/********************************************************************************************************* * ------------------------------------------------------------------------------------------------------ * file description * ------------------------------------------------------------------------------------------------------ * \file intl.c * \unit intl * \brief This is a simple large inter number calculate module for C language * \author Lamdonn * \version v1.1.0 * \license GPL-2.0 * \copyright Copyright (C) 2023 Lamdonn. ********************************************************************************************************/ #include "intl.h" /* Internal static function declarations */ static int intl_ucmp(intl a, intl b); static intl intl_umul(intl a, intl b); static intl intl_udiv(intl a, intl b, intl *mod); static intl intl_umod(intl a, intl b); /** * \brief Adds two intl numbers. * * This function computes the sum of two intl. * It processes each 16-bit part of the input integers, * handling carry bits as necessary. The result is stored in a * new intl number. This function ensures that overflow is * correctly managed across all parts. * * \param[in] a: The first operand (intl number). * \param[in] b: The second operand (intl number). * \return The sum of a and b as an intl. */ intl intl_add(intl a, intl b) { intl result; // Initialize the result variable uint16_t carry = 0; /** Carry bit */ // Perform addition for each 16-bit part for (int i = 0; i < __INTL_U16_PARTS__; i++) { // Calculate the sum of corresponding parts and carry uint32_t sum = (uint32_t)a.u16[i] + (uint32_t)b.u16[i] + carry; result.u16[i] = (uint16_t)(sum & 0xFFFF); /** Lower 16 bits */ carry = (sum >> 16) & 0xFFFF; /** Upper 16 bits as carry */ } return result; // Return the resulting intl number } /** * \brief Subtracts one intl number from another. * * This function computes the difference of two intl. * It processes each 16-bit part of the minuend and * subtrahend, handling borrow bits as necessary. The result is * stored in a new intl number. This function ensures that * borrowing is correctly managed across all parts. * * \param[in] a: The minuend (the number from which another is to be subtracted). * \param[in] b: The subtrahend (the number to be subtracted). * \return The result of a - b as an intl. */ intl intl_sub(intl a, intl b) { intl result; // Initialize the result variable // Perform subtraction for each 16-bit part for (int i = 0; i < __INTL_U16_PARTS__; i++) { uint32_t diff = (uint32_t)a.u16[i] - (uint32_t)b.u16[i]; // Check if a borrow occurred if (diff & 0xFFFF0000) /** Borrow occurred */ { // Adjust the higher parts to account for the borrow for (int j = i + 1; j < __INTL_U16_PARTS__; j++) { a.u16[j] -= 1; // Borrow from the next part if (a.u16[j] != 0xFFFF) break; // Stop if no further borrow needed } } // Store the result of the subtraction result.u16[i] = (uint16_t)(diff & 0xFFFF); } return result; // Return the resulting intl number } /** * \brief Increments the intl number by one. * * This function increments a intl by one. * It processes each 32-bit part of the input integer and * handles carry bits as necessary. The function continues * to increment the subsequent parts until there is no overflow. * * \param[in] a: The intl number to increment. * \return The incremented intl number as an intl. */ intl intl_inc(intl a) { // Increment each 32-bit part of the intl number for (int i = 0; i < __INTL_U32_PARTS__; i++) { a.u32[i]++; // Increment the current part // Check if the current part overflowed if (a.u32[i] != 0) { break; /** Return immediately if no overflow */ } } return a; /** Return the incremented result */ } /** * \brief Decrements the intl number by one. * * This function decrements a intl by one. * It processes each 32-bit part of the input integer, handling * borrowing as necessary. If the current part is zero, it sets * that part to its maximum value (0xFFFFFFFF) and continues * to the next part to borrow from it. * * \param[in] a: The intl number to