libyuv/source/cpu_id.cc
George Steed a038cda7b8 [AArch64] Enable detection of additional architecture features
In particular there are a few extensions that are interesting for us:

* FEAT_DotProd adds 4-way dot-product instructions which are useful in
  e.g. ARGBToY.

* FEAT_I8MM adds additional mixed-sign dot-product instructions which
  could be useful in e.g. ARGBToUV.

* FEAT_SVE and FEAT_SVE2 add support for the Scalable Vector Extension,
  which adds an array of new instructions including new widening loads
  and narrowing stores for dealing with mixed-width integer arithmetic
  efficiently and predication for avoiding the need for "any" cleanup
  loops.

This commit simply adds support for detecting the presence of these
features by extending the existing /proc/cpuinfo parsing, splitting it
into separate Arm and AArch64 functions for simplicity.

Since we have no space left in the bitset entries between Arm and X86
entries, we reuse some of the X86 entries for new AArch64 extensions.
This doesn't seem obviously problematic as long as we avoid setting
kCpuHasX86.

Bug: libyuv:973
Bug: libyuv:977
Change-Id: I8e256225fe12a4ba5da24460f54061e16eab6c57
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5378150
Commit-Queue: Frank Barchard <fbarchard@chromium.org>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
2024-04-05 17:48:22 +00:00

