_pixels[i][1], atten2_pixels[i][1], 2);
|
|
EXPECT_NEAR(atten_pixels[i][2], atten2_pixels[i][2], 2);
|
|
EXPECT_NEAR(atten_pixels[i][3], atten2_pixels[i][3], 2);
|
|
}
|
|
// Make sure transparent, 50% and opaque are fully accurate.
|
|
EXPECT_EQ(0, atten_pixels[0][0]);
|
|
EXPECT_EQ(0, atten_pixels[0][1]);
|
|
EXPECT_EQ(0, atten_pixels[0][2]);
|
|
EXPECT_EQ(0, atten_pixels[0][3]);
|
|
EXPECT_EQ(64, atten_pixels[128][0]);
|
|
EXPECT_EQ(32, atten_pixels[128][1]);
|
|
EXPECT_EQ(21, atten_pixels[128][2]);
|
|
EXPECT_EQ(128, atten_pixels[128][3]);
|
|
EXPECT_EQ(255, atten_pixels[255][0]);
|
|
EXPECT_EQ(127, atten_pixels[255][1]);
|
|
EXPECT_EQ(85, atten_pixels[255][2]);
|
|
EXPECT_EQ(255, atten_pixels[255][3]);
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBComputeCumulativeSum) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[16][16][4]);
|
|
SIMD_ALIGNED(int32 added_pixels[16][16][4]);
|
|
|
|
for (int y = 0; y < 16; ++y) {
|
|
for (int x = 0; x < 16; ++x) {
|
|
orig_pixels[y][x][0] = 1u;
|
|
orig_pixels[y][x][1] = 2u;
|
|
orig_pixels[y][x][2] = 3u;
|
|
orig_pixels[y][x][3] = 255u;
|
|
}
|
|
}
|
|
|
|
ARGBComputeCumulativeSum(&orig_pixels[0][0][0], 16 * 4,
|
|
&added_pixels[0][0][0], 16 * 4,
|
|
16, 16);
|
|
|
|
for (int y = 0; y < 16; ++y) {
|
|
for (int x = 0; x < 16; ++x) {
|
|
EXPECT_EQ((x + 1) * (y + 1), added_pixels[y][x][0]);
|
|
EXPECT_EQ((x + 1) * (y + 1) * 2, added_pixels[y][x][1]);
|
|
EXPECT_EQ((x + 1) * (y + 1) * 3, added_pixels[y][x][2]);
|
|
EXPECT_EQ((x + 1) * (y + 1) * 255, added_pixels[y][x][3]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBGray) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
|
|
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test color
|
|
orig_pixels[3][0] = 16u;
|
|
orig_pixels[3][1] = 64u;
|
|
orig_pixels[3][2] = 192u;
|
|
orig_pixels[3][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 16, 1);
|
|
EXPECT_EQ(27u, orig_pixels[0][0]);
|
|
EXPECT_EQ(27u, orig_pixels[0][1]);
|
|
EXPECT_EQ(27u, orig_pixels[0][2]);
|
|
EXPECT_EQ(128u, orig_pixels[0][3]);
|
|
EXPECT_EQ(151u, orig_pixels[1][0]);
|
|
EXPECT_EQ(151u, orig_pixels[1][1]);
|
|
EXPECT_EQ(151u, orig_pixels[1][2]);
|
|
EXPECT_EQ(0u, orig_pixels[1][3]);
|
|
EXPECT_EQ(75u, orig_pixels[2][0]);
|
|
EXPECT_EQ(75u, orig_pixels[2][1]);
|
|
EXPECT_EQ(75u, orig_pixels[2][2]);
|
|
EXPECT_EQ(255u, orig_pixels[2][3]);
|
|
EXPECT_EQ(96u, orig_pixels[3][0]);
|
|
EXPECT_EQ(96u, orig_pixels[3][1]);
|
|
EXPECT_EQ(96u, orig_pixels[3][2]);
|
|
EXPECT_EQ(224u, orig_pixels[3][3]);
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 256, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBGrayTo) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
|
|
SIMD_ALIGNED(uint8 gray_pixels[256][4]);
