mio/include/mio/shared_mmap.hpp
2018-11-09 11:30:47 -05:00

413 lines
16 KiB
C++

/* Copyright 2017 https://github.com/mandreyel
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be included in all copies
* or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef MIO_SHARED_MMAP_HEADER
#define MIO_SHARED_MMAP_HEADER
#include "mio/mmap.hpp"
#include <system_error> // std::error_code
#include <memory> // std::shared_ptr
namespace mio {
/**
* Exposes (nearly) the same interface as `basic_mmap`, but endowes it with
* `std::shared_ptr` semantics.
*
* This is not the default behaviour of `basic_mmap` to avoid allocating on the heap if
* shared semantics are not required.
*/
template<
access_mode AccessMode,
typename ByteT
> class basic_shared_mmap
{
using impl_type = basic_mmap<AccessMode, ByteT>;
std::shared_ptr<impl_type> pimpl_;
public:
using value_type = typename impl_type::value_type;
using size_type = typename impl_type::size_type;
using reference = typename impl_type::reference;
using const_reference = typename impl_type::const_reference;
using pointer = typename impl_type::pointer;
using const_pointer = typename impl_type::const_pointer;
using difference_type = typename impl_type::difference_type;
using iterator = typename impl_type::iterator;
using const_iterator = typename impl_type::const_iterator;
using reverse_iterator = typename impl_type::reverse_iterator;
using const_reverse_iterator = typename impl_type::const_reverse_iterator;
using iterator_category = typename impl_type::iterator_category;
using handle_type = typename impl_type::handle_type;
using mmap_type = impl_type;
basic_shared_mmap() = default;
basic_shared_mmap(const basic_shared_mmap&) = default;
basic_shared_mmap& operator=(const basic_shared_mmap&) = default;
basic_shared_mmap(basic_shared_mmap&&) = default;
basic_shared_mmap& operator=(basic_shared_mmap&&) = default;
/** Takes ownership of an existing mmap object. */
basic_shared_mmap(mmap_type&& mmap)
: pimpl_(std::make_shared<mmap_type>(std::move(mmap)))
{}
/** Takes ownership of an existing mmap object. */
basic_shared_mmap& operator=(mmap_type&& mmap)
{
pimpl_ = std::make_shared<mmap_type>(std::move(mmap));
return *this;
}
/** Initializes this object with an already established shared mmap. */
basic_shared_mmap(std::shared_ptr<mmap_type> mmap) : pimpl_(std::move(mmap)) {}
/** Initializes this object with an already established shared mmap. */
basic_shared_mmap& operator=(std::shared_ptr<mmap_type> mmap)
{
pimpl_ = std::move(mmap);
return *this;
}
#ifdef __cpp_exceptions
/**
* The same as invoking the `map` function, except any error that may occur
* while establishing the mapping is wrapped in a `std::system_error` and is
* thrown.
*/
template<typename String>
basic_shared_mmap(const String& path, const size_type offset = 0, const size_type length = map_entire_file)
{
std::error_code error;
map(path, offset, length, error);
if(error) { throw std::system_error(error); }
}
/**
* The same as invoking the `map` function, except any error that may occur
* while establishing the mapping is wrapped in a `std::system_error` and is
* thrown.
*/
basic_shared_mmap(const handle_type handle, const size_type offset = 0, const size_type length = map_entire_file)
{
std::error_code error;
map(handle, offset, length, error);
if(error) { throw std::system_error(error); }
}
#endif // __cpp_exceptions
/**
* If this is a read-write mapping and the last reference to the mapping,
* the destructor invokes sync. Regardless of the access mode, unmap is
* invoked as a final step.
*/
~basic_shared_mmap() = default;
/** Returns the underlying `std::shared_ptr` instance that holds the mmap. */
std::shared_ptr<mmap_type> get_shared_ptr() { return pimpl_; }
/**
* On UNIX systems 'file_handle' and 'mapping_handle' are the same. On Windows,
* however, a mapped region of a file gets its own handle, which is returned by
* 'mapping_handle'.
*/
handle_type file_handle() const noexcept
{
return pimpl_ ? pimpl_->file_handle() : invalid_handle;
}
handle_type mapping_handle() const noexcept
{
return pimpl_ ? pimpl_->mapping_handle() : invalid_handle;
}
/** Returns whether a valid memory mapping has been created. */
bool is_open() const noexcept { return pimpl_ && pimpl_->is_open(); }
/**
* Returns true if no mapping was established, that is, conceptually the
* same as though the length that was mapped was 0. This function is
* provided so that this class has Container semantics.