413 lines
13 KiB
C++

/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/cpu_id.h"
#if defined(_MSC_VER)
#include <intrin.h> // For __cpuidex()
#endif
#if !defined(__pnacl__) && !defined(__CLR_VER) && \
!defined(__native_client__) && (defined(_M_IX86) || defined(_M_X64)) && \
defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219)
#include <immintrin.h> // For _xgetbv()
#endif
// For ArmCpuCaps() but unittested on all platforms
#include <stdio.h> // For fopen()
#include <string.h>
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
// For functions that use the stack and have runtime checks for overflow,
// use SAFEBUFFERS to avoid additional check.
#if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219) && \
!defined(__clang__)
#define SAFEBUFFERS __declspec(safebuffers)
#else
#define SAFEBUFFERS
#endif
// cpu_info_ variable for SIMD instruction sets detected.
LIBYUV_API int cpu_info_ = 0;
// Low level cpuid for X86.
#if (defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
defined(__x86_64__)) && \
!defined(__pnacl__) && !defined(__CLR_VER)
LIBYUV_API
void CpuId(int info_eax, int info_ecx, int* cpu_info) {
#if defined(_MSC_VER)
// Visual C version uses intrinsic or inline x86 assembly.
#if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219)
__cpuidex(cpu_info, info_eax, info_ecx);
#elif defined(_M_IX86)
__asm {
mov eax, info_eax
mov ecx, info_ecx
mov edi, cpu_info
cpuid
mov [edi], eax
mov [edi + 4], ebx
mov [edi + 8], ecx
mov [edi + 12], edx
}
#else // Visual C but not x86
if (info_ecx == 0) {
__cpuid(cpu_info, info_eax);
} else {
cpu_info[3] = cpu_info[2] = cpu_info[1] = cpu_info[0] = 0u;
}
#endif
// GCC version uses inline x86 assembly.
#else // defined(_MSC_VER)
int info_ebx, info_edx;
asm volatile(
#if defined(__i386__) && defined(__PIC__)
// Preserve ebx for fpic 32 bit.
"mov %%ebx, %%edi \n"
"cpuid \n"
"xchg %%edi, %%ebx \n"
: "=D"(info_ebx),
#else
"cpuid \n"
: "=b"(info_ebx),
#endif // defined( __i386__) && defined(__PIC__)
"+a"(info_eax), "+c"(info_ecx), "=d"(info_edx));
cpu_info[0] = info_eax;
cpu_info[1] = info_ebx;
cpu_info[2] = info_ecx;
cpu_info[3] = info_edx;
#endif // defined(_MSC_VER)
}
#else // (defined(_M_IX86) || defined(_M_X64) ...
LIBYUV_API
void CpuId(int eax, int ecx, int* cpu_info) {
(void)eax;
(void)ecx;
cpu_info[0] = cpu_info[1] = cpu_info[2] = cpu_info[3] = 0;
}
#endif
// For VS2010 and earlier emit can be used:
// _asm _emit 0x0f _asm _emit 0x01 _asm _emit 0xd0 // For VS2010 and earlier.
// __asm {
// xor ecx, ecx // xcr 0
// xgetbv
// mov xcr0, eax
// }
// For VS2013 and earlier 32 bit, the _xgetbv(0) optimizer produces bad code.
// https://code.google.com/p/libyuv/issues/detail?id=529
#if defined(_M_IX86) && defined(_MSC_VER) && (_MSC_VER < 1900)
#pragma optimize("g", off)
#endif
#if (defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
defined(__x86_64__)) && \
!defined(__pnacl__) && !defined(__CLR_VER) && !defined(__native_client__)
// X86 CPUs have xgetbv to detect OS saves high parts of ymm registers.
static int GetXCR0() {
int xcr0 = 0;
#if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219)
xcr0 = (int)_xgetbv(0); // VS2010 SP1 required. NOLINT
#elif defined(__i386__) || defined(__x86_64__)
asm(".byte 0x0f, 0x01, 0xd0" : "=a"(xcr0) : "c"(0) : "%edx");
#endif // defined(__i386__) || defined(__x86_64__)
return xcr0;
}
#else
// xgetbv unavailable to query for OSSave support. Return 0.
#define GetXCR0() 0
#endif // defined(_M_IX86) || defined(_M_X64) ..
// Return optimization to previous setting.
#if defined(_M_IX86) && defined(_MSC_VER) && (_MSC_VER < 1900)
#pragma optimize("g", on)
#endif
static int cpuinfo_search(const char* cpuinfo_line,
const char* needle,
int needle_len) {
const char* p = strstr(cpuinfo_line, needle);
return p && (p[needle_len] == ' ' || p[needle_len] == '\n');
}
// Based on libvpx arm_cpudetect.c