|
|
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test color
|
|
orig_pixels[3][0] = 16u;
|
|
orig_pixels[3][1] = 64u;
|
|
orig_pixels[3][2] = 192u;
|
|
orig_pixels[3][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 16, 1);
|
|
EXPECT_EQ(27u, gray_pixels[0][0]);
|
|
EXPECT_EQ(27u, gray_pixels[0][1]);
|
|
EXPECT_EQ(27u, gray_pixels[0][2]);
|
|
EXPECT_EQ(128u, gray_pixels[0][3]);
|
|
EXPECT_EQ(151u, gray_pixels[1][0]);
|
|
EXPECT_EQ(151u, gray_pixels[1][1]);
|
|
EXPECT_EQ(151u, gray_pixels[1][2]);
|
|
EXPECT_EQ(0u, gray_pixels[1][3]);
|
|
EXPECT_EQ(75u, gray_pixels[2][0]);
|
|
EXPECT_EQ(75u, gray_pixels[2][1]);
|
|
EXPECT_EQ(75u, gray_pixels[2][2]);
|
|
EXPECT_EQ(255u, gray_pixels[2][3]);
|
|
EXPECT_EQ(96u, gray_pixels[3][0]);
|
|
EXPECT_EQ(96u, gray_pixels[3][1]);
|
|
EXPECT_EQ(96u, gray_pixels[3][2]);
|
|
EXPECT_EQ(224u, gray_pixels[3][3]);
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 256, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBSepia) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
|
|
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test color
|
|
orig_pixels[3][0] = 16u;
|
|
orig_pixels[3][1] = 64u;
|
|
orig_pixels[3][2] = 192u;
|
|
orig_pixels[3][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 16, 1);
|
|
EXPECT_EQ(33u, orig_pixels[0][0]);
|
|
EXPECT_EQ(43u, orig_pixels[0][1]);
|
|
EXPECT_EQ(47u, orig_pixels[0][2]);
|
|
EXPECT_EQ(128u, orig_pixels[0][3]);
|
|
EXPECT_EQ(135u, orig_pixels[1][0]);
|
|
EXPECT_EQ(175u, orig_pixels[1][1]);
|
|
EXPECT_EQ(195u, orig_pixels[1][2]);
|
|
EXPECT_EQ(0u, orig_pixels[1][3]);
|
|
EXPECT_EQ(69u, orig_pixels[2][0]);
|
|
EXPECT_EQ(89u, orig_pixels[2][1]);
|
|
EXPECT_EQ(99u, orig_pixels[2][2]);
|
|
EXPECT_EQ(255u, orig_pixels[2][3]);
|
|
EXPECT_EQ(88u, orig_pixels[3][0]);
|
|
EXPECT_EQ(114u, orig_pixels[3][1]);
|
|
EXPECT_EQ(127u, orig_pixels[3][2]);
|
|
EXPECT_EQ(224u, orig_pixels[3][3]);
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 256, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBColorMatrix) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
|
|
|
|
// Matrix for Sepia.
|
|
static const int8 kARGBToSepia[] = {
|
|
17, 68, 35, 0,
|
|
22, 88, 45, 0,
|
|
24, 98, 50, 0,
|
|
};
|
|
|
|
// Test blue
|
|
orig_pixels[0][0] = 255u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 128u;
|
|
// Test green
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 255u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 0u;
|
|
// Test red
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 255u;
|
|
orig_pixels[2][3] = 255u;
|
|
// Test color
|
|
orig_pixels[3][0] = 16u;
|
|
orig_pixels[3][1] = 64u;
|
|
orig_pixels[3][2] = 192u;
|
|
orig_pixels[3][3] = 224u;
|
|
// Do 16 to test asm version.