*/
bool empty() const noexcept { return !pimpl_ || pimpl_->empty(); }
/**
* `size` and `length` both return the logical length, i.e. the number of bytes
* user requested to be mapped, while `mapped_length` returns the actual number of
* bytes that were mapped which is a multiple of the underlying operating system's
* page allocation granularity.
*/
size_type size() const noexcept { return pimpl_ ? pimpl_->length() : 0; }
size_type length() const noexcept { return pimpl_ ? pimpl_->length() : 0; }
size_type mapped_length() const noexcept
{
return pimpl_ ? pimpl_->mapped_length() : 0;
}
/**
* Returns the offset, relative to the file's start, at which the mapping was
* requested to be created.
*/
size_type offset() const noexcept { return pimpl_ ? pimpl_->offset() : 0; }
/**
* Returns a pointer to the first requested byte, or `nullptr` if no memory mapping
* exists.
*/
template<
access_mode A = AccessMode,
typename = typename std::enable_if<A == access_mode::write>::type
> pointer data() noexcept { return pimpl_->data(); }
const_pointer data() const noexcept { return pimpl_ ? pimpl_->data() : nullptr; }
/**
* Returns an iterator to the first requested byte, if a valid memory mapping
* exists, otherwise this function call is undefined behaviour.
*/
iterator begin() noexcept { return pimpl_->begin(); }
const_iterator begin() const noexcept { return pimpl_->begin(); }
const_iterator cbegin() const noexcept { return pimpl_->cbegin(); }
/**
* Returns an iterator one past the last requested byte, if a valid memory mapping
* exists, otherwise this function call is undefined behaviour.
*/
template<
access_mode A = AccessMode,
typename = typename std::enable_if<A == access_mode::write>::type
> iterator end() noexcept { return pimpl_->end(); }
const_iterator end() const noexcept { return pimpl_->end(); }
const_iterator cend() const noexcept { return pimpl_->cend(); }
/**
* Returns a reverse iterator to the last memory mapped byte, if a valid
* memory mapping exists, otherwise this function call is undefined
* behaviour.
*/
template<
access_mode A = AccessMode,
typename = typename std::enable_if<A == access_mode::write>::type
> reverse_iterator rbegin() noexcept { return pimpl_->rbegin(); }
const_reverse_iterator rbegin() const noexcept { return pimpl_->rbegin(); }
const_reverse_iterator crbegin() const noexcept { return pimpl_->crbegin(); }
/**
* Returns a reverse iterator past the first mapped byte, if a valid memory
* mapping exists, otherwise this function call is undefined behaviour.
*/
template<
access_mode A = AccessMode,
typename = typename std::enable_if<A == access_mode::write>::type
> reverse_iterator rend() noexcept { return pimpl_->rend(); }
const_reverse_iterator rend() const noexcept { return pimpl_->rend(); }
const_reverse_iterator crend() const noexcept { return pimpl_->crend(); }
/**
* Returns a reference to the `i`th byte from the first requested byte (as returned
* by `data`). If this is invoked when no valid memory mapping has been created
* prior to this call, undefined behaviour ensues.
*/
reference operator[](const size_type i) noexcept { return (*pimpl_)[i]; }
const_reference operator[](const size_type i) const noexcept { return (*pimpl_)[i]; }
/**
* Establishes a memory mapping with AccessMode. If the mapping is unsuccesful, the
* reason is reported via `error` and the object remains in a state as if this
* function hadn't been called.
*
* `path`, which must be a path to an existing file, is used to retrieve a file
* handle (which is closed when the object destructs or `unmap` is called), which is
* then used to memory map the requested region. Upon failure, `error` is set to
* indicate the reason and the object remains in an unmapped state.
*
* `offset` is the number of bytes, relative to the start of the file, where the
* mapping should begin. When specifying it, there is no need to worry about
* providing a value that is aligned with the operating system's page allocation
* granularity. This is adjusted by the implementation such that the first requested
* byte (as returned by `data` or `begin`), so long as `offset` is valid, will be at
* `offset` from the start of the file.
*
* `length` is the number of bytes to map. It may be `map_entire_file`, in which
* case a mapping of the entire file is created.
*/
template<typename String>
void map(const String& path, const size_type offset,
const size_type length, std::error_code& error)
{
map_impl(path, offset, length, error);
}
/**
* Establishes a memory mapping with AccessMode. If the mapping is unsuccesful, the
* reason is reported via `error` and the object remains in a state as if this
* function hadn't been called.
*
* `path`, which must be a path to an existing file, is used to retrieve a file
* handle (which is closed when the object destructs or `unmap` is called), which is
* then used to memory map the requested region. Upon failure, `error` is set to
* indicate the reason and the object remains in an unmapped state.