decrement. * \return The decremented intl number as an intl. */ intl intl_dec(intl a) { // Decrement each 32-bit part of the intl number for (int i = 0; i < __INTL_U32_PARTS__; i++) { // Check if the current part can be decremented if (a.u32[i] != 0) { a.u32[i]--; // Decrement the current part break; /** Return immediately if current part can be decremented */ } // If current part is zero, set it to max value and continue borrowing a.u32[i] = 0xFFFFFFFF; } return a; /** Return the decremented result */ } /** * \brief Multiplies two intl unsigned numbers. * * This function performs multiplication of two intl * by using a method similar to the schoolbook algorithm. The * multiplication is carried out by breaking the numbers into their * 16-bit components and accumulating the results. The function handles * carry-over during the multiplication and addition stages to ensure * the final product is accurately represented. * * \param[in] a: The first operand to multiply. * \param[in] b: The second operand to multiply. * \return The product of a and b as an intl. */ static intl intl_umul(intl a, intl b) { intl result = __INTL_ZERO__; /** Initialize the result to 0 */ intl temp[__INTL_U16_PARTS__] = {{0}}; // Temporary storage for intermediate results uint16_t carry = 0; // Variable to hold carry-over during multiplication // Perform multiplication for (int i = 0; i < __INTL_U16_PARTS__; i++) { carry = 0; // Reset carry for the current row for (int j = 0; j < __INTL_U16_PARTS__; j++) { if (i + j < __INTL_U16_PARTS__) { // Multiply the 16-bit segments and add carry uint32_t mul = (uint32_t)a.u16[i] * (uint32_t)b.u16[j] + carry; temp[i].u16[i + j] = (mul & 0xFFFF); // Store the lower 16 bits carry = ((mul >> 16) & 0xFFFF); // Update carry for the next addition } } } carry = 0; // Reset carry for the addition phase // Combine results from the temporary storage for (int i = 0; i < __INTL_U16_PARTS__; i++) { uint32_t add = 0; // Variable to hold the sum of the current column for (int j = 0; j < __INTL_U16_PARTS__; j++) { add += temp[j].u16[i]; // Accumulate results from temp } add += carry; // Add any carry from the previous column result.u16[i] = (add & 0xFFFF); // Store the lower 16 bits in result carry = ((add >> 16) & 0xFFFF); // Update carry for the next column } return result; // Return the final product } /** * \brief Multiplies two intl numbers. * * This function multiplies two intl and returns * the product as another intl number. It handles signed multiplication * by checking the sign of the operands. If either operand is negative, * it negates the operand and adjusts the sign of the result accordingly. * The actual multiplication is performed using the `intl_umul` * function, which handles the absolute values of the integers. * * \param[in] a: The first operand to multiply. * \param[in] b: The second operand to multiply. * \return The product of a and b as an intl. */ intl intl_mul(intl a, intl b) { intl result = __INTL_ZERO__; // Initialize the result to 0 int sign = 1; // Variable to track the sign of the result // Check and handle the sign of the first operand if (a.u32[__INTL_U32_PARTS__ - 1] & 0x80000000) { sign = -sign; // Negate the sign for the result a = intl_neg(a); // Negate the first operand } // Check and handle the sign of the second operand if (b.u32[__INTL_U32_PARTS__ - 1] & 0x80000000) { sign = -sign; // Negate the sign for the result b = intl_neg(b); // Negate the second operand } // Perform unsigned multiplication result = intl_umul(a, b); // If the result should be negative, negate it if (sign < 0) result = intl_neg(result); return result; // Return the final product } /** * \brief Divides one intl unsigned number by another. * * This function performs division of one intl * by another. It calculates the quotient using a bitwise approach, * handling division by zero gracefully. The result is built bit by bit * from the most significant bit to the least significant bit. If the * divisor is zero, it prints an error message and returns zero. * * \param[in] a: The dividend (number to be divided). * \param[in] b: The divisor (number to divide by). * \return The quotient of a divided by b as an intl. */ static intl intl_udiv(intl a, intl b, intl *mod) { // Check for division by zero if (intl_sign(b) == 0) { INTL_E(INTL_E_DIV_0, '0'); return __INTL_ZERO__; } intl result = __INTL_ZERO__; // Initialize the result to zero intl remainder = __INTL_ZERO__; // Initialize the remainder to zero /** Calculate bit by bit from the highest bit */ for (int i = __INTL_BIT_PARTS__ - 1; i >= 0; i--) { /** Left shift remainder and add current bit */ remainder = intl_shl(remainder, 1); // Shift remainder left by 1 remainder.u32[0] |= (a.u32[i / 32] >> (i % 32)) & 1; // Add current bit from dividend /** If remainder is greater than or equal to b, subtract b */ if (intl_ucmp(remainder, b) >= 0) { remainder = intl_sub(remainder, b); // Subtract b from remainder result.u32[i / 32] |= (1 << (i % 32)); // Set corresponding bit in result } } if (mod) *mod = remainder; return result; // Return the final quotient } /** * \brief Divides one intl number by another. * * This function performs division of two intl * and returns the quotient as another intl number. It handles signed * division by checking the sign of the operands. If either operand * is negative, it negates the operand and adjusts the sign of the * result accordingly. The actual division is performed using the * `intl_udiv` function, which handles the absolute values of * the integers. * * \param[in] a: The dividend (number to be divided). * \param[in] b: The divisor (number to divide by). * \return The quotient of a divided by b as an intl. */ intl intl_div(intl a, intl b) { intl result = __INTL_ZERO__; // Initialize the result to 0 int sign = 1; // Variable to track the sign of the result // Check and handle the sign of the dividend if (a.u32[__INTL_U32_PARTS__ - 1] & 0x80000000) { sign = -sign; // Negate the sign for the result a = intl_neg(a); // Negate the dividend } // Check and handle the sign of the divisor if (b.u32[__INTL_U32_PARTS__ - 1] & 0x80000000) { sign = -sign; // Negate the sign for the result b = intl_neg(b); // Negate the divisor } // Perform unsigned division result = intl_udiv(a, b, NULL); // If the result should be negative, negate it if (sign < 0) result = intl_neg(result); return result; // Return the final quotient } /** * \brief Computes the remainder of the division of two unsigned intl numbers. * * This function calculates the remainder of the division of two * intl. It uses a bitwise approach to * compute the remainder by processing each bit from the most significant * to the least significant. If the divisor is zero, it handles the * error gracefully by printing a message and returning zero. * * \param[in] a: The dividend (number to be divided). * \param[in] b: The divisor (number to divide by). * \return The remainder of a divided by b as an intl. */ static intl intl_umod(intl a, intl b) { intl mod = __INTL_ZERO__; intl_udiv(a, b, &mod); return mod; } /** * \brief Computes the remainder of the division of two intl numbers. * * This function calculates the remainder of the division of two * intl. It handles signed integers by checking * the sign of the dividend. If the dividend is negative, it negates * the dividend before performing the unsigned modulus operation. * The sign of the result is adjusted based on the sign of the * dividend. The actual remainder calculation is performed using the * `intl_umod` function, which handles the absolute values of * the integers. * * \param[in] a: The dividend (number to be divided). * \param[in] b: The divisor (number to divide by). * \return The remainder of a divided by b as an intl. */ intl intl_mod(intl a, intl b) { intl result = __INTL_ZERO__; // Initialize result to zero int sign = 1; // Variable to track the sign of the result // Check and handle the sign of the dividend if (a.u32[__INTL_U32_PARTS__ - 1] & 0x80000000) { sign = -sign; // Negate the sign for the result a = intl_neg(a); // Negate the dividend } // Perform unsigned modulus with