|
|
ARGBColorMatrix(&orig_pixels[0][0], 0, &kARGBToSepia[0], 0, 0, 16, 1);
|
|
EXPECT_EQ(33u, orig_pixels[0][0]);
|
|
EXPECT_EQ(43u, orig_pixels[0][1]);
|
|
EXPECT_EQ(47u, orig_pixels[0][2]);
|
|
EXPECT_EQ(128u, orig_pixels[0][3]);
|
|
EXPECT_EQ(135u, orig_pixels[1][0]);
|
|
EXPECT_EQ(175u, orig_pixels[1][1]);
|
|
EXPECT_EQ(195u, orig_pixels[1][2]);
|
|
EXPECT_EQ(0u, orig_pixels[1][3]);
|
|
EXPECT_EQ(69u, orig_pixels[2][0]);
|
|
EXPECT_EQ(89u, orig_pixels[2][1]);
|
|
EXPECT_EQ(99u, orig_pixels[2][2]);
|
|
EXPECT_EQ(255u, orig_pixels[2][3]);
|
|
EXPECT_EQ(88u, orig_pixels[3][0]);
|
|
EXPECT_EQ(114u, orig_pixels[3][1]);
|
|
EXPECT_EQ(127u, orig_pixels[3][2]);
|
|
EXPECT_EQ(224u, orig_pixels[3][3]);
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBColorMatrix(&orig_pixels[0][0], 0, &kARGBToSepia[0], 0, 0, 256, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBColorTable) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
|
|
memset(orig_pixels, 0, sizeof(orig_pixels));
|
|
|
|
// Matrix for Sepia.
|
|
static const uint8 kARGBTable[256 * 4] = {
|
|
1u, 2u, 3u, 4u,
|
|
5u, 6u, 7u, 8u,
|
|
9u, 10u, 11u, 12u,
|
|
13u, 14u, 15u, 16u,
|
|
};
|
|
|
|
orig_pixels[0][0] = 0u;
|
|
orig_pixels[0][1] = 0u;
|
|
orig_pixels[0][2] = 0u;
|
|
orig_pixels[0][3] = 0u;
|
|
orig_pixels[1][0] = 1u;
|
|
orig_pixels[1][1] = 1u;
|
|
orig_pixels[1][2] = 1u;
|
|
orig_pixels[1][3] = 1u;
|
|
orig_pixels[2][0] = 2u;
|
|
orig_pixels[2][1] = 2u;
|
|
orig_pixels[2][2] = 2u;
|
|
orig_pixels[2][3] = 2u;
|
|
orig_pixels[3][0] = 0u;
|
|
orig_pixels[3][1] = 1u;
|
|
orig_pixels[3][2] = 2u;
|
|
orig_pixels[3][3] = 3u;
|
|
// Do 16 to test asm version.
|
|
ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1);
|
|
EXPECT_EQ(1u, orig_pixels[0][0]);
|
|
EXPECT_EQ(2u, orig_pixels[0][1]);
|
|
EXPECT_EQ(3u, orig_pixels[0][2]);
|
|
EXPECT_EQ(4u, orig_pixels[0][3]);
|
|
EXPECT_EQ(5u, orig_pixels[1][0]);
|
|
EXPECT_EQ(6u, orig_pixels[1][1]);
|
|
EXPECT_EQ(7u, orig_pixels[1][2]);
|
|
EXPECT_EQ(8u, orig_pixels[1][3]);
|
|
EXPECT_EQ(9u, orig_pixels[2][0]);
|
|
EXPECT_EQ(10u, orig_pixels[2][1]);
|
|
EXPECT_EQ(11u, orig_pixels[2][2]);
|
|
EXPECT_EQ(12u, orig_pixels[2][3]);
|
|
EXPECT_EQ(1u, orig_pixels[3][0]);
|
|
EXPECT_EQ(6u, orig_pixels[3][1]);
|
|
EXPECT_EQ(11u, orig_pixels[3][2]);
|
|
EXPECT_EQ(16u, orig_pixels[3][3]);