// For Arm, but public to allow testing on any CPU
LIBYUV_API SAFEBUFFERS int ArmCpuCaps(const char* cpuinfo_name) {
char cpuinfo_line[512];
FILE* f = fopen(cpuinfo_name, "re");
if (!f) {
// Assume Neon if /proc/cpuinfo is unavailable.
// This will occur for Chrome sandbox for Pepper or Render process.
return kCpuHasNEON;
}
memset(cpuinfo_line, 0, sizeof(cpuinfo_line));
int features = 0;
while (fgets(cpuinfo_line, sizeof(cpuinfo_line), f)) {
if (memcmp(cpuinfo_line, "Features", 8) == 0) {
if (cpuinfo_search(cpuinfo_line, " neon", 5)) {
features |= kCpuHasNEON;
}
}
}
fclose(f);
return features;
}
// For AArch64, but public to allow testing on any CPU.
LIBYUV_API SAFEBUFFERS int AArch64CpuCaps(const char* cpuinfo_name) {
char cpuinfo_line[512];
FILE* f = fopen(cpuinfo_name, "re");
if (!f) {
// Assume Neon if /proc/cpuinfo is unavailable.
// This will occur for Chrome sandbox for Pepper or Render process.
return kCpuHasNEON;
}
memset(cpuinfo_line, 0, sizeof(cpuinfo_line));
// Neon is mandatory on AArch64.
int features = kCpuHasNEON;
while (fgets(cpuinfo_line, sizeof(cpuinfo_line), f)) {
if (memcmp(cpuinfo_line, "Features", 8) == 0) {
if (cpuinfo_search(cpuinfo_line, " asimddp", 8)) {
features |= kCpuHasNeonDotProd;
}
if (cpuinfo_search(cpuinfo_line, " i8mm", 5)) {
features |= kCpuHasNeonI8MM;
}
if (cpuinfo_search(cpuinfo_line, " sve", 4)) {
features |= kCpuHasSVE;
}
if (cpuinfo_search(cpuinfo_line, " sve2", 5)) {
features |= kCpuHasSVE2;
}
}
}
fclose(f);
return features;
}
LIBYUV_API SAFEBUFFERS int RiscvCpuCaps(const char* cpuinfo_name) {
char cpuinfo_line[512];
int flag = 0;
FILE* f = fopen(cpuinfo_name, "re");
if (!f) {
#if defined(__riscv_vector)
// Assume RVV if /proc/cpuinfo is unavailable.
// This will occur for Chrome sandbox for Pepper or Render process.
return kCpuHasRVV;
#else
return 0;
#endif
}
memset(cpuinfo_line, 0, sizeof(cpuinfo_line));
while (fgets(cpuinfo_line, sizeof(cpuinfo_line), f)) {
if (memcmp(cpuinfo_line, "isa", 3) == 0) {
// ISA string must begin with rv64{i,e,g} for a 64-bit processor.
char* isa = strstr(cpuinfo_line, "rv64");
if (isa) {
size_t isa_len = strlen(isa);
char* extensions;
size_t extensions_len = 0;
size_t std_isa_len;
// Remove the new-line character at the end of string
if (isa[isa_len - 1] == '\n') {
isa[--isa_len] = '\0';
}
// 5 ISA characters
if (isa_len < 5) {
fclose(f);
return 0;
}
// Skip {i,e,g} canonical checking.
// Skip rvxxx
isa += 5;
// Find the very first occurrence of 's', 'x' or 'z'.
// To detect multi-letter standard, non-standard, and
// supervisor-level extensions.
extensions = strpbrk(isa, "zxs");
if (extensions) {
// Multi-letter extensions are seperated by a single underscore
// as described in RISC-V User-Level ISA V2.2.
char* ext = strtok(extensions, "_");
extensions_len = strlen(extensions);
while (ext) {
// Search for the ZVFH (Vector FP16) extension.
if (!strcmp(ext, "zvfh")) {
flag |= kCpuHasRVVZVFH;
}
ext = strtok(NULL, "_");
}
}
std_isa_len = isa_len - extensions_len - 5;
// Detect the v in the standard single-letter extensions.
if (memchr(isa, 'v', std_isa_len)) {
// The RVV implied the F extension.
flag |= kCpuHasRVV;
}
}
}
#if defined(__riscv_vector)
// Assume RVV if /proc/cpuinfo is from x86 host running QEMU.
else if ((memcmp(cpuinfo_line, "vendor_id\t: GenuineIntel", 24) == 0) ||
(memcmp(cpuinfo_line, "vendor_id\t: AuthenticAMD", 24) == 0)) {
fclose(f);
return kCpuHasRVV;
}
#endif
}
fclose(f);
return flag;
}
LIBYUV_API SAFEBUFFERS int MipsCpuCaps(const char* cpuinfo_name) {
char cpuinfo_line[512];
int flag = 0;
FILE* f = fopen(cpuinfo_name, "re");
if (!f) {
// Assume nothing if /proc/cpuinfo is unavailable.
// This will occur for Chrome sandbox for Pepper or Render process.
return 0;
}
memset(cpuinfo_line, 0, sizeof(cpuinfo_line));
while (fgets(cpuinfo_line, sizeof(cpuinfo_line), f)) {
if (memcmp(cpuinfo_line, "cpu model", 9) == 0) {
