wepoll/wepoll.c
2017-12-09 23:30:06 +01:00

2755 lines
100 KiB
C

/*
* wepoll - epoll for Windows
* Copyright 2012-2017, Bert Belder. All rights reserved.
*
* The red-black tree implementation:
* Copyright 2002 Niels Provos <provos@citi.umich.edu> All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef WEPOLL_EXPORT
#define WEPOLL_EXPORT
#endif
#include <stdint.h>
/* clang-format off */
enum EPOLL_EVENTS {
EPOLLIN = 1 << 0,
EPOLLPRI = 1 << 1,
EPOLLOUT = 1 << 2,
EPOLLERR = 1 << 3,
EPOLLHUP = 1 << 4,
EPOLLRDNORM = 1 << 6,
EPOLLRDBAND = 1 << 7,
EPOLLWRNORM = 1 << 8,
EPOLLWRBAND = 1 << 9,
EPOLLMSG = 1 << 10, /* Never reported. */
EPOLLRDHUP = 1 << 13,
EPOLLONESHOT = 1 << 31
};
#define EPOLLIN ((uint32_t) EPOLLIN)
#define EPOLLPRI ((uint32_t) EPOLLPRI)
#define EPOLLOUT ((uint32_t) EPOLLOUT)
#define EPOLLERR ((uint32_t) EPOLLERR)
#define EPOLLHUP ((uint32_t) EPOLLHUP)
#define EPOLLRDNORM ((uint32_t) EPOLLRDNORM)
#define EPOLLRDBAND ((uint32_t) EPOLLRDBAND)
#define EPOLLWRNORM ((uint32_t) EPOLLWRNORM)
#define EPOLLWRBAND ((uint32_t) EPOLLWRBAND)
#define EPOLLMSG ((uint32_t) EPOLLMSG)
#define EPOLLRDHUP ((uint32_t) EPOLLRDHUP)
#define EPOLLONESHOT ((uint32_t) EPOLLONESHOT)
#define EPOLL_CTL_ADD 1
#define EPOLL_CTL_MOD 2
#define EPOLL_CTL_DEL 3
/* clang-format on */
typedef void* HANDLE;
typedef uintptr_t SOCKET;
typedef union epoll_data {
void* ptr;
int fd;
uint32_t u32;
uint64_t u64;
SOCKET sock; /* Windows specific */
HANDLE hnd; /* Windows specific */
} epoll_data_t;
struct epoll_event {
uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
#ifdef __cplusplus
extern "C" {
#endif
WEPOLL_EXPORT HANDLE epoll_create(int size);
WEPOLL_EXPORT HANDLE epoll_create1(int flags);
WEPOLL_EXPORT int epoll_close(HANDLE ephnd);
WEPOLL_EXPORT int epoll_ctl(HANDLE ephnd,
int op,
SOCKET sock,
struct epoll_event* event);
WEPOLL_EXPORT int epoll_wait(HANDLE ephnd,
struct epoll_event* events,
int maxevents,
int timeout);
#ifdef __cplusplus
} /* extern "C" */
#endif
#define WEPOLL_INTERNAL static
#define WEPOLL_INTERNAL_VAR static
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#if defined(_WIN32_WINNT) && _WIN32_WINNT < 0x0600
#undef _WIN32_WINNT
#endif
#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x0600
#endif
#ifndef __GNUC__
#pragma warning(push, 1)
#endif
#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#ifndef __GNUC__
#pragma warning(pop)
#endif
#ifndef ERROR_DEVICE_FEATURE_NOT_SUPPORTED
/* Windows headers distributed with MinGW lack a definition for this. */
#define ERROR_DEVICE_FEATURE_NOT_SUPPORTED 316L
#endif
WEPOLL_INTERNAL int nt_global_init(void);
typedef LONG NTSTATUS;
typedef NTSTATUS* PNTSTATUS;
#ifndef NT_SUCCESS
#define NT_SUCCESS(status) (((NTSTATUS)(status)) >= 0)
#endif
#ifndef STATUS_SUCCESS
#define STATUS_SUCCESS ((NTSTATUS) 0x00000000L)
#endif
#ifndef STATUS_WAIT_0
#define STATUS_WAIT_0 ((NTSTATUS) 0x00000000L)
#endif
#ifndef STATUS_WAIT_1
#define STATUS_WAIT_1 ((NTSTATUS) 0x00000001L)
#endif
#ifndef STATUS_WAIT_2
#define STATUS_WAIT_2 ((NTSTATUS) 0x00000002L)
#endif
#ifndef STATUS_WAIT_3
#define STATUS_WAIT_3 ((NTSTATUS) 0x00000003L)