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 256, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBQuantize) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i;
|
|
}
|
|
ARGBQuantize(&orig_pixels[0][0], 0,
|
|
(65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0, 256, 1);
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
EXPECT_EQ(i / 8 * 8 + 8 / 2, orig_pixels[i][0]);
|
|
EXPECT_EQ(i / 2 / 8 * 8 + 8 / 2, orig_pixels[i][1]);
|
|
EXPECT_EQ(i / 3 / 8 * 8 + 8 / 2, orig_pixels[i][2]);
|
|
EXPECT_EQ(i, orig_pixels[i][3]);
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBQuantize(&orig_pixels[0][0], 0,
|
|
(65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0, 256, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestARGBMirror) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
|
|
SIMD_ALIGNED(uint8 dst_pixels[256][4]);
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
orig_pixels[i][0] = i;
|
|
orig_pixels[i][1] = i / 2;
|
|
orig_pixels[i][2] = i / 3;
|
|
orig_pixels[i][3] = i / 4;
|
|
}
|
|
ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 256, 1);
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
EXPECT_EQ(i, dst_pixels[255 - i][0]);
|
|
EXPECT_EQ(i / 2, dst_pixels[255 - i][1]);
|
|
EXPECT_EQ(i / 3, dst_pixels[255 - i][2]);
|
|
EXPECT_EQ(i / 4, dst_pixels[255 - i][3]);
|
|
}
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 256, 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestShade) {
|
|
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
|
|
SIMD_ALIGNED(uint8 shade_pixels[256][4]);
|
|
|
|
orig_pixels[0][0] = 10u;
|
|
orig_pixels[0][1] = 20u;
|
|
orig_pixels[0][2] = 40u;
|
|
orig_pixels[0][3] = 80u;
|
|
orig_pixels[1][0] = 0u;
|
|
orig_pixels[1][1] = 0u;
|
|
orig_pixels[1][2] = 0u;
|
|
orig_pixels[1][3] = 255u;
|
|
orig_pixels[2][0] = 0u;
|
|
orig_pixels[2][1] = 0u;
|
|
orig_pixels[2][2] = 0u;
|
|
orig_pixels[2][3] = 0u;
|
|
orig_pixels[3][0] = 0u;
|
|
orig_pixels[3][1] = 0u;
|
|
orig_pixels[3][2] = 0u;
|
|
orig_pixels[3][3] = 0u;
|
|
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 4, 1, 0x80ffffff);
|
|
EXPECT_EQ(10u, shade_pixels[0][0]);
|
|
EXPECT_EQ(20u, shade_pixels[0][1]);
|
|
EXPECT_EQ(40u, shade_pixels[0][2]);
|
|
EXPECT_EQ(40u, shade_pixels[0][3]);
|
|
EXPECT_EQ(0u, shade_pixels[1][0]);
|
|
EXPECT_EQ(0u, shade_pixels[1][1]);
|
|
EXPECT_EQ(0u, shade_pixels[1][2]);
|
|
EXPECT_EQ(128u, shade_pixels[1][3]);
|
|
EXPECT_EQ(0u, shade_pixels[2][0]);
|
|
EXPECT_EQ(0u, shade_pixels[2][1]);
|
|
EXPECT_EQ(0u, shade_pixels[2][2]);
|
|
EXPECT_EQ(0u, shade_pixels[2][3]);
|
|
EXPECT_EQ(0u, shade_pixels[3][0]);
|
|
EXPECT_EQ(0u, shade_pixels[3][1]);
|
|
EXPECT_EQ(0u, shade_pixels[3][2]);
|
|
EXPECT_EQ(0u, shade_pixels[3][3]);
|
|
|
|
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 4, 1, 0x80808080);
|
|
EXPECT_EQ(5u, shade_pixels[0][0]);
|
|
EXPECT_EQ(10u, shade_pixels[0][1]);
|
|
EXPECT_EQ(20u, shade_pixels[0][2]);
|
|
EXPECT_EQ(40u, shade_pixels[0][3]);
|
|
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 256, 1,
|
|
0x80808080);
|
|
}
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestInterpolate) {
|
|
SIMD_ALIGNED(uint8 orig_pixels_0[256][4]);
|
|
SIMD_ALIGNED(uint8 orig_pixels_1[256][4]);
|
|
SIMD_ALIGNED(uint8 interpolate_pixels[256][4]);
|
|
|
|
orig_pixels_0[0][0] = 16u;
|
|
orig_pixels_0[0][1] = 32u;
|
|
orig_pixels_0[0][2] = 64u;
|
|
orig_pixels_0[0][3] = 128u;
|
|
orig_pixels_0[1][0] = 0u;
|
|
orig_pixels_0[1][1] = 0u;
|
|
orig_pixels_0[1][2] = 0u;
|
|
orig_pixels_0[1][3] = 255u;
|
|
orig_pixels_0[2][0] = 0u;
|
|
orig_pixels_0[2][1] = 0u;
|
|
orig_pixels_0[2][2] = 0u;
|
|
orig_pixels_0[2][3] = 0u;
|
|
orig_pixels_0[3][0] = 0u;
|
|
orig_pixels_0[3][1] = 0u;
|
|
orig_pixels_0[3][2] = 0u;
|
|
orig_pixels_0[3][3] = 0u;
|
|
|
|
orig_pixels_1[0][0] = 0u;
|
|
orig_pixels_1[0][1] = 0u;
|
|
orig_pixels_1[0][2] = 0u;
|
|
orig_pixels_1[0][3] = 0u;
|
|
orig_pixels_1[1][0] = 0u;
|
|
orig_pixels_1[1][1] = 0u;
|
|
orig_pixels_1[1][2] = 0u;
|
|
orig_pixels_1[1][3] = 0u;
|
|
orig_pixels_1[2][0] = 0u;
|
|
orig_pixels_1[2][1] = 0u;
|
|
orig_pixels_1[2][2] = 0u;
|
|
orig_pixels_1[2][3] = 0u;
|
|
orig_pixels_1[3][0] = 255u;
|
|
orig_pixels_1[3][1] = 255u;
|
|
orig_pixels_1[3][2] = 255u;
|
|
orig_pixels_1[3][3] = 255u;
|
|
|
|
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
|
|
&interpolate_pixels[0][0], 0, 4, 1, 128);
|
|
EXPECT_EQ(8u, interpolate_pixels[0][0]);
|
|
EXPECT_EQ(16u, interpolate_pixels[0][1]);
|
|
EXPECT_EQ(32u, interpolate_pixels[0][2]);
|
|
EXPECT_EQ(64u, interpolate_pixels[0][3]);
|
|
EXPECT_EQ(0u, interpolate_pixels[1][0]);
|
|
EXPECT_EQ(0u, interpolate_pixels[1][1]);
|
|
EXPECT_EQ(0u, interpolate_pixels[1][2]);
|
|
EXPECT_NEAR(128u, interpolate_pixels[1][3], 1); // C = 127, SSE = 128.