// Workaround early kernel without MSA in ASEs line.
if (strstr(cpuinfo_line, "Loongson-2K")) {
flag |= kCpuHasMSA;
}
}
if (memcmp(cpuinfo_line, "ASEs implemented", 16) == 0) {
if (strstr(cpuinfo_line, "msa")) {
flag |= kCpuHasMSA;
}
// ASEs is the last line, so we can break here.
break;
}
}
fclose(f);
return flag;
}
#define LOONGARCH_CFG2 0x2
#define LOONGARCH_CFG2_LSX (1 << 6)
#define LOONGARCH_CFG2_LASX (1 << 7)
#if defined(__loongarch__)
LIBYUV_API SAFEBUFFERS int LoongarchCpuCaps(void) {
int flag = 0;
uint32_t cfg2 = 0;
__asm__ volatile("cpucfg %0, %1 \n\t" : "+&r"(cfg2) : "r"(LOONGARCH_CFG2));
if (cfg2 & LOONGARCH_CFG2_LSX)
flag |= kCpuHasLSX;
if (cfg2 & LOONGARCH_CFG2_LASX)
flag |= kCpuHasLASX;
return flag;
}
#endif
static SAFEBUFFERS int GetCpuFlags(void) {
int cpu_info = 0;
#if !defined(__pnacl__) && !defined(__CLR_VER) && \
(defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || \
defined(_M_IX86))
int cpu_info0[4] = {0, 0, 0, 0};
int cpu_info1[4] = {0, 0, 0, 0};
int cpu_info7[4] = {0, 0, 0, 0};
int cpu_einfo7[4] = {0, 0, 0, 0};
CpuId(0, 0, cpu_info0);
CpuId(1, 0, cpu_info1);
if (cpu_info0[0] >= 7) {
CpuId(7, 0, cpu_info7);
CpuId(7, 1, cpu_einfo7);
}
cpu_info = kCpuHasX86 | ((cpu_info1[3] & 0x04000000) ? kCpuHasSSE2 : 0) |
((cpu_info1[2] & 0x00000200) ? kCpuHasSSSE3 : 0) |
((cpu_info1[2] & 0x00080000) ? kCpuHasSSE41 : 0) |
((cpu_info1[2] & 0x00100000) ? kCpuHasSSE42 : 0) |
((cpu_info7[1] & 0x00000200) ? kCpuHasERMS : 0);
// AVX requires OS saves YMM registers.
if (((cpu_info1[2] & 0x1c000000) == 0x1c000000) && // AVX and OSXSave
((GetXCR0() & 6) == 6)) { // Test OS saves YMM registers
cpu_info |= kCpuHasAVX | ((cpu_info7[1] & 0x00000020) ? kCpuHasAVX2 : 0) |
((cpu_info1[2] & 0x00001000) ? kCpuHasFMA3 : 0) |
((cpu_info1[2] & 0x20000000) ? kCpuHasF16C : 0) |
((cpu_einfo7[0] & 0x00000010) ? kCpuHasAVXVNNI : 0) |
((cpu_einfo7[3] & 0x00000010) ? kCpuHasAVXVNNIINT8 : 0);
// Detect AVX512bw
if ((GetXCR0() & 0xe0) == 0xe0) {
cpu_info |= (cpu_info7[1] & 0x40000000) ? kCpuHasAVX512BW : 0;
cpu_info |= (cpu_info7[1] & 0x80000000) ? kCpuHasAVX512VL : 0;
cpu_info |= (cpu_info7[2] & 0x00000002) ? kCpuHasAVX512VBMI : 0;
cpu_info |= (cpu_info7[2] & 0x00000040) ? kCpuHasAVX512VBMI2 : 0;
cpu_info |= (cpu_info7[2] & 0x00000800) ? kCpuHasAVX512VNNI : 0;
cpu_info |= (cpu_info7[2] & 0x00001000) ? kCpuHasAVX512VBITALG : 0;
cpu_info |= (cpu_einfo7[3] & 0x00080000) ? kCpuHasAVX10 : 0;
cpu_info |= (cpu_info7[3] & 0x02000000) ? kCpuHasAMXINT8 : 0;
}
}
#endif
#if defined(__mips__) && defined(__linux__)
cpu_info = MipsCpuCaps("/proc/cpuinfo");
cpu_info |= kCpuHasMIPS;
#endif
#if defined(__loongarch__) && defined(__linux__)
cpu_info = LoongarchCpuCaps();
cpu_info |= kCpuHasLOONGARCH;
#endif
#if defined(__arm__) || defined(__aarch64__)
// gcc -mfpu=neon defines __ARM_NEON__
// __ARM_NEON__ generates code that requires Neon. NaCL also requires Neon.
// For Linux, /proc/cpuinfo can be tested but without that assume Neon.
#if defined(__ARM_NEON__) || defined(__native_client__) || !defined(__linux__)
cpu_info = kCpuHasNEON;
// For aarch64(arm64), /proc/cpuinfo's feature is not complete, e.g. no neon
// flag in it.
// So for aarch64, neon enabling is hard coded here.
#endif
#if defined(__aarch64__)
cpu_info = AArch64CpuCaps("/proc/cpuinfo");
#else
// Linux arm parse text file for neon detect.
cpu_info = ArmCpuCaps("/proc/cpuinfo");
#endif
cpu_info |= kCpuHasARM;
#endif // __arm__
#if defined(__riscv) && defined(__linux__)
cpu_info = RiscvCpuCaps("/proc/cpuinfo");
cpu_info |= kCpuHasRISCV;
#endif // __riscv
cpu_info |= kCpuInitialized;
return cpu_info;
}
// Note that use of this function is not thread safe.
LIBYUV_API
int MaskCpuFlags(int enable_flags) {
int cpu_info = GetCpuFlags() & enable_flags;
SetCpuFlags(cpu_info);
return cpu_info;
}
LIBYUV_API
int InitCpuFlags(void) {
return MaskCpuFlags(-1);
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif