2024-09-27 02:18:53 +08:00

976 lines
35 KiB
C

/*********************************************************************************************************
* ------------------------------------------------------------------------------------------------------
* file description
* ------------------------------------------------------------------------------------------------------
* \file intl.c
* \unit intl
* \brief This is a simple large inter number calculate module for C language
* \author Lamdonn
* \version v1.0.0
* \license GPL-2.0
* \copyright Copyright (C) 2023 Lamdonn.
********************************************************************************************************/
#include "intl.h"
/* Internal static function declarations */
static int intl_ucmp(intl a, intl b);
static intl intl_umul(intl a, intl b);
static intl intl_udiv(intl a, intl b, intl *mod);
static intl intl_umod(intl a, intl b);
/**
* \brief Adds two intl numbers.
*
* This function computes the sum of two 128-bit integers
* (intl). It processes each 16-bit part of the input integers,
* handling carry bits as necessary. The result is stored in a
* new intl number. This function ensures that overflow is
* correctly managed across all parts.
*
* \param[in] a: The first operand (intl number).
* \param[in] b: The second operand (intl number).
* \return The sum of a and b as an intl (128-bit integer).
*/
intl intl_add(intl a, intl b)
{
intl result; // Initialize the result variable
uint16_t carry = 0; /** Carry bit */
// Perform addition for each 16-bit part
for (int i = 0; i < INTL_U16_PARTS; i++)
{
// Calculate the sum of corresponding parts and carry
uint32_t sum = (uint32_t)a.u16[i] + (uint32_t)b.u16[i] + carry;
result.u16[i] = (uint16_t)(sum & 0xFFFF); /** Lower 16 bits */
carry = (sum >> 16) & 0xFFFF; /** Upper 16 bits as carry */
}
return result; // Return the resulting intl number
}
/**
* \brief Subtracts one intl number from another.
*
* This function computes the difference of two 128-bit integers
* (intl). It processes each 16-bit part of the minuend and
* subtrahend, handling borrow bits as necessary. The result is
* stored in a new intl number. This function ensures that
* borrowing is correctly managed across all parts.
*
* \param[in] a: The minuend (the number from which another is to be subtracted).
* \param[in] b: The subtrahend (the number to be subtracted).
* \return The result of a - b as an intl (128-bit integer).
*/
intl intl_sub(intl a, intl b)
{
intl result; // Initialize the result variable
// Perform subtraction for each 16-bit part
for (int i = 0; i < INTL_U16_PARTS; i++)
{
uint32_t diff = (uint32_t)a.u16[i] - (uint32_t)b.u16[i];
// Check if a borrow occurred
if (diff & 0xFFFF0000) /** Borrow occurred */
{
// Adjust the higher parts to account for the borrow
for (int j = i + 1; j < INTL_U16_PARTS; j++)
{
a.u16[j] -= 1; // Borrow from the next part
if (a.u16[j] != 0xFFFF) break; // Stop if no further borrow needed
}
}
// Store the result of the subtraction
result.u16[i] = (uint16_t)(diff & 0xFFFF);
}
return result; // Return the resulting intl number
}
/**
* \brief Increments the intl number by one.
*
* This function increments a 128-bit integer (intl) by one.
* It processes each 32-bit part of the input integer and
* handles carry bits as necessary. The function continues
* to increment the subsequent parts until there is no overflow.
*
* \param[in] a: The intl number to increment.
* \return The incremented intl number as an intl (128-bit integer).
*/
intl intl_inc(intl a)
{
// Increment each 32-bit part of the intl number
for (int i = 0; i < INTL_U32_PARTS; i++)
{
a.u32[i]++; // Increment the current part
// Check if the current part overflowed
if (a.u32[i] != 0)
{
break; /** Return immediately if no overflow */
}
}
return a; /** Return the incremented result */
}
/**
* \brief Decrements the intl number by one.
*
* This function decrements a 128-bit integer (intl) by one.
* It processes each 32-bit part of the input integer, handling
* borrowing as necessary. If the current part is zero, it sets
* that part to its maximum value (0xFFFFFFFF) and continues
* to the next part to borrow from it.