|
|
EXPECT_EQ(0u, interpolate_pixels[2][0]);
|
|
EXPECT_EQ(0u, interpolate_pixels[2][1]);
|
|
EXPECT_EQ(0u, interpolate_pixels[2][2]);
|
|
EXPECT_EQ(0u, interpolate_pixels[2][3]);
|
|
EXPECT_NEAR(128u, interpolate_pixels[3][0], 1);
|
|
EXPECT_NEAR(128u, interpolate_pixels[3][1], 1);
|
|
EXPECT_NEAR(128u, interpolate_pixels[3][2], 1);
|
|
EXPECT_NEAR(128u, interpolate_pixels[3][3], 1);
|
|
|
|
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
|
|
&interpolate_pixels[0][0], 0, 4, 1, 0);
|
|
EXPECT_EQ(16u, interpolate_pixels[0][0]);
|
|
EXPECT_EQ(32u, interpolate_pixels[0][1]);
|
|
EXPECT_EQ(64u, interpolate_pixels[0][2]);
|
|
EXPECT_EQ(128u, interpolate_pixels[0][3]);
|
|
|
|
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
|
|
&interpolate_pixels[0][0], 0, 4, 1, 192);
|
|
|
|
EXPECT_EQ(4u, interpolate_pixels[0][0]);
|
|
EXPECT_EQ(8u, interpolate_pixels[0][1]);
|
|
EXPECT_EQ(16u, interpolate_pixels[0][2]);
|
|
EXPECT_EQ(32u, interpolate_pixels[0][3]);
|
|
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
|
|
&interpolate_pixels[0][0], 0, 256, 1, 128);
|
|
}
|
|
}
|
|
|
|
#define TESTTERP(FMT_A, BPP_A, STRIDE_A, \
|
|
FMT_B, BPP_B, STRIDE_B, \
|
|
W1280, TERP, DIFF, N, NEG, OFF) \
|
|
TEST_F(libyuvTest, ARGBInterpolate##TERP##N) { \
|
|
const int kWidth = W1280; \
|
|
const int kHeight = benchmark_height_; \
|
|
const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \
|
|
const int kStrideB = (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \
|
|
align_buffer_64(src_argb_a, kStrideA * kHeight + OFF); \
|
|
align_buffer_64(src_argb_b, kStrideA * kHeight + OFF); \
|
|
align_buffer_64(dst_argb_c, kStrideB * kHeight); \
|
|
align_buffer_64(dst_argb_opt, kStrideB * kHeight); \
|
|
srandom(time(NULL)); \
|
|
for (int i = 0; i < kStrideA * kHeight; ++i) { \
|
|
src_argb_a[i + OFF] = (random() & 0xff); \
|
|
src_argb_b[i + OFF] = (random() & 0xff); \
|
|
} \
|
|
MaskCpuFlags(0); \
|
|
ARGBInterpolate(src_argb_a + OFF, kStrideA, \
|
|
src_argb_b + OFF, kStrideA, \
|
|
dst_argb_c, kStrideB, \
|
|
kWidth, NEG kHeight, TERP); \
|
|
MaskCpuFlags(-1); \
|
|
for (int i = 0; i < benchmark_iterations_; ++i) { \
|
|
ARGBInterpolate(src_argb_a + OFF, kStrideA, \
|
|
src_argb_b + OFF, kStrideA, \
|
|
dst_argb_opt, kStrideB, \
|
|
kWidth, NEG kHeight, TERP); \
|
|
} \
|
|
int max_diff = 0; \
|
|
for (int i = 0; i < kStrideB * kHeight; ++i) { \
|
|
int abs_diff = \
|
|
abs(static_cast<int>(dst_argb_c[i]) - \
|
|
static_cast<int>(dst_argb_opt[i])); \
|
|
if (abs_diff > max_diff) { \
|
|
max_diff = abs_diff; \
|
|
} \
|
|
} \
|
|
EXPECT_LE(max_diff, DIFF); \
|
|
free_aligned_buffer_64(src_argb_a) \
|
|
free_aligned_buffer_64(src_argb_b) \
|
|
free_aligned_buffer_64(dst_argb_c) \
|
|
free_aligned_buffer_64(dst_argb_opt) \
|
|
}
|
|
|
|
#define TESTINTERPOLATE(TERP) \
|
|
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, \
|
|
benchmark_width_ - 4, TERP, 1, _Any, +, 0) \
|
|
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, \
|
|
benchmark_width_, TERP, 1, _Unaligned, +, 1) \
