Stefani Seibold 87f73f3220 fixes
2018-04-16 09:10:19 +02:00

876 lines
18 KiB
C

/*
* This file is part of mtrace-ng.
* Copyright (C) 2018 Stefani Seibold <stefani@seibold.net>
*
* This work was sponsored by Rohde & Schwarz GmbH & Co. KG, Munich/Germany.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include "config.h"
#define _GNU_SOURCE
#include <asm/unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <assert.h>
#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/ptrace.h>
#include <sys/prctl.h>
#include <sys/uio.h>
#include "backend.h"
#include "breakpoint.h"
#include "debug.h"
#include "event.h"
#include "library.h"
#include "main.h"
#include "options.h"
#include "task.h"
#include "timer.h"
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
static volatile pid_t wakeup_pid = -1;
static inline int task_kill(struct task *task, int sig)
{
errno = 0;
return syscall(__NR_tgkill, task->leader->pid, task->pid, sig);
}
static inline int wait_task(struct task *task, int *status)
{
int ret;
ret = TEMP_FAILURE_RETRY(waitpid(task ? task->pid : -1, status, __WALL));
if (ret == -1) {
if (unlikely(options.verbose && task))
fprintf(stderr, "!!!%s: waitpid pid=%d %s\n", __func__, task->pid, strerror(errno));
}
return ret;
}
static int trace_setup(struct task *task, int status, int signum)
{
int sig;
if (!WIFSTOPPED(status)) {
if (unlikely(options.verbose))
fprintf(stderr, "!!!pid=%d not stopped\n", task->pid);
return -1;
}
task->attached = 1;
task->stopped = 1;
task->leader->threads_stopped++;
task->event.type = EVENT_NEW;
task->event.e_un.signum = 0;
sig = WSTOPSIG(status);
if (sig != signum) {
task->event.e_un.signum = sig;
if (unlikely(options.verbose))
fprintf(stderr, "!!!pid=%d unexpected trace signal (got:%d expected:%d)\n", task->pid, sig, signum);
return -1;
}
return 0;
}
static int _trace_wait(struct task *task, int signum)
{
int status;
if (unlikely(wait_task(task, &status) == -1))
return -1;
if (WIFEXITED(status))
return -1;
return trace_setup(task, status, signum);
}
int trace_wait(struct task *task)
{
assert(task->attached == 0);
if (_trace_wait(task, SIGTRAP))
return -1;
return 0;
}
static int child_event(struct task *task, enum event_type ev)
{
unsigned long data = 0;
debug(DEBUG_TRACE, "child event %d pid=%d, newpid=%d", ev, task->pid, task->event.e_un.newpid);
if (unlikely(ptrace(PTRACE_GETEVENTMSG, task->pid, NULL, &data) == -1))
debug(DEBUG_TRACE, "PTRACE_GETEVENTMSG pid=%d %s", task->pid, strerror(errno));
int pid = data;
if (!pid)
return -1;
if (!pid2task(pid)) {
struct task *child = task_new(pid);
if (unlikely(!child))
return -1;
child->attached = 1;
}
task->event.e_un.newpid = pid;
task->event.type = ev;
return 0;
}
static int _process_event(struct task *task, int status)
{
int sig = WSTOPSIG(status);
task->stopped = 1;
assert(task->event.type == EVENT_NONE);
if (WIFSIGNALED(status)) {
debug(DEBUG_TRACE, "EXIT_SIGNAL: pid=%d, signum=%d", task->pid, task->event.e_un.signum);
task->event.type = EVENT_EXIT_SIGNAL;
task->event.e_un.signum = WTERMSIG(status);
return 0;
}
if (WIFEXITED(status)) {
debug(DEBUG_TRACE, "EXIT: pid=%d, status=%d", task->pid, task->event.e_un.ret_val);
task->event.type = EVENT_EXIT;
task->event.e_un.ret_val = WEXITSTATUS(status);
return 0;
}
if (!WIFSTOPPED(status)) {
if (unlikely(options.verbose))
fprintf(stderr, "!!!not WIFSTOPPED pid=%d\n", task->pid);
return -1;
}
if (unlikely(task->is_new)) {
if (sig == SIGSTOP && !(status >> 16)) {
task->event.type = EVENT_NEW;
task->event.e_un.signum = 0;
return 0;
}
if (!task->bad) {
if (unlikely(options.verbose))
fprintf(stderr, "!!!unexpected state for pid=%d, expected signal SIGSTOP (%d %d)\n", task->pid, sig, status >> 16);
task->bad = 1;
}
}
switch(status >> 16) {
case 0:
break;
case PTRACE_EVENT_VFORK:
debug(DEBUG_TRACE, "VFORK: pid=%d, newpid=%d", task->pid, task->event.e_un.newpid);
return child_event(task, EVENT_VFORK);
case PTRACE_EVENT_FORK:
debug(DEBUG_TRACE, "FORK: pid=%d, newpid=%d", task->pid, task->event.e_un.newpid);
return child_event(task, EVENT_FORK);
case PTRACE_EVENT_CLONE:
debug(DEBUG_TRACE, "CLONE: pid=%d, newpid=%d", task->pid, task->event.e_un.newpid);
return child_event(task, EVENT_CLONE);
case PTRACE_EVENT_EXEC:
task->event.type = EVENT_EXEC;
debug(DEBUG_TRACE, "EXEC: pid=%d", task->pid);
return 0;
case PTRACE_EVENT_EXIT:
{
unsigned long data = 0;
debug(DEBUG_TRACE, "ABOUT_EXIT: pid=%d", task->pid);
if (unlikely(ptrace(PTRACE_GETEVENTMSG, task->pid, NULL, &data) == -1))
debug(DEBUG_TRACE, "PTRACE_GETEVENTMSG pid=%d %s", task->pid, strerror(errno));
task->event.e_un.ret_val = WEXITSTATUS(data);
task->event.type = EVENT_ABOUT_EXIT;
return 0;
}
default:
if (unlikely(options.verbose))
fprintf(stderr, "!!!PTRACE_EVENT_????? pid=%d %d\n", task->pid, status >> 16);
break;
}
if (unlikely(options.verbose && !sig))
fprintf(stderr, "!!!%s: sig == 0 pid=%d\n", __func__, task->pid);
if (sig == SIGSTOP) {
siginfo_t siginfo;
if (unlikely(ptrace(PTRACE_GETSIGINFO, task->pid, 0, &siginfo) == -1))
sig = 0;
else {
if (likely(siginfo.si_pid == mtrace_pid))
sig = 0;
else {
if (unlikely(options.verbose))
fprintf(stderr, "!!!%s: SIGSTOP pid=%d %d %d %d %d\n", __func__, task->pid, siginfo.si_signo, siginfo.si_errno, siginfo.si_code, siginfo.si_pid);
}
}
}
task->event.type = EVENT_SIGNAL;
task->event.e_un.signum = sig;
debug(DEBUG_TRACE, "SIGNAL: pid=%d, signum=%d", task->pid, sig);
return sig;
}
static struct task * process_event(struct task *task, int status)
{
struct task *leader = task->leader;
struct breakpoint *bp = NULL;
arch_addr_t ip;
int sig;
assert(task->stopped == 0);
assert(leader != NULL);
if (unlikely(options.verbose > 1))
start_time(&task->halt_time);
leader->threads_stopped++;
sig = _process_event(task, status);
if (sig < 0) {
continue_task(task, 0);
return NULL;
}
if (task->event.type == EVENT_NONE) {
continue_task(task, task->event.e_un.signum);
return NULL;
}
if (unlikely(sig != SIGTRAP))
return task;
if (unlikely(fetch_context(task) == -1)) {
task->event.type = EVENT_NONE;
continue_task(task, 0);
return NULL;
}
ip = get_instruction_pointer(task);
#if HW_BREAKPOINTS > 0
unsigned int i;
for(i = 0; i < HW_BREAKPOINTS; ++i) {
if (task->hw_bp[i] && task->hw_bp[i]->addr == ip) {
if (likely(get_hw_bp_state(task, i)))
bp = task->hw_bp[i];
break;
}
}
if (bp) {
assert(bp->type != BP_SW);
assert(bp->hw_bp_slot == i);
}
else
#endif
{
bp = breakpoint_find(leader, ip - DECR_PC_AFTER_BREAK);
if (unlikely(!bp)) {
if (unlikely(options.verbose))
fprintf(stderr, "!!!%s: SIGTRAP pid=%d\n", __func__, task->pid);
return task;
}
#if HW_BREAKPOINTS > 0
assert(bp->type != BP_HW_SCRATCH);
assert(bp->hw == 0);
#endif
set_instruction_pointer(task, bp->addr);
}
#if 1
assert(bp->enabled);
#else
if (!bp->enabled)
return;
#endif
task->event.type = EVENT_BREAKPOINT;
task->event.e_un.breakpoint = breakpoint_get(bp);
debug(DEBUG_TRACE, "BREAKPOINT: pid=%d, addr=%#lx", task->pid, task->event.e_un.breakpoint->addr);
return task;
}
void trace_me(void)
{
debug(DEBUG_PROCESS, "pid=%d", getpid());
prctl(PR_SET_PDEATHSIG, SIGKILL);
if (unlikely(ptrace(PTRACE_TRACEME, 0, 0, 0) == -1)) {
fprintf(stderr, "PTRACE_TRACEME pid=%d %s\n", getpid(), strerror(errno));
exit(1);
}
}
static inline int chk_signal(struct task *task, int signum)
{
if (unlikely(options.verbose)) {
if (signum == SIGSTOP)
fprintf(stderr, "!!!%s: SIGSTOP pid=%d\n", __func__, task->pid);
if (signum == SIGTRAP)
fprintf(stderr, "!!!%s: SIGTRAP pid=%d\n", __func__, task->pid);
}
return signum;
}
int untrace_task(struct task *task)
{
int sig = 0;
assert(task->stopped);
if (unlikely(ptrace(PTRACE_SETOPTIONS, task->pid, 0, (void *)0) == -1)) {
if (errno != ESRCH)
fprintf(stderr, "PTRACE_SETOPTIONS pid=%d %s\n", task->pid, strerror(errno));
return -1;
}
if (task->event.type == EVENT_SIGNAL || task->event.type == EVENT_NONE)
sig = chk_signal(task, sig);
if (unlikely(ptrace(PTRACE_DETACH, task->pid, 0, sig) == -1)) {
if (errno != ESRCH)
fprintf(stderr, "PTRACE_DETACH pid=%d %s\n", task->pid, strerror(errno));
return -1;
}
// task_kill(task, SIGCONT);
return 0;
}
void stop_task(struct task *task)
{
assert(task->attached);
assert(task->leader != NULL);
if (!task->stopped) {
int status;
task_kill(task, SIGSTOP);
if (wait_task(task, &status) != -1)
_process_event(task, status);
}
}
int trace_attach(struct task *task)
{
debug(DEBUG_PROCESS, "pid=%d", task->pid);
assert(task->attached == 0);
if (unlikely(ptrace(PTRACE_ATTACH, task->pid, 0, 0) == -1)) {
if (errno != ESRCH)
fprintf(stderr, "PTRACE_ATTACH pid=%d %s\n", task->pid, strerror(errno));
return -1;
}
if (_trace_wait(task, SIGSTOP))
return -1;
return 0;
}
int trace_set_options(struct task *task)
{
long options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE | PTRACE_O_TRACEEXEC | PTRACE_O_TRACEEXIT;
debug(DEBUG_PROCESS, "pid=%d", task->pid);
if (unlikely(ptrace(PTRACE_SETOPTIONS, task->pid, 0, (void *)options) == -1)) {
if (errno != ESRCH)
fprintf(stderr, "PTRACE_SETOPTIONS pid=%d %s\n", task->pid, strerror(errno));
return -1;
}
return 0;
}
int continue_task(struct task *task, int signum)
{
debug(DEBUG_PROCESS, "continue task pid=%d", task->pid);
assert(task->leader != NULL);
assert(task->stopped);
if (unlikely(options.verbose && signum >= 0x80))
fprintf(stderr, "!!!signum >= 0x80 pid=%d: %d\n", task->pid, signum);
task->leader->threads_stopped--;
task->stopped = 0;
task->event.type = EVENT_NONE;
if (unlikely(options.verbose && signum == SIGTRAP))
fprintf(stderr, "!!!%s: SIGTRAP pid=%d\n", __func__, task->pid);
if (unlikely(ptrace(PTRACE_CONT, task->pid, 0, chk_signal(task, signum)) == -1)) {
if (errno != ESRCH)
fprintf(stderr, "PTRACE_CONT pid=%d %s\n", task->pid, strerror(errno));
return -1;
}
return 0;
}
static void do_stop_cb(struct task *task, void *data)
{
(void)data;
if (task->stopped)
return;
debug(DEBUG_TRACE, "task stop pid=%d", task->pid);
task_kill(task, SIGSTOP);
}
void stop_threads(struct task *task)
{
struct task *leader = task->leader;
assert(task->leader != NULL);
debug(DEBUG_TRACE, "stop threads pid=%d", task->pid);
if (leader->threads != leader->threads_stopped) {
struct timespec start;
if (unlikely(options.verbose > 1))
start_time(&start);
each_task(leader, &do_stop_cb, NULL);