the absolute value of the divisor result = intl_umod(a, intl_abs(b)); // If the result should be negative, negate it if (sign < 0) result = intl_neg(result); return result; // Return the final remainder } /** * \brief Left shifts an intl number by a specified number of bits. * * This function performs a left bitwise shift on a intl. * The shift b can be greater than 32 bits, in which case * the function calculates how many whole 32-bit parts to shift and * how many bits to shift within the remaining part. It constructs * the result based on the input number after applying the shift. * * \param[in] a: The intl number to shift. * \param[in] b: The number of bits to shift to the left. * \return The left-shifted intl number. */ intl intl_shl(intl a, uint32_t b) { intl result = __INTL_ZERO__; // Initialize the result to zero int u32bias = b / 32; // Number of whole 32-bit parts to shift int bitsbias = b % 32; // Remaining bits to shift // Perform the shift for each 32-bit part of the intl number for (int i = 0; i < __INTL_U32_PARTS__; i++) { if (i < u32bias) { result.u32[i] = 0; // Set shifted-out parts to zero } else { // Shift the current part and add bits from the previous part if needed result.u32[i] = (a.u32[i - u32bias] << bitsbias) | (((i - u32bias - 1) >= 0 && bitsbias > 0) ? (a.u32[i - u32bias - 1] >> (32 - bitsbias)) : 0); } } return result; // Return the left-shifted result } /** * \brief Right shifts an intl number by a specified number of bits. * * This function performs a right bitwise shift on a intl. * The shift b can be greater than 32 bits, in which case * the function calculates how many whole 32-bit parts to shift and * how many bits to shift within the remaining part. It constructs * the result based on the input number after applying the shift. * The sign bit is preserved for signed shifts. * * \param[in] a: The intl number to shift. * \param[in] b: The number of bits to shift to the right. * \return The right-shifted intl number. */ intl intl_shr(intl a, uint32_t b) { intl result = __INTL_ZERO__; // Initialize the result to zero int u32bias = b / 32; // Number of whole 32-bit parts to shift int bitsbias = b % 32; // Remaining bits to shift // Perform the shift for each 32-bit part of the intl number for (int i = 0; i < __INTL_U32_PARTS__; i++) { // Check if the current index is beyond the range for valid shifts if (i > __INTL_U32_PARTS__ - u32bias - 1 && __INTL_U32_PARTS__ - u32bias - 1 >= 0) { result.u32[i] = 0; // Set shifted-out parts to zero } else { // Shift the current part and add bits from the next part if needed result.u32[i] = (a.u32[i + u32bias] >> bitsbias) | (((i + u32bias + 1) < __INTL_U32_PARTS__ && bitsbias > 0) ? (a.u32[i + u32bias + 1] << (32 - bitsbias)) : ((a.u32[__INTL_U32_PARTS__ - 1] & 0x80000000) ? 0xFFFFFFFF : 0)); } } return result; // Return the right-shifted result } /** * \brief Performs bitwise AND operation on two intl numbers. * * This function computes the bitwise AND of two intl. * It processes each 32-bit part of the input integers and * performs the AND operation on corresponding parts, storing the * result in a new intl number. This operation yields a number that * has bits set only where both operands have bits set. * * \param[in] a: The first operand (intl number). * \param[in] b: The second operand (intl number). * \return The result of a AND b as an intl. */ intl intl_and(intl a, intl b) { intl result; // Initialize the result variable // Perform the bitwise AND operation for each 32-bit part for (int i = 0; i < __INTL_U32_PARTS__; i++) { result.u32[i] = a.u32[i] & b.u32[i]; // Compute AND for each part } return result; // Return the resulting intl number } /** * \brief Performs bitwise OR operation on two intl numbers. * * This function computes the bitwise OR of two intl. * It processes each 32-bit part of the input integers and * performs the OR operation on corresponding parts, storing the * result in a new intl number. This operation yields a number that * has bits set where at least one of the operands has bits