*
* The entire file is mapped.
*/
template<typename String>
void map(const String& path, std::error_code& error)
{
map_impl(path, 0, map_entire_file, error);
}
/**
* Establishes a memory mapping with AccessMode. If the mapping is unsuccesful, the
* reason is reported via `error` and the object remains in a state as if this
* function hadn't been called.
*
* `handle`, which must be a valid file handle, which is used to memory map the
* requested region. Upon failure, `error` is set to indicate the reason and the
* object remains in an unmapped state.
*
* `offset` is the number of bytes, relative to the start of the file, where the
* mapping should begin. When specifying it, there is no need to worry about
* providing a value that is aligned with the operating system's page allocation
* granularity. This is adjusted by the implementation such that the first requested
* byte (as returned by `data` or `begin`), so long as `offset` is valid, will be at
* `offset` from the start of the file.
*
* `length` is the number of bytes to map. It may be `map_entire_file`, in which
* case a mapping of the entire file is created.
*/
void map(const handle_type handle, const size_type offset,
const size_type length, std::error_code& error)
{
map_impl(handle, offset, length, error);
}
/**
* Establishes a memory mapping with AccessMode. If the mapping is unsuccesful, the
* reason is reported via `error` and the object remains in a state as if this
* function hadn't been called.
*
* `handle`, which must be a valid file handle, which is used to memory map the
* requested region. Upon failure, `error` is set to indicate the reason and the
* object remains in an unmapped state.
*
* The entire file is mapped.
*/
void map(const handle_type handle, std::error_code& error)
{
map_impl(handle, 0, map_entire_file, error);
}
/**
* If a valid memory mapping has been created prior to this call, this call
* instructs the kernel to unmap the memory region and disassociate this object
* from the file.
*
* The file handle associated with the file that is mapped is only closed if the
* mapping was created using a file path. If, on the other hand, an existing
* file handle was used to create the mapping, the file handle is not closed.
*/
void unmap() { if(pimpl_) pimpl_->unmap(); }
void swap(basic_shared_mmap& other) { pimpl_.swap(other.pimpl_); }
/** Flushes the memory mapped page to disk. Errors are reported via `error`. */
template<
access_mode A = AccessMode,
typename = typename std::enable_if<A == access_mode::write>::type
> void sync(std::error_code& error) { if(pimpl_) pimpl_->sync(error); }
/** All operators compare the underlying `basic_mmap`'s addresses. */
friend bool operator==(const basic_shared_mmap& a, const basic_shared_mmap& b)
{
return a.pimpl_ == b.pimpl_;
}
friend bool operator!=(const basic_shared_mmap& a, const basic_shared_mmap& b)
{
return !(a == b);
}
friend bool operator<(const basic_shared_mmap& a, const basic_shared_mmap& b)
{
return a.pimpl_ < b.pimpl_;
}
friend bool operator<=(const basic_shared_mmap& a, const basic_shared_mmap& b)
{
return a.pimpl_ <= b.pimpl_;
}
friend bool operator>(const basic_shared_mmap& a, const basic_shared_mmap& b)
{
return a.pimpl_ > b.pimpl_;
}
friend bool operator>=(const basic_shared_mmap& a, const basic_shared_mmap& b)
{
return a.pimpl_ >= b.pimpl_;
}
private:
template<typename MappingToken>
void map_impl(const MappingToken& token, const size_type offset,
const size_type length, std::error_code& error)
{
if(!pimpl_)
{
mmap_type mmap = make_mmap<mmap_type>(token, offset, length, error);
if(error) { return; }
pimpl_ = std::make_shared<mmap_type>(std::move(mmap));
}
else
{
pimpl_->map(token, offset, length, error);
}
}
};
/**
* This is the basis for all read-only mmap objects and should be preferred over
* directly using basic_shared_mmap.
*/
template<typename ByteT>
using basic_shared_mmap_source = basic_shared_mmap<access_mode::read, ByteT>;
/**
* This is the basis for all read-write mmap objects and should be preferred over
* directly using basic_shared_mmap.
*/
template<typename ByteT>
using basic_shared_mmap_sink = basic_shared_mmap<access_mode::write, ByteT>;
/**
* These aliases cover the most common use cases, both representing a raw byte stream
* (either with a char or an unsigned char/uint8_t).
*/
using shared_mmap_source = basic_shared_mmap_source<char>;
using shared_ummap_source = basic_shared_mmap_source<unsigned char>;
using shared_mmap_sink = basic_shared_mmap_sink<char>;
using shared_ummap_sink = basic_shared_mmap_sink<unsigned char>;
} // namespace mio
#endif // MIO_SHARED_MMAP_HEADER