*
* \param[in] a: The intl number to decrement.
* \return The decremented intl number as an intl (128-bit integer).
*/
intl intl_dec(intl a)
{
// Decrement each 32-bit part of the intl number
for (int i = 0; i < INTL_U32_PARTS; i++)
{
// Check if the current part can be decremented
if (a.u32[i] != 0)
{
a.u32[i]--; // Decrement the current part
break; /** Return immediately if current part can be decremented */
}
// If current part is zero, set it to max value and continue borrowing
a.u32[i] = 0xFFFFFFFF;
}
return a; /** Return the decremented result */
}
/**
* \brief Multiplies two intl unsigned numbers.
*
* This function performs multiplication of two 128-bit unsigned integers
* (intl) by using a method similar to the schoolbook algorithm. The
* multiplication is carried out by breaking the numbers into their
* 16-bit components and accumulating the results. The function handles
* carry-over during the multiplication and addition stages to ensure
* the final product is accurately represented.
*
* \param[in] a: The first operand to multiply.
* \param[in] b: The second operand to multiply.
* \return The product of a and b as an intl (128-bit unsigned integer).
*/
static intl intl_umul(intl a, intl b)
{
intl result = {0}; /** Initialize the result to 0 */
intl temp[INTL_U16_PARTS] = {{0}}; // Temporary storage for intermediate results
uint16_t carry = 0; // Variable to hold carry-over during multiplication
// Perform multiplication
for (int i = 0; i < INTL_U16_PARTS; i++)
{
carry = 0; // Reset carry for the current row
for (int j = 0; j < INTL_U16_PARTS; j++)
{
if (i + j < INTL_U16_PARTS)
{
// Multiply the 16-bit segments and add carry
uint32_t mul = (uint32_t)a.u16[i] * (uint32_t)b.u16[j] + carry;
temp[i].u16[i + j] = (mul & 0xFFFF); // Store the lower 16 bits
carry = ((mul >> 16) & 0xFFFF); // Update carry for the next addition
}
}
}
carry = 0; // Reset carry for the addition phase
// Combine results from the temporary storage
for (int i = 0; i < INTL_U16_PARTS; i++)
{
uint32_t add = 0; // Variable to hold the sum of the current column
for (int j = 0; j < INTL_U16_PARTS; j++)
{
add += temp[j].u16[i]; // Accumulate results from temp
}
add += carry; // Add any carry from the previous column
result.u16[i] = (add & 0xFFFF); // Store the lower 16 bits in result
carry = ((add >> 16) & 0xFFFF); // Update carry for the next column
}
return result; // Return the final product
}
/**
* \brief Multiplies two intl numbers.
*
* This function multiplies two 128-bit integers (intl) and returns
* the product as another intl number. It handles signed multiplication
* by checking the sign of the operands. If either operand is negative,
* it negates the operand and adjusts the sign of the result accordingly.
* The actual multiplication is performed using the `intl_umul`
* function, which handles the absolute values of the integers.
*
* \param[in] a: The first operand to multiply.
* \param[in] b: The second operand to multiply.
* \return The product of a and b as an intl (128-bit integer).
*/
intl intl_mul(intl a, intl b)
{
intl result = {0}; // Initialize the result to 0
int sign = 1; // Variable to track the sign of the result
// Check and handle the sign of the first operand
if (a.u32[INTL_U32_PARTS - 1] & 0x80000000)
{
sign = -sign; // Negate the sign for the result
a = intl_neg(a); // Negate the first operand
}
// Check and handle the sign of the second operand
if (b.u32[INTL_U32_PARTS - 1] & 0x80000000)
{
sign = -sign; // Negate the sign for the result
b = intl_neg(b); // Negate the second operand
}
// Perform unsigned multiplication
result = intl_umul(a, b);
// If the result should be negative, negate it
if (sign < 0)
result = intl_neg(result);
return result; // Return the final product
}
/**
* \brief Divides one intl unsigned number by another.
*
* This function performs division of one 128-bit unsigned integer (intl)
* by another. It calculates the quotient using a bitwise approach,
* handling division by zero gracefully. The result is built bit by bit
* from the most significant bit to the least significant bit. If the
* divisor is zero, it prints an error message and returns zero.
*
* \param[in] a: The dividend (number to be divided).
* \param[in] b: The divisor (number to divide by).
* \return The quotient of a divided by b as an intl (128-bit unsigned integer).
*/
static intl intl_udiv(intl a, intl b, intl *mod)
{
// Check for division by zero
if (intl_sign(b) == 0)
{
printf("Division by zero!\n");
return (intl){0}; /** Handle division by zero */
}
intl result = {0}; // Initialize the result to zero
intl remainder = {0}; // Initialize the remainder to zero
/** Calculate bit by bit from the highest bit */
for (int i = INTL_BIT_PARTS - 1; i >= 0; i--)
{
/** Left shift remainder and add current bit */
remainder = intl_shl(remainder, 1); // Shift remainder left by 1
remainder.u32[0] |= (a.u32[i / 32] >> (i % 32)) & 1; // Add current bit from dividend
/** If remainder is greater than or equal to b, subtract b */
if (intl_ucmp(remainder, b) >= 0)
{
remainder = intl_sub(remainder, b); // Subtract b from remainder
result.u32[i / 32] |= (1 << (i % 32)); // Set corresponding bit in result
}
}
if (mod) *mod = remainder;
return result; // Return the final quotient
}
/**
* \brief Divides one intl number by another.
*
* This function performs division of two 128-bit integers (intl)
* and returns the quotient as another intl number. It handles signed
* division by checking the sign of the operands. If either operand
* is negative, it negates the operand and adjusts the sign of the
* result accordingly. The actual division is performed using the
* `intl_udiv` function, which handles the absolute values of
* the integers.
*
* \param[in] a: The dividend (number to be divided).
* \param[in] b: The divisor (number to divide by).
* \return The quotient of a divided by b as an intl (128-bit integer).
*/
intl intl_div(intl a, intl b)
{
intl result = {0}; // Initialize the result to 0
int sign = 1; // Variable to track the sign of the result
// Check and handle the sign of the dividend
if (a.u32[INTL_U32_PARTS - 1] & 0x80000000)
{
sign = -sign; // Negate the sign for the result
a = intl_neg(a); // Negate the dividend
}
// Check and handle the sign of the divisor
if (b.u32[INTL_U32_PARTS - 1] & 0x80000000)
{
sign = -sign; // Negate the sign for the result
b = intl_neg(b); // Negate the divisor
}
// Perform unsigned division
result = intl_udiv(a, b, NULL);
// If the result should be negative, negate it
if (sign < 0)
result = intl_neg(result);
return result; // Return the final quotient
}
/**
* \brief Computes the remainder of the division of two unsigned intl numbers.
*
* This function calculates the remainder of the division of two
* 128-bit unsigned integers (intl). It uses a bitwise approach to
* compute the remainder by processing each bit from the most significant
* to the least significant. If the divisor is zero, it handles the
* error gracefully by printing a message and returning zero.
*
* \param[in] a: The dividend (number to be divided).
* \param[in] b: The divisor (number to divide by).
* \return The remainder of a divided by b as an intl (128-bit unsigned integer).
*/
static intl intl_umod(intl a, intl b)
{
intl mod = {0};
intl_udiv(a, b, &mod);
return mod;
}
/**
* \brief Computes the remainder of the division of two intl numbers.
*
* This function calculates the remainder of the division of two
* 128-bit integers (intl). It handles signed integers by checking
* the sign of the dividend. If the dividend is negative, it negates
* the dividend before performing the unsigned modulus operation.
* The sign of the result is adjusted based on the sign of the
* dividend. The actual remainder calculation is performed using the
* `intl_umod` function, which handles the absolute values of
* the integers.
*
* \param[in] a: The dividend (number to be divided).
* \param[in] b: The divisor (number to divide by).