set. * * \param[in] a: The first operand (intl number). * \param[in] b: The second operand (intl number). * \return The result of a OR b as an intl. */ intl intl_or(intl a, intl b) { intl result; // Initialize the result variable // Perform the bitwise OR operation for each 32-bit part for (int i = 0; i < __INTL_U32_PARTS__; i++) { result.u32[i] = a.u32[i] | b.u32[i]; // Compute OR for each part } return result; // Return the resulting intl number } /** * \brief Performs bitwise XOR operation on two intl numbers. * * This function computes the bitwise XOR of two intl. * It processes each 32-bit part of the input integers and * performs the XOR operation on corresponding parts, storing the * result in a new intl number. This operation yields a number that * has bits set where only one of the operands has bits set. * * \param[in] a: The first operand (intl number). * \param[in] b: The second operand (intl number). * \return The result of a XOR b as an intl. */ intl intl_xor(intl a, intl b) { intl result; // Initialize the result variable // Perform the bitwise XOR operation for each 32-bit part for (int i = 0; i < __INTL_U32_PARTS__; i++) { result.u32[i] = a.u32[i] ^ b.u32[i]; // Compute XOR for each part } return result; // Return the resulting intl number } /** * \brief Performs bitwise NOT operation on an intl number. * * This function computes the bitwise NOT (negation) of a intl. * It processes each 32-bit part of the input integer * and applies the NOT operation, storing the result in a new intl * number. This operation inverts all bits of the input number. * * \param[in] a: The intl number to negate. * \return The bitwise negation of a as an intl. */ intl intl_not(intl a) { intl result; // Initialize the result variable // Perform the bitwise NOT operation for each 32-bit part for (int i = 0; i < __INTL_U32_PARTS__; i++) { result.u32[i] = ~a.u32[i]; // Compute NOT for each part } return result; // Return the resulting intl number } /** * \brief Computes the absolute value of an intl number. * * This function checks if the given intl * represents a negative value in two's complement representation. * If the most significant bit (sign bit) of the highest 32-bit segment * is set, it indicates a negative number, and the function calls * intl_neg to return its positive equivalent. If the number is * already non-negative, it simply returns the original number. * * \param[in] a: The intl number for which to compute the absolute value. * \return The absolute value of the intl number a. */ intl intl_abs(intl a) { // Check if the sign bit of the highest 32-bit part is set if (a.u32[__INTL_U32_PARTS__ - 1] & 0x80000000) return intl_neg(a); // Return negated value if negative return a; // Return the original value if non-negative } /** * \brief Converts a string to an intl number. * * This function converts a string representation of a number * in various bases (decimal, binary, octal, hexadecimal) * into a intl. It handles optional signs * and base prefixes, and processes the string from the end to * the start for efficiency in base conversions. * * \param[in] str: The string to convert. * \return The converted intl number. Returns zero if the * string is invalid or represents zero. */ intl intl_from(const char *str) { const uint8_t ttable[4] = {10, 2, 8, 16}; // Table of digit limits for each base const uint8_t btable[4] = {0, 1, 3, 4}; // Table of bit shifts for each base uint32_t type = 0; // 0 - decimal, 1 - binary, 2 - octal, 3 - hexadecimal intl result = __INTL_ZERO__; // Resulting intl number intl base = intl(1); /** Base initialized to 1 */ int sign = 1; // Sign of the number (1 for positive, -1 for negative) const char *p = str; // Pointer to traverse the input string // Determine the number type based on the string prefix switch (*p) { case '0': { if (p[1] == 0) { return __INTL_ZERO__; } // Handle case of "0" else if (p[1] == 'x' || p[1] == 'X') type = 3; // Hexadecimal else if (p[1] == 'o' || p[1] == 'O') type = 2; // Octal else if (p[1] == 'b' || p[1] == 'B') type = 1; // Binary else if (p[1] < '0' || p[1] > '9') { INTL_E(INTL_E_INVALID_CAHRACTER, p[1]); return __INTL_ZERO__; } p += 2; // Move past the prefix } break; case '-': { sign = -1; } // Handle negative sign case '+': { p++; } break; // Handle positive sign default: break; // No sign or prefix } uint32_t len = strlen(p); // Length of the number string const char *s = &p[len - 1]; // Pointer to the last character of the number string // Process decimal numbers if (type == 0) { while (s >= p) // Traverse the string backwards { char c = *s; /** Check if the character is a digit */ if (c < '0' || c > '9') { INTL_E(INTL_E_INVALID_CAHRACTER, *s); return __INTL_ZERO__; } uint32_t num = c - '0'; /** Convert character to number */ /** Process current digit */ intl addend = intl_umul(base, (intl){num}); // Multiply base by the digit result = intl_add(result, addend); // Add to result /** Multiply base by 10 for the next digit */ base = intl_umul(base, (intl){10}); s--; // Move to the previous character } // Apply sign if negative if (sign == -1) result = intl_neg(result); } else { // Process non-decimal bases (binary, octal, hexadecimal) uint8_t bit = 0; // Bit position within the current u32 part int index = 0; // Current index in the result array while (s >= p && index < __INTL_U32_PARTS__) { char c = *s; if (c >= '0' && c <= '9') c -= '0'; else if (c >= 'A' && c <= 'F') c -= 55; // c = c - 'A' + 10 // 55 else if (c >= 'a' && c <= 'f') c -= 87; // c = c - 'a' + 10 // 87 else { INTL_E(INTL_E_INVALID_CAHRACTER, *s); return __INTL_ZERO__; } if (c >= ttable[type]) { INTL_E(INTL_E_INVALID_CAHRACTER, *s); return __INTL_ZERO__; } result.u32[index] |= (c << bit); // Set the value in the corresponding bit if ((type == 2) && (bit > 29) && (index < __INTL_U32_PARTS__ - 1)) // For oct, stitching to high u32 is required, 2,1,0,31,30,29 { result.u32[index + 1] |= (c >> (32 - bit)); } bit += btable[type]; // Update the bit position if (bit >= 32) // If bit exceeds 32, move to the next part { bit -= 32; // Reset bit position index++; // Move to the next u32 part } s--; // Move to the previous character } } return result; // Return the resulting intl number } /** * \brief Converts a 32-bit unsigned integer to an intl number. * * This function initializes the first 32-bit segment of the intl structure * with the provided 32-bit unsigned integer value, while the other segments * are set to zero. This allows for easy conversion from a standard integer type * to the custom muti-bit representation. * * \param[in] value: The 32-bit unsigned integer to convert. * \return The corresponding intl number initialized with the given value. */ intl intl_from2(int value) { intl result = __INTL_ZERO__; memcpy(&result, &value, sizeof(value)); if (value < 0) { memset(((char *)(&result)) + sizeof(value), -1, sizeof(result) - sizeof(value)); } return result; } /** * \brief Determines the sign of an intl number. * * This function checks the sign of the given intl * based on its representation. It first examines the most significant * bit of the highest 32-bit segment to determine if the number is negative. * If this bit is set, the function returns -1, indicating a negative value. * If all segments are zero, it returns 0, indicating that the number is zero. * If the number is positive, it returns 1. * * \param[in] a: The intl number to evaluate for its sign. * \return -1 if the number is negative, 0 if the number is zero, and * 1 if the number is positive. */ int intl_sign(intl a) { // Check if the sign bit of the highest 32-bit part is set if (a.u32[__INTL_U32_PARTS__ - 1] & 0x80000000) return -1; // Check if the number is zero for (int i = __INTL_U32_PARTS__ - 1; i >= 0; i--) { if (a.u32[i] != 0) return 1; // Return 1 if any part is non-zero } return 0; // Return 0 if all parts are zero } #define FLAGS_ZEROPAD (0x01) #define FLAGS_LEFT (0x02) #define FLAGS_PLUS (0x04) #define FLAGS_SPACE (0x08) #define FLAGS_HASH (0x10) #define PRINT_CHAR(c) do { if (length < max) { buffer[length++] = (c); } else return -2; } while (0) /** * \brief