|
|
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, \
|
|
benchmark_width_, TERP, 1, _Invert, -, 0) \
|
|
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, \
|
|
benchmark_width_, TERP, 1, _Opt, +, 0)
|
|
|
|
TESTINTERPOLATE(0)
|
|
TESTINTERPOLATE(64)
|
|
TESTINTERPOLATE(128)
|
|
TESTINTERPOLATE(192)
|
|
TESTINTERPOLATE(255)
|
|
|
|
static int TestBlend(int width, int height, int benchmark_iterations,
|
|
int invert, int off) {
|
|
const int BPP_A = 4;
|
|
const int STRIDE_A = 1;
|
|
const int BPP_B = 4;
|
|
const int STRIDE_B = 1;
|
|
const int kStrideA = (width * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A;
|
|
const int kStrideB = (width * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B;
|
|
align_buffer_64(src_argb_a, kStrideA * height + off);
|
|
align_buffer_64(src_argb_b, kStrideA * height + off);
|
|
align_buffer_64(dst_argb_c, kStrideB * height);
|
|
align_buffer_64(dst_argb_opt, kStrideB * height);
|
|
srandom(time(NULL));
|
|
for (int i = 0; i < kStrideA * height; ++i) {
|
|
src_argb_a[i + off] = (random() & 0xff);
|
|
src_argb_b[i + off] = (random() & 0xff);
|
|
}
|
|
ARGBAttenuate(src_argb_a + off, kStrideA, src_argb_a + off, kStrideA, width,
|
|
height);
|
|
ARGBAttenuate(src_argb_b + off, kStrideA, src_argb_b + off, kStrideA, width,
|
|
height);
|
|
memset(dst_argb_c, 255, kStrideB * height);
|
|
memset(dst_argb_opt, 255, kStrideB * height);
|
|
|
|
MaskCpuFlags(0);
|
|
ARGBBlend(src_argb_a + off, kStrideA,
|
|
src_argb_b + off, kStrideA,
|
|
dst_argb_c, kStrideB,
|
|
width, invert * height);
|
|
MaskCpuFlags(-1);
|
|
for (int i = 0; i < benchmark_iterations; ++i) {
|
|
ARGBBlend(src_argb_a + off, kStrideA,
|
|
src_argb_b + off, kStrideA,
|
|
dst_argb_opt, kStrideB,
|
|
width, invert * height);
|
|
}
|
|
int max_diff = 0;
|
|
for (int i = 0; i < kStrideB * height; ++i) {
|
|
int abs_diff =
|
|
abs(static_cast<int>(dst_argb_c[i]) -
|
|
static_cast<int>(dst_argb_opt[i]));
|
|
if (abs_diff > max_diff) {
|
|
max_diff = abs_diff;
|
|
}
|
|
}
|
|
free_aligned_buffer_64(src_argb_a)
|
|
free_aligned_buffer_64(src_argb_b)
|
|
free_aligned_buffer_64(dst_argb_c)
|
|
free_aligned_buffer_64(dst_argb_opt)
|
|
return max_diff;
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlend_Any) {
|
|
int max_diff = TestBlend(benchmark_width_ - 4, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlend_Unaligned) {
|
|
int max_diff = TestBlend(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 1);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlend_Invert) {
|
|
int max_diff = TestBlend(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, -1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, ARGBBlend_Opt) {
|
|
int max_diff = TestBlend(benchmark_width_, benchmark_height_,
|
|
benchmark_iterations_, +1, 0);
|
|
EXPECT_LE(max_diff, 1);
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestAffine) {
|
|
SIMD_ALIGNED(uint8 orig_pixels_0[256][4]);
|
|
SIMD_ALIGNED(uint8 interpolate_pixels_C[256][4]);
|
|
#if defined(HAS_ARGBAFFINEROW_SSE2)