* \return The remainder of a divided by b as an intl (128-bit integer).
*/
intl intl_mod(intl a, intl b)
{
intl result = {0}; // Initialize result to zero
int sign = 1; // Variable to track the sign of the result
// Check and handle the sign of the dividend
if (a.u32[INTL_U32_PARTS - 1] & 0x80000000)
{
sign = -sign; // Negate the sign for the result
a = intl_neg(a); // Negate the dividend
}
// Perform unsigned modulus with the absolute value of the divisor
result = intl_umod(a, intl_abs(b));
// If the result should be negative, negate it
if (sign < 0)
result = intl_neg(result);
return result; // Return the final remainder
}
/**
* \brief Left shifts an intl number by a specified number of bits.
*
* This function performs a left bitwise shift on a 128-bit integer
* (intl). The shift amount can be greater than 32 bits, in which case
* the function calculates how many whole 32-bit parts to shift and
* how many bits to shift within the remaining part. It constructs
* the result based on the input number after applying the shift.
*
* \param[in] a: The intl number to shift.
* \param[in] amount: The number of bits to shift to the left.
* \return The left-shifted intl number.
*/
intl intl_shl(intl a, uint32_t amount)
{
intl result = {0}; // Initialize the result to zero
int u32bias = amount / 32; // Number of whole 32-bit parts to shift
int bitsbias = amount % 32; // Remaining bits to shift
// Perform the shift for each 32-bit part of the intl number
for (int i = 0; i < INTL_U32_PARTS; i++)
{
if (i < u32bias)
{
result.u32[i] = 0; // Set shifted-out parts to zero
}
else
{
// Shift the current part and add bits from the previous part if needed
result.u32[i] = (a.u32[i - u32bias] << bitsbias) |
(((i - u32bias - 1) >= 0 && bitsbias > 0) ?
(a.u32[i - u32bias - 1] >> (32 - bitsbias)) : 0);
}
}
return result; // Return the left-shifted result
}
/**
* \brief Right shifts an intl number by a specified number of bits.
*
* This function performs a right bitwise shift on a 128-bit integer
* (intl). The shift amount can be greater than 32 bits, in which case
* the function calculates how many whole 32-bit parts to shift and
* how many bits to shift within the remaining part. It constructs
* the result based on the input number after applying the shift.
* The sign bit is preserved for signed shifts.
*
* \param[in] a: The intl number to shift.
* \param[in] amount: The number of bits to shift to the right.
* \return The right-shifted intl number.
*/
intl intl_shr(intl a, uint32_t amount)
{
intl result = {0}; // Initialize the result to zero
int u32bias = amount / 32; // Number of whole 32-bit parts to shift
int bitsbias = amount % 32; // Remaining bits to shift
// Perform the shift for each 32-bit part of the intl number
for (int i = 0; i < INTL_U32_PARTS; i++)
{
// Check if the current index is beyond the range for valid shifts
if (i > INTL_U32_PARTS - u32bias - 1 && INTL_U32_PARTS - u32bias - 1 > 0)
{
result.u32[i] = 0; // Set shifted-out parts to zero
}
else
{
// Shift the current part and add bits from the next part if needed
result.u32[i] = (a.u32[i + u32bias] >> bitsbias) |
(((i + u32bias + 1) < INTL_U32_PARTS && bitsbias > 0) ?
(a.u32[i + u32bias + 1] << (32 - bitsbias)) :
((a.u32[INTL_U32_PARTS - 1] & 0x80000000) ? 0xFFFFFFFF : 0));
}
}
return result; // Return the right-shifted result
}
/**
* \brief Performs bitwise AND operation on two intl numbers.
*
* This function computes the bitwise AND of two 128-bit integers
* (intl). It processes each 32-bit part of the input integers and
* performs the AND operation on corresponding parts, storing the
* result in a new intl number. This operation yields a number that
* has bits set only where both operands have bits set.
*
* \param[in] a: The first operand (intl number).
* \param[in] b: The second operand (intl number).
* \return The result of a AND b as an intl (128-bit integer).
*/
intl intl_and(intl a, intl b)
{
intl result; // Initialize the result variable
// Perform the bitwise AND operation for each 32-bit part
for (int i = 0; i < INTL_U32_PARTS; i++)
{
result.u32[i] = a.u32[i] & b.u32[i]; // Compute AND for each part
}
return result; // Return the resulting intl number
}
/**
* \brief Performs bitwise OR operation on two intl numbers.
*
* This function computes the bitwise OR of two 128-bit integers
* (intl). It processes each 32-bit part of the input integers and
* performs the OR operation on corresponding parts, storing the
* result in a new intl number. This operation yields a number that
* has bits set where at least one of the operands has bits set.
*
* \param[in] a: The first operand (intl number).
* \param[in] b: The second operand (intl number).
* \return The result of a OR b as an intl (128-bit integer).
*/
intl intl_or(intl a, intl b)
{
intl result; // Initialize the result variable
// Perform the bitwise OR operation for each 32-bit part
for (int i = 0; i < INTL_U32_PARTS; i++)
{
result.u32[i] = a.u32[i] | b.u32[i]; // Compute OR for each part
}
return result; // Return the resulting intl number
}
/**
* \brief Performs bitwise XOR operation on two intl numbers.
*
* This function computes the bitwise XOR of two 128-bit integers
* (intl). It processes each 32-bit part of the input integers and
* performs the XOR operation on corresponding parts, storing the
* result in a new intl number. This operation yields a number that
* has bits set where only one of the operands has bits set.
*
* \param[in] a: The first operand (intl number).
* \param[in] b: The second operand (intl number).
* \return The result of a XOR b as an intl (128-bit integer).
*/
intl intl_xor(intl a, intl b)
{
intl result; // Initialize the result variable
// Perform the bitwise XOR operation for each 32-bit part
for (int i = 0; i < INTL_U32_PARTS; i++)
{
result.u32[i] = a.u32[i] ^ b.u32[i]; // Compute XOR for each part
}
return result; // Return the resulting intl number
}
/**
* \brief Performs bitwise NOT operation on an intl number.
*
* This function computes the bitwise NOT (negation) of a 128-bit
* integer (intl). It processes each 32-bit part of the input integer
* and applies the NOT operation, storing the result in a new intl
* number. This operation inverts all bits of the input number.
*
* \param[in] a: The intl number to negate.
* \return The bitwise negation of a as an intl (128-bit integer).
*/
intl intl_not(intl a)
{
intl result; // Initialize the result variable
// Perform the bitwise NOT operation for each 32-bit part
for (int i = 0; i < INTL_U32_PARTS; i++)
{
result.u32[i] = ~a.u32[i]; // Compute NOT for each part
}
return result; // Return the resulting intl number
}
/**
* \brief Computes the absolute value of an intl number.
*
* This function checks if the given 128-bit unsigned integer (intl)
* represents a negative value in two's complement representation.
* If the most significant bit (sign bit) of the highest 32-bit segment
* is set, it indicates a negative number, and the function calls
* intl_neg to return its positive equivalent. If the number is
* already non-negative, it simply returns the original number.
*
* \param[in] a: The intl number for which to compute the absolute value.
* \return The absolute value of the intl number a.
*/
intl intl_abs(intl a)
{
// Check if the sign bit of the highest 32-bit part is set
if (a.u32[INTL_U32_PARTS - 1] & 0x80000000)
return intl_neg(a); // Return negated value if negative
return a; // Return the original value if non-negative
}
/**
* \brief Converts a string to an intl number.
*
* This function converts a string representation of a number
* in various bases (decimal, binary, octal, hexadecimal)
* into a 128-bit integer (intl). It handles optional signs
* and base prefixes, and processes the string from the end to
* the start for efficiency in base conversions.
*
* \param[in] str: The string to convert.
* \return The converted intl number. Returns zero if the
* string is invalid or represents zero.