Converts an intl number to a string. * * This function converts a given intl into a string representation. * Including dec, bin, oct, hex string. * * \param[in] a: The intl number to convert. * \param[out] buffer: The buffer to store the resulting string. * It should be large enough to hold the representation. * \param[in] size: The size of buffer, can refer to `INTL_PRINT_MAX`. * \param[in] format: Printf-like format, [flags][width][type]. * flags: '0' '-' '+' ' ' '#' * width: dec numeber * type: 'x' 'X' 'o' 'O' 'b' 'B' 'd' 'i' 'u' * \return The length of the string that was converted successfully. * 0: Invalid convertion * -1: Null pointer `buffer` * -2: `size` is too small * -3: Null pointer `format` */ int intl_print(intl a, char *buffer, uint32_t size, const char *format) { const uint8_t btable[4] = {0, 1, 3, 4}; // Table of bit shifts for each base uint32_t type = 0; // 0 - decimal, 1 - binary, 2 - octal, 3 - hexadecimal int length = 0; int i = 0, j = 0; uint32_t flags = 0, width = 0; uint32_t max = size - 1; char c = 0; char prefix[2] = {0, 0}; char prelen = 0; if (!buffer) return -1; if (size < 2) return -2; if (!format) return -3; for (; *format; format++) { if (length > 0) break; while (1) { if (*format == '0') { flags |= FLAGS_ZEROPAD; format++; } else if (*format == '-') { flags |= FLAGS_LEFT; format++; } else if (*format == '+') { flags |= FLAGS_PLUS; format++; } else if (*format == ' ') { flags |= FLAGS_SPACE; format++; } else if (*format == '#') { flags |= FLAGS_HASH; format++; } else break; } /* Convert width */ while ((*format >= '0') && (*format <= '9')) width = width * 10U + (unsigned int)(*format++ - '0'); if (width > max) return -1; /* format distribution */ switch (*format) { case 'X': case 'x': type++; case 'O': case 'o': type++; case 'B': case 'b': type++; { int valid = 0; int u32part = 0; int u32bias = 0; if (flags & FLAGS_HASH) { prefix[prelen++] = '0'; prefix[prelen++] = *format; } if (intl_eq(a, __INTL_ZERO__)) PRINT_CHAR('0'); else { for (valid = __INTL_U32_PARTS__ - 1; valid >= 0; valid--) { if (a.u32[valid] != 0) break; } while (u32part <= valid) { c = (a.u32[u32part] >> u32bias) & ((1 << btable[type]) - 1); /* For hexadecimal, convert the letters */ if (c >= 10) c += (*format == 'x' ? 39 : 7); /* The bits of the previous part need to be concatenated to form octal */ if (type == 2 && u32part < valid && u32bias > 29) c |= ((a.u32[u32part + 1] << (32 - u32bias)) & 0x7); PRINT_CHAR(c + '0'); /* Update the u32 index of the current transition and the bit bias */ u32bias += btable[type]; if (u32bias >= 32) { u32part++; u32bias %= 32; } /* If there are no valid bits left, the conversion is exited */ if ((u32part == valid) && ((a.u32[u32part] >> u32bias) == 0)) break; } } } break; case 'u': case 'd': case 'i': { intl ten = intl(10); /** Base 10 for conversion */ intl remainder; // To hold the remainder during division intl temp = a; // Temporary variable for manipulation if (intl_eq(a, __INTL_ZERO__)) PRINT_CHAR('0'); else { // Check if the number is negative if (*format != 'u' && a.u32[__INTL_U32_PARTS__ - 1] & 0x80000000) temp = intl_neg(a); // Negate the number for conversion /** Calculate decimal string of intl */ while (intl_ucmp(temp, __INTL_ZERO__) > 0) // While the number is positive { temp = intl_udiv(temp, ten, &remainder); // Get remainder when divided by 10, and update temp PRINT_CHAR('0' + remainder.u32[0]); // Convert remainder to character, store character in buffer } // If the original number was negative, add '-' sign if (*format != 'u' && a.u32[__INTL_U32_PARTS__ - 1] & 0x80000000) prefix[prelen++] = '-'; // Append negative sign else { if (flags & FLAGS_PLUS) prefix[prelen++] = '+'; } } } break; default: return 0; } } /* Right align */ if (!((flags & FLAGS_LEFT)) && (flags & FLAGS_ZEROPAD)) while (length + prelen < width) PRINT_CHAR('0'); while (prelen > 0) PRINT_CHAR(prefix[--prelen]); if (!((flags & FLAGS_LEFT)) && !