while(leader->threads != leader->threads_stopped) {
assert(leader->threads > leader->threads_stopped);
task = wait_event();
if (task)
queue_event(task);
}
if (unlikely(options.verbose > 1))
set_timer(&start, &stop_time);
}
}
int handle_singlestep(struct task *task, int (*singlestep)(struct task *task), struct breakpoint *bp)
{
int status;
int sig;
assert(task->stopped);
assert(task->skip_bp == NULL);
assert(bp->enabled == 0);
task->event.type = EVENT_NONE;
if (unlikely(singlestep(task) == -1)) {
if (unlikely(options.verbose))
fprintf(stderr, "!!!%s: single step failed pid=%d\n", __func__, task->pid);
return -1;
}
if (unlikely(wait_task(task, &status) == -1))
return 0;
sig = _process_event(task, status);
if (sig == -1) {
if (unlikely(options.verbose))
fprintf(stderr, "!!!%s: failed _process_event pid=%d\n", __func__, task->pid);
return 0;
}
assert(task->stopped);
assert(task->event.type != EVENT_NONE);
assert(task->event.type != EVENT_BREAKPOINT);
if (task->event.type != EVENT_SIGNAL) {
queue_event(task);
return 1;
}
if (sig != SIGTRAP) {
if (unlikely(options.verbose && sig == SIGSTOP))
fprintf(stderr, "!!!%s: SIGSTOP pid=%d\n", __func__, task->pid);
queue_event(task);
return 1;
}
if (bp->break_insn) {
queue_event(task);
return 0;
}
task->event.type = EVENT_BREAKPOINT;
task->event.e_un.breakpoint = bp;
return 0;
}
#ifndef ARCH_SINGLESTEP
static int ptrace_singlestep(struct task *task)
{
if (unlikely(ptrace(PTRACE_SINGLESTEP, task->pid, 0, 0) == -1)) {
if (unlikely(options.verbose && errno != ESRCH))
fprintf(stderr, "!!!%s: PTRACE_SINGLESTEP pid=%d %s\n", __func__, task->pid, strerror(errno));
return -1;
}
return 0;
}
int do_singlestep(struct task *task, struct breakpoint *bp)
{
return handle_singlestep(task, ptrace_singlestep, bp);
}
#endif
struct task *wait_event(void)
{
struct task *task;
int status;
int pid;
pid = wait_task(NULL, &status);
if (unlikely(pid == -1)) {
if (errno == ECHILD)
debug(DEBUG_TRACE, "No more traced programs");
return NULL;
}
pthread_mutex_lock(&mutex);
if (unlikely(pid == wakeup_pid)) {
pid = 0;
wakeup_pid = -1;
}
pthread_mutex_unlock(&mutex);
if (!pid)
return NULL;
task = pid2task(pid);
if (unlikely(!task)) {
task = task_new(pid);
if (likely(task))
trace_setup(task, status, SIGSTOP);
return NULL;
}
if (unlikely(task->stopped)) {
fprintf(stderr, "!!!%s: pid=%d already stopped (%u)\n", __func__, task->pid, task->event.type);
if (WIFSIGNALED(status)) {
if (unlikely(options.verbose))
fprintf(stderr, "!!!%s: exit signal for stopped pid=%d\n", __func__, task->pid);
task->event.type = EVENT_EXIT_SIGNAL;
task->event.e_un.signum = WTERMSIG(status);
return NULL;
}
if (WIFEXITED(status)) {
if (unlikely(options.verbose))
fprintf(stderr, "!!!%s: exited process for stopped pid=%d\n", __func__, task->pid);
task->event.type = EVENT_EXIT;
task->event.e_un.ret_val = WEXITSTATUS(status);
return NULL;
}
if ((status >> 16) == PTRACE_EVENT_EXIT) {
unsigned long data = 0;
if (unlikely(options.verbose))
fprintf(stderr, "!!!%s: exit event for stopped pid=%d\n", __func__, task->pid);
debug(DEBUG_TRACE, "ABOUT_EXIT: pid=%d", task->pid);
if (unlikely(ptrace(PTRACE_GETEVENTMSG, task->pid, NULL, &data) == -1))
debug(DEBUG_TRACE, "PTRACE_GETEVENTMSG pid=%d %s", task->pid, strerror(errno));
task->event.e_un.ret_val = WEXITSTATUS(data);
task->event.type = EVENT_ABOUT_EXIT;
return NULL;
}
}
task = process_event(task, status);
if (task)
assert(task->stopped);
return task;
}
void wait_event_wakeup(void)
{
pid_t pid;
pthread_mutex_lock(&mutex);
if (wakeup_pid == -1) {
pid = vfork();
if (pid == 0)
_exit(0);
wakeup_pid = pid;
}
pthread_mutex_unlock(&mutex);
}
#ifndef HAVE_PROCESS_VM_READV
static ssize_t process_vm_readv(pid_t pid, const struct iovec *local_iov, unsigned long liovcnt, const struct iovec *remote_iov, unsigned long riovcnt, unsigned long flags)
{
#ifdef __NR_process_vm_readv
return syscall(__NR_process_vm_readv, pid, local_iov, liovcnt, remote_iov, riovcnt, flags);
#else
errno = ENOSYS;
return -1;
#endif
}
#endif
ssize_t copy_from_proc(struct task *task, arch_addr_t addr, void *dst, size_t len)
{
static int process_vm_call_nosys;
ssize_t num_bytes;
size_t n;
union {
long a;
char c[sizeof(long)];
} a;
if (len > sizeof(a) && !process_vm_call_nosys) {
struct iovec local[1];
struct iovec remote[1];
local[0].iov_base = dst;
local[0].iov_len = len;
remote[0].iov_base = (void *)addr;
remote[0].iov_len = len;
num_bytes = process_vm_readv(task->pid, local, 1, remote, 1, 0);
if (unlikely(num_bytes != -1))
return num_bytes;
if (errno != EFAULT) {
if (errno != ENOSYS) {
if (unlikely(options.verbose))
fprintf(stderr, "!!!%s: pid=%d process_vm_readv: %s\n", __func__, task->pid, strerror(errno));
return -1;
}
process_vm_call_nosys = 1;
}
}
num_bytes = 0;
n = sizeof(a.a);
errno = 0;
while (len) {
a.a = ptrace(PTRACE_PEEKTEXT, task->pid, addr, 0);
if (unlikely(a.a == -1 && errno)) {
if (num_bytes && errno == EIO)
break;
return -1;
}
if (n > len)
n = len;
memcpy(dst, a.c, n);
num_bytes += n;
len -= n;
dst += n;
addr += n;
}
return num_bytes;
}
ssize_t copy_to_proc(struct task *task, arch_addr_t addr, const void *src, size_t len)
{
ssize_t num_bytes;
size_t n;
union {
long a;
char c[sizeof(long)];
} a;
num_bytes = 0;
n = sizeof(a.a);
while (len) {
if (n > len) {
errno = 0;
n = len;
a.a = ptrace(PTRACE_PEEKTEXT, task->pid, addr, 0);
if (unlikely(a.a == -1 && errno)) {
if (num_bytes && errno == EIO)
break;
return -1;
}
}
memcpy(a.c, src, n);
a.a = ptrace(PTRACE_POKETEXT, task->pid, addr, a.a);
if (unlikely(a.a == -1)) {
if (num_bytes && errno == EIO)
break;
return -1;
}
num_bytes += n;
len -= n;
src += n;
addr += n;
}
return num_bytes;
}
ssize_t copy_from_to_proc(struct task *task, arch_addr_t addr, const void *src, void *dst, size_t len)
{
union {
long a;
char c[sizeof(long)];
} a;
ssize_t num_bytes = 0;
size_t n = sizeof(a.a);
errno = 0;
while (len) {
a.a = ptrace(PTRACE_PEEKTEXT, task->pid, addr, 0);
if (unlikely(a.a == -1 && errno)) {
if (num_bytes && errno == EIO)
break;
return -1;
}
if (n > len)
n = len;
memcpy(dst, a.c, n);
memcpy(a.c, src, n);
a.a = ptrace(PTRACE_POKETEXT, task->pid, addr, a.a);
if (unlikely(a.a == -1)) {
if (num_bytes && errno == EIO)
break;
return -1;
}
num_bytes += n;
len -= n;
src += n;
dst += n;
addr += n;
}
return num_bytes;
}
ssize_t copy_str_from_proc(struct task *task, arch_addr_t addr, char *dst, size_t len)
{
union {
long a;
char c[sizeof(long)];
} a;
ssize_t num_bytes = 0;
size_t n = sizeof(a.a);
size_t i;
errno = 0;
if (!len--)
return -1;
while(len) {
a.a = ptrace(PTRACE_PEEKTEXT, task->pid, addr, 0);
if (unlikely(a.a == -1 && errno)) {
if (num_bytes && errno == EIO)
break;
return -1;
}
if (n > len)
n = len;
for(i = 0; i < n; ++i) {
if (!a.c[i])
break;
}
memcpy(dst, a.c, i);
num_bytes += i;
len -= i;
dst += i;
addr += i;
if (i < n)
break;
}
*dst = 0;
return num_bytes;
}