*/
intl intl_from(const char *str)
{
const uint8_t ttable[4] = {10, 2, 8, 16}; // Table of digit limits for each base
const uint8_t btable[4] = {0, 1, 3, 4}; // Table of bit shifts for each base
uint32_t type = 0; // 0 - decimal, 1 - binary, 2 - octal, 3 - hexadecimal
intl result = {0}; // Resulting intl number
intl base = intl(1); /** Base initialized to 1 */
int sign = 1; // Sign of the number (1 for positive, -1 for negative)
const char *p = str; // Pointer to traverse the input string
// Determine the number type based on the string prefix
switch (*p)
{
case '0': {
if (p[1] == 0) { return (intl){0}; } // Handle case of "0"
else if (p[1] == 'x' || p[1] == 'X') type = 3; // Hexadecimal
else if (p[1] == 'o' || p[1] == 'O') type = 2; // Octal
else if (p[1] == 'b' || p[1] == 'B') type = 1; // Binary
else if (p[1] < '0' || p[1] >= '0' + ttable[type]) return (intl){0};
p += 2; // Move past the prefix
} break;
case '-': { sign = -1; } // Handle negative sign
case '+': { p++; } break; // Handle positive sign
default:
break; // No sign or prefix
}
uint32_t len = strlen(p); // Length of the number string
const char *s = &p[len - 1]; // Pointer to the last character of the number string
// Process decimal numbers
if (type == 0)
{
while (s >= p) // Traverse the string backwards
{
char c = *s;
if (c >= '0' && c <= '9')
{
uint32_t num = c - '0'; /** Convert character to number */
/** Process current digit */
intl addend = intl_umul(base, (intl){num}); // Multiply base by the digit
result = intl_add(result, addend); // Add to result
/** Multiply base by 10 for the next digit */
base = intl_umul(base, (intl){10});
}
else
{
printf("Invalid character in input string: %c\n", *s); // Error handling
return (intl){0}; // Return zero for invalid input
}
s--; // Move to the previous character
}
if (sign == -1) // Apply sign if negative
{
result = intl_neg(result);
}
}
else
{
// Process non-decimal bases (binary, octal, hexadecimal)
uint8_t bit = 0; // Bit position within the current u32 part
int index = 0; // Current index in the result array
while (s >= p && index < INTL_U32_PARTS)
{
char c = *s;
// Adjust character for hex representation
if (c >= 'A' && c <= 'F') c -= 7; // A-F to 10-15
else if (c >= 'a' && c <= 'f') c -= 39; // a-f to 10-15
// Validate and process the character
if (c >= '0' && c < ('0' + ttable[type]))
{
result.u32[index] |= ((c - '0') << bit); // Set the value in the corresponding bit
bit += btable[type]; // Update the bit position
if (bit >= 32) // If bit exceeds 32, move to the next part
{
bit -= 32; // Reset bit position
index++; // Move to the next u32 part
}
}
else
{
printf("Invalid character in input string: %c\n", *s); // Error handling
return (intl){0}; // Return zero for invalid input
}
s--; // Move to the previous character
}
}
return result; // Return the resulting intl number
}
/**
* \brief Converts a 32-bit unsigned integer to an intl number.
*
* This function initializes the first 32-bit segment of the intl structure
* with the provided 32-bit unsigned integer value, while the other segments
* are set to zero. This allows for easy conversion from a standard integer type
* to the custom 128-bit representation.
*
* \param[in] value: The 32-bit unsigned integer to convert.
* \return The corresponding intl number initialized with the given value.
*/
intl intl_from2(int value)
{
intl result = {0};
memcpy(&result, &value, sizeof(value));
if (value < 0)
{
memset(((char *)(&result)) + sizeof(value), -1, sizeof(result) - sizeof(value));
}
return result;
}
/**
* \brief Determines the sign of an intl number.
*
* This function checks the sign of the given 128-bit unsigned integer
* (intl) based on its representation. It first examines the most significant
* bit of the highest 32-bit segment to determine if the number is negative.
* If this bit is set, the function returns -1, indicating a negative value.
* If all segments are zero, it returns 0, indicating that the number is zero.
* If the number is positive, it returns 1.
*
* \param[in] a: The intl number to evaluate for its sign.
* \return -1 if the number is negative, 0 if the number is zero, and
* 1 if the number is positive.
*/
int intl_sign(intl a)
{
// Check if the sign bit of the highest 32-bit part is set
if (a.u32[INTL_U32_PARTS - 1] & 0x80000000) return -1;
// Check if the number is zero
for (int i = INTL_U32_PARTS - 1; i >= 0; i--)
{
if (a.u32[i] != 0) return 1; // Return 1 if any part is non-zero
}
return 0; // Return 0 if all parts are zero
}
/**
* \brief Converts an intl number to a decimal string.
*
* This function converts a 128-bit integer (intl) into its
* decimal string representation. The resulting string is
* constructed by repeatedly dividing the number by 10 and
* storing the remainders. The function handles both positive
* and negative integers, including the special case where the
* number is zero.
*
* \param[in] a: The intl number to convert.
* \param[out] buffer: The buffer to store the resulting decimal string.
*
* \return A pointer to the resulting decimal string.
*/
const char* intl_sdec(intl a, char buffer[INTL_MAX_DEC])
{
intl ten = intl(10); /** Base 10 for conversion */
intl remainder; // To hold the remainder during division
intl temp = a; // Temporary variable for manipulation
char *p = buffer; // Pointer for writing to the buffer
// Check if the number is negative
if (a.u32[INTL_U32_PARTS - 1] & 0x80000000) // Check sign bit
{
temp = intl_neg(a); // Negate the number for conversion
}
/** Calculate decimal string of intl */
while (intl_ucmp(temp, (intl){0}) > 0) // While the number is positive
{
remainder = intl_umod(temp, ten); // Get remainder when divided by 10
char digit = '0' + remainder.u32[0]; // Convert remainder to character
*p++ = digit; // Store character in buffer
temp = intl_udiv(temp, ten, NULL); // Update temp for integer division by 10
}
// Handle special case for 0
if (p == buffer)
{
*p++ = '0'; // If no digits were added, it's zero
*p = 0; // Null-terminate the string
}
else
{
// If the original number was negative, add '-' sign
if (a.u32[INTL_U32_PARTS - 1] & 0x80000000)
{
*p++ = '-'; // Append negative sign
}
*p-- = 0; // Null-terminate the string
// Reverse the string to correct the order of digits
char *s = buffer; // Pointer to the start of the buffer
while (s < p) // Swap characters
{
char t = *s; // Temporary variable for swapping
*s = *p; // Swap start and end
*p = t;
s++; // Move pointers towards the center
p--;
}
}
return buffer; // Return the resulting decimal string
}
/**
* \brief Converts an intl number to a hexadecimal string.
*
* This function converts a 128-bit integer (intl) into a
* hexadecimal string representation. The resulting string is
* formatted as a sequence of hexadecimal digits, with each
* part of the intl number contributing 8 digits to the final
* string. The string is stored in the provided buffer.
*
* \param[in] a: The intl number to convert.
* \param[out] buffer: The buffer to store the resulting hexadecimal string.
*
* \return A pointer to the resulting hexadecimal string.
*/
const char* intl_shex(intl a, char buffer[INTL_MAX_HEX])
{
char temp[9]; /** Temporary buffer for each part (8 hex digits + null terminator) */
char skip = 1; /** Skip invalid 0 */
char *p = buffer;
buffer[0] = '\0'; /** Initialize as empty string */
// Convert each part of the intl number to hexadecimal, starting from the least significant part
for (int i = INTL_U32_PARTS - 1; i >= 0; i--)
{
if (skip == 1)
{
if (a.u32[i] != 0) skip = 0;
else continue; /** Prevent leading zero */
}
snprintf(temp, sizeof(temp), "%08X", a.u32[i]); /** Convert to hex and store in temp */
strcat(p, temp); /** Append converted hex to the result string */
p += 8;
}
/** Prevent leading zero */
while (*buffer == '0') buffer++; // Uncomment this line to remove leading zeros
/** a == 0, print 0 only */
if (p == buffer)
{
buffer[0] = '0';
buffer[1] = '\0';
}
return buffer; /** Return the resulting hexadecimal string */
}
/**
* \brief Converts an intl number to a binary string.
*
* This function converts a given 128-bit unsigned integer (intl)
* into a binary string representation. It extracts each bit of the
* integer and stores the corresponding '0' or '1' character in the
* provided buffer. The resulting string is left-aligned, with leading
* zeros trimmed.
*
* \param[in] a: The intl number to convert.
* \param[out] buffer: The buffer to store the resulting binary string.
* It should be large enough to hold the binary
* representation (at least INTL_MAX_BIN characters).
* \return A pointer to the first non-zero character in the binary string,
* or a pointer to the buffer if the number is zero.
*/
const char* intl_sbin(intl a, char buffer[INTL_MAX_BIN])
{
int i, j;
uint8_t *base = (uint8_t *)&a; // Cast intl to a byte array
int width = sizeof(a); // Get the size of intl
char *p = buffer; // Pointer to the current position in buffer
// Convert each byte to binary
for (i = width - 1; i >= 0; i--)
{
for (j = 7; j >= 0; j--)
{
*p++ = (((base[i]) >> (j) & 1) ? '1' : '0'); // Extract bits
}
}
*p = 0; // Null-terminate the string
// Trim leading zeros and find the first '1'
while (buffer < p - 1)
{
if (*buffer == '1') break; // Stop at the first '1'
buffer++; // Skip leading zeros
}
return buffer; // Return pointer to the trimmed string
}
/**
* \brief Compares two intl unsigned numbers.
*
* This function compares two 128-bit unsigned integers (intl)
* by examining each 32-bit segment from the most significant to
* the least significant. It returns 1 if the first number is
* greater than the second, -1 if it is less, and 0 if they are
* equal. The comparison is done in a way that respects the
* unsigned nature of the integers.
*
* \param[in] a: The first number to compare.
* \param[in] b: The second number to compare.
* \return 1 if a > b, -1 if a < b, and 0 if a == b.
*/
static int intl_ucmp(intl a, intl b)
{
// Compare each 32-bit part from the most significant to the least significant
for (int i = INTL_U32_PARTS - 1; i >= 0; i--)
{
if (a.u32[i] > b.u32[i]) return 1; // a is greater
if (a.u32[i] < b.u32[i]) return -1; // a is less
}
return 0; // a and b are equal
}
/**
* \brief Compares two intl numbers.
*
* This function compares two 128-bit integers (intl) and
* determines their relative order. The comparison is performed
* starting from the most significant part (highest order) to
* the least significant part (lowest order).
*
* \param[in] a: The first number to compare.
* \param[in] b: The second number to compare.
*
* \return 1 if a > b, -1 if a < b, 0 if a == b.
*/
int intl_cmp(intl a, intl b)
{
// Compare each 32-bit part from the most significant to the least significant
for (int i = INTL_U32_PARTS - 1; i >= 0; i--)
{
// Compare the current parts as signed integers
if ((int32_t)a.u32[i] > (int32_t)b.u32[i]) return 1; // a is greater
if ((int32_t)a.u32[i] < (int32_t)b.u32[i]) return -1; // a is less
}
return 0; // a is equal to b
}
/**
* \brief Computes the two's complement (negation) of an intl number.
*
* This function calculates the negative representation of a given 128-bit
* unsigned integer (intl) using two's complement. It first inverts all bits
* of the input number and then adds one to the result. This effectively
* represents the negative value of the original number in a signed
* integer format.
*
* \param[in] a: The intl number to negate.
* \return The negated intl number (two's complement of a).
*/
intl intl_neg(intl a)
{
intl result = {0};
// First, bitwise NOT (invert) the input number
for (int i = 0; i < INTL_U32_PARTS; i++)
{
result.u32[i] = ~a.u32[i];
}
// Add one to complete the two's complement operation
return intl_inc(result);
}