(flags & FLAGS_ZEROPAD)) while (length < width) PRINT_CHAR(' '); /* Reverse */ for (i = 0, j = length - 1; i < j; i++, j--) { c = buffer[i]; // Temporary variable for swapping buffer[i] = buffer[j]; // Swap start and end buffer[j] = c; } /* Left align */ if (flags & FLAGS_LEFT) while (length < width) PRINT_CHAR(' '); buffer[length] = 0; return length; } /** * \brief Compares two intl unsigned numbers. * * This function compares two intl * by examining each 32-bit segment from the most significant to * the least significant. It returns 1 if the first number is * greater than the second, -1 if it is less, and 0 if they are * equal. The comparison is done in a way that respects the * unsigned nature of the integers. * * \param[in] a: The first number to compare. * \param[in] b: The second number to compare. * \return 1 if a > b, -1 if a < b, and 0 if a == b. */ static int intl_ucmp(intl a, intl b) { // Compare each 32-bit part from the most significant to the least significant for (int i = __INTL_U32_PARTS__ - 1; i >= 0; i--) { if (a.u32[i] > b.u32[i]) return 1; // a is greater if (a.u32[i] < b.u32[i]) return -1; // a is less } return 0; // a and b are equal } /** * \brief Compares two intl numbers. * * This function compares two intl and * determines their relative order. The comparison is performed * starting from the most significant part (highest order) to * the least significant part (lowest order). * * \param[in] a: The first number to compare. * \param[in] b: The second number to compare. * * \return 1 if a > b, -1 if a < b, 0 if a == b. */ static int intl_cmp(intl a, intl b) { // Compare each 32-bit part from the most significant to the least significant for (int i = __INTL_U32_PARTS__ - 1; i >= 0; i--) { // Compare the current parts as signed integers if ((int32_t)a.u32[i] > (int32_t)b.u32[i]) return 1; // a is greater if ((int32_t)a.u32[i] < (int32_t)b.u32[i]) return -1; // a is less } return 0; // a is equal to b } /** * \brief Compares two intl numbers, determine whether a < b. * * \param[in] a: The first number to compare. * \param[in] b: The second number to compare. * * \return a < b ? */ int intl_lt(intl a, intl b) { return intl_cmp(a, b) < 0 ? 1 : 0; } /** * \brief Compares two intl numbers, determine whether a <= b. * * \param[in] a: The first number to compare. * \param[in] b: The second number to compare. * * \return a <= b ? */ int intl_le(intl a, intl b) { return intl_cmp(a, b) <= 0 ? 1 : 0; } /** * \brief Compares two intl numbers, determine whether a == b. * * \param[in] a: The first number to compare. * \param[in] b: The second number to compare. * * \return a == b ? */ int intl_eq(intl a, intl b) { return intl_cmp(a, b) == 0 ? 1 : 0; } /** * \brief Compares two intl numbers, determine whether a != b. * * \param[in] a: The first number to compare. * \param[in] b: The second number to compare. * * \return a != b ? */ int intl_ne(intl a, intl b) { return intl_cmp(a, b) != 0 ? 1 : 0; } /** * \brief Compares two intl numbers, determine whether a > b. * * \param[in] a: The first number to compare. * \param[in] b: The second number to compare. * * \return a > b ? */ int intl_gt(intl a, intl b) { return intl_cmp(a, b) > 0 ? 1 : 0; } /** * \brief Compares two intl numbers, determine whether a >= b. * * \param[in] a: The first number to compare. * \param[in] b: The second number to compare. * * \return a >= b ? */ int intl_ge(intl a, intl b) { return intl_cmp(a, b) >= 0 ? 1 : 0; } /** * \brief Computes the two's complement (negation) of an intl number. * * This function calculates the negative representation of a given intl * using two's complement. It first inverts all bits * of the input number and then adds one to the result. This effectively * represents the negative value of the original number in a signed * integer format. * * \param[in] a: The intl number to negate. * \return The negated intl number (two's complement of a). */ intl intl_neg(intl a) { intl result = __INTL_ZERO__; // First, bitwise NOT (invert) the input number for (int i = 0; i < __INTL_U32_PARTS__; i++) { result.u32[i] = ~a.u32[i]; } // Add one to complete the two's complement operation return intl_inc(result); }