|
|
SIMD_ALIGNED(uint8 interpolate_pixels_Opt[256][4]);
|
|
#endif
|
|
|
|
for (int i = 0; i < 256; ++i) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
orig_pixels_0[i][j] = i;
|
|
}
|
|
}
|
|
|
|
float uv_step[4] = { 0.f, 0.f, 0.75f, 0.f };
|
|
|
|
ARGBAffineRow_C(&orig_pixels_0[0][0], 0, &interpolate_pixels_C[0][0],
|
|
uv_step, 256);
|
|
EXPECT_EQ(0u, interpolate_pixels_C[0][0]);
|
|
EXPECT_EQ(96u, interpolate_pixels_C[128][0]);
|
|
EXPECT_EQ(191u, interpolate_pixels_C[255][3]);
|
|
|
|
#if defined(HAS_ARGBAFFINEROW_SSE2)
|
|
ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0],
|
|
uv_step, 256);
|
|
EXPECT_EQ(0, memcmp(interpolate_pixels_Opt, interpolate_pixels_C, 256 * 4));
|
|
#endif
|
|
|
|
#if defined(HAS_ARGBAFFINEROW_SSE2)
|
|
int has_sse2 = TestCpuFlag(kCpuHasSSE2);
|
|
if (has_sse2) {
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0],
|
|
uv_step, 256);
|
|
}
|
|
} else {
|
|
#endif
|
|
for (int i = 0; i < benchmark_pixels_div256_; ++i) {
|
|
ARGBAffineRow_C(&orig_pixels_0[0][0], 0, &interpolate_pixels_C[0][0],
|
|
uv_step, 256);
|
|
}
|
|
#if defined(HAS_ARGBAFFINEROW_SSE2)
|
|
}
|
|
#endif
|
|
}
|
|
|
|
TEST_F(libyuvTest, TestCopyPlane) {
|
|
int err = 0;
|
|
int yw = benchmark_width_;
|
|
int yh = benchmark_height_;
|
|
int b = 12;
|
|
int i, j;
|
|
|
|
int y_plane_size = (yw + b * 2) * (yh + b * 2);
|
|
srandom(time(NULL));
|
|
align_buffer_64(orig_y, y_plane_size)
|
|
align_buffer_64(dst_c, y_plane_size)
|
|
align_buffer_64(dst_opt, y_plane_size);
|
|
|
|
memset(orig_y, 0, y_plane_size);
|
|
memset(dst_c, 0, y_plane_size);
|
|
memset(dst_opt, 0, y_plane_size);
|
|
|
|
// Fill image buffers with random data.
|
|
for (i = b; i < (yh + b); ++i) {
|
|
for (j = b; j < (yw + b); ++j) {
|
|
orig_y[i * (yw + b * 2) + j] = random() & 0xff;
|
|
}
|
|
}
|
|
|
|
// Fill destination buffers with random data.
|
|
for (i = 0; i < y_plane_size; ++i) {
|
|
uint8 random_number = random() & 0x7f;
|
|
dst_c[i] = random_number;
|
|
dst_opt[i] = dst_c[i];
|
|
}
|
|
|
|
int y_off = b * (yw + b * 2) + b;
|
|
|
|
int y_st = yw + b * 2;
|
|
int stride = 8;
|
|
|
|
// Disable all optimizations.
|
|
MaskCpuFlags(0);
|
|
double c_time = get_time();
|
|
for (j = 0; j < benchmark_iterations_; j++) {
|
|
CopyPlane(orig_y + y_off, y_st, dst_c + y_off, stride, yw, yh);
|
|
}
|
|
c_time = (get_time() - c_time) / benchmark_iterations_;
|
|
|
|
// Enable optimizations.
|
|
MaskCpuFlags(-1);
|
|
double opt_time = get_time();
|
|
for (j = 0; j < benchmark_iterations_; j++) {
|
|
CopyPlane(orig_y + y_off, y_st, dst_opt + y_off, stride, yw, yh);
|
|
}
|
|
opt_time = (get_time() - opt_time) / benchmark_iterations_;
|
|
printf(" %8d us C - %8d us OPT\n",
|
|
static_cast<int>(c_time * 1e6), static_cast<int>(opt_time * 1e6));
|
|
|
|
for (i = 0; i < y_plane_size; ++i) {
|
|
if (dst_c[i] != dst_opt[i])
|
|
++err;
|
|
}
|
|
|
|
free_aligned_buffer_64(orig_y)
|
|
free_aligned_buffer_64(dst_c)
|
|
free_aligned_buffer_64(dst_opt)
|
|
|
|
EXPECT_EQ(0, err);
|
|
}
|
|
|
|
} // namespace libyuv
|