#endif
#ifndef STATUS_WAIT_63
#define STATUS_WAIT_63 ((NTSTATUS) 0x0000003FL)
#endif
#ifndef STATUS_ABANDONED
#define STATUS_ABANDONED ((NTSTATUS) 0x00000080L)
#endif
#ifndef STATUS_ABANDONED_WAIT_0
#define STATUS_ABANDONED_WAIT_0 ((NTSTATUS) 0x00000080L)
#endif
#ifndef STATUS_ABANDONED_WAIT_63
#define STATUS_ABANDONED_WAIT_63 ((NTSTATUS) 0x000000BFL)
#endif
#ifndef STATUS_USER_APC
#define STATUS_USER_APC ((NTSTATUS) 0x000000C0L)
#endif
#ifndef STATUS_KERNEL_APC
#define STATUS_KERNEL_APC ((NTSTATUS) 0x00000100L)
#endif
#ifndef STATUS_ALERTED
#define STATUS_ALERTED ((NTSTATUS) 0x00000101L)
#endif
#ifndef STATUS_TIMEOUT
#define STATUS_TIMEOUT ((NTSTATUS) 0x00000102L)
#endif
#ifndef STATUS_PENDING
#define STATUS_PENDING ((NTSTATUS) 0x00000103L)
#endif
#ifndef STATUS_CANCELLED
#define STATUS_CANCELLED ((NTSTATUS) 0xC0000120L)
#endif
typedef struct _IO_STATUS_BLOCK {
union {
NTSTATUS Status;
PVOID Pointer;
};
ULONG_PTR Information;
} IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;
typedef VOID(NTAPI* PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);
typedef struct _LSA_UNICODE_STRING {
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;
} LSA_UNICODE_STRING, *PLSA_UNICODE_STRING, UNICODE_STRING, *PUNICODE_STRING;
typedef struct _OBJECT_ATTRIBUTES {
ULONG Length;
HANDLE RootDirectory;
PUNICODE_STRING ObjectName;
ULONG Attributes;
PVOID SecurityDescriptor;
PVOID SecurityQualityOfService;
} OBJECT_ATTRIBUTES, *POBJECT_ATTRIBUTES;
#define NTDLL_IMPORT_LIST(X) \
X(NTSTATUS, \
NTAPI, \
NtDeviceIoControlFile, \
(HANDLE FileHandle, \
HANDLE Event, \
PIO_APC_ROUTINE ApcRoutine, \
PVOID ApcContext, \
PIO_STATUS_BLOCK IoStatusBlock, \
ULONG IoControlCode, \
PVOID InputBuffer, \
ULONG InputBufferLength, \
PVOID OutputBuffer, \
ULONG OutputBufferLength)) \
\
X(ULONG, WINAPI, RtlNtStatusToDosError, (NTSTATUS Status)) \
\
X(NTSTATUS, \
NTAPI, \
NtCreateKeyedEvent, \
(PHANDLE handle, \
ACCESS_MASK access, \
POBJECT_ATTRIBUTES attr, \
ULONG flags)) \
\
X(NTSTATUS, \
NTAPI, \
NtWaitForKeyedEvent, \
(HANDLE handle, PVOID key, BOOLEAN alertable, PLARGE_INTEGER mstimeout)) \
\
X(NTSTATUS, \
NTAPI, \
NtReleaseKeyedEvent, \
(HANDLE handle, PVOID key, BOOLEAN alertable, PLARGE_INTEGER mstimeout))
#define X(return_type, attributes, name, parameters) \
WEPOLL_INTERNAL_VAR return_type(attributes* name) parameters;
NTDLL_IMPORT_LIST(X)
#undef X
#include <stddef.h>
#ifndef _SSIZE_T_DEFINED
#define _SSIZE_T_DEFINED
typedef intptr_t ssize_t;
#endif
#define array_count(a) (sizeof(a) / (sizeof((a)[0])))
#define container_of(ptr, type, member) \
((type*) ((char*) (ptr) -offsetof(type, member)))
#define safe_container_of(ptr, type, member) \
((type*) util_safe_container_of_helper((ptr), offsetof(type, member)))
#define unused_var(v) ((void) (v))
#if defined(__clang__) || defined(__GNUC__)
#define unused_fn __attribute__((__unused__))
#else
#define unused_fn /* nothing */
#endif
#if defined(_MSC_VER) && _MSC_VER < 1900
/* Polyfill `inline` for msvc 12 (Visual Studio 2013) */
#define inline __inline
#endif
#if !defined(static_assert) && !defined(_MSC_VER)
/* Polyfill `static_assert` for some versions of clang and gcc. */
#define static_assert(condition, message) typedef __attribute__( \
(__unused__)) int __static_assert_##__LINE__[(condition) ? 1 : -1];
#endif
WEPOLL_INTERNAL void* util_safe_container_of_helper(void* ptr, size_t offset);
/* clang-format off */
#define AFD_NO_FAST_IO 0x00000001
#define AFD_OVERLAPPED 0x00000002
#define AFD_IMMEDIATE 0x00000004
#define AFD_POLL_RECEIVE_BIT 0
#define AFD_POLL_RECEIVE (1 << AFD_POLL_RECEIVE_BIT)
#define AFD_POLL_RECEIVE_EXPEDITED_BIT 1
#define AFD_POLL_RECEIVE_EXPEDITED (1 << AFD_POLL_RECEIVE_EXPEDITED_BIT)
#define AFD_POLL_SEND_BIT 2
#define AFD_POLL_SEND (1 << AFD_POLL_SEND_BIT)
#define AFD_POLL_DISCONNECT_BIT 3
#define AFD_POLL_DISCONNECT (1 << AFD_POLL_DISCONNECT_BIT)
#define AFD_POLL_ABORT_BIT 4
#define AFD_POLL_ABORT (1 << AFD_POLL_ABORT_BIT)
#define AFD_POLL_LOCAL_CLOSE_BIT 5
#define AFD_POLL_LOCAL_CLOSE (1 << AFD_POLL_LOCAL_CLOSE_BIT)
#define AFD_POLL_CONNECT_BIT 6
#define AFD_POLL_CONNECT (1 << AFD_POLL_CONNECT_BIT)
#define AFD_POLL_ACCEPT_BIT 7
#define AFD_POLL_ACCEPT (1 << AFD_POLL_ACCEPT_BIT)
#define AFD_POLL_CONNECT_FAIL_BIT 8
#define AFD_POLL_CONNECT_FAIL (1 << AFD_POLL_CONNECT_FAIL_BIT)
#define AFD_POLL_QOS_BIT 9
#define AFD_POLL_QOS (1 << AFD_POLL_QOS_BIT)
#define AFD_POLL_GROUP_QOS_BIT 10
#define AFD_POLL_GROUP_QOS (1 << AFD_POLL_GROUP_QOS_BIT)
#define AFD_NUM_POLL_EVENTS 11
#define AFD_POLL_ALL ((1 << AFD_NUM_POLL_EVENTS) - 1)
/* clang-format on */
typedef struct _AFD_POLL_HANDLE_INFO {
HANDLE Handle;
ULONG Events;
NTSTATUS Status;
} AFD_POLL_HANDLE_INFO, *PAFD_POLL_HANDLE_INFO;
typedef struct _AFD_POLL_INFO {
LARGE_INTEGER Timeout;
ULONG NumberOfHandles;
ULONG Exclusive;
AFD_POLL_HANDLE_INFO Handles[1];
} AFD_POLL_INFO, *PAFD_POLL_INFO;
WEPOLL_INTERNAL int afd_poll(SOCKET driver_socket,
AFD_POLL_INFO* poll_info,
OVERLAPPED* overlapped);
WEPOLL_INTERNAL ssize_t afd_get_protocol(SOCKET socket,
SOCKET* afd_socket_out,
WSAPROTOCOL_INFOW* protocol_info);
/* clang-format off */
static const GUID AFD_PROVIDER_GUID_LIST[] = {
/* MSAFD Tcpip [TCP+UDP+RAW / IP] */
{0xe70f1aa0, 0xab8b, 0x11cf,
{0x8c, 0xa3, 0x00, 0x80, 0x5f, 0x48, 0xa1, 0x92}},
/* MSAFD Tcpip [TCP+UDP+RAW / IPv6] */
{0xf9eab0c0, 0x26d4, 0x11d0,
{0xbb, 0xbf, 0x00, 0xaa, 0x00, 0x6c, 0x34, 0xe4}},
/* MSAFD RfComm [Bluetooth] */
{0x9fc48064, 0x7298, 0x43e4,
{0xb7, 0xbd, 0x18, 0x1f, 0x20, 0x89, 0x79, 0x2a}},
/* MSAFD Irda [IrDA] */
{0x3972523d, 0x2af1, 0x11d1,
{0xb6, 0x55, 0x00, 0x80, 0x5f, 0x36, 0x42, 0xcc}}};
/* clang-format on */
#include <errno.h>
#define _return_error_helper(error, value) \
do { \
err_set_win_error(error); \
return (value); \
} while (0)
#define return_error(value, ...) _return_error_helper(__VA_ARGS__ + 0, value)
WEPOLL_INTERNAL errno_t err_map_win_error_to_errno(DWORD error);
WEPOLL_INTERNAL void err_set_win_error(DWORD error);
WEPOLL_INTERNAL int err_check_handle(HANDLE handle);
#define FILE_DEVICE_NETWORK 0x00000012
#define METHOD_BUFFERED 0
#define AFD_POLL 9
#define _AFD_CONTROL_CODE(operation, method) \
((FILE_DEVICE_NETWORK) << 12 | (operation << 2) | method)
#define IOCTL_AFD_POLL _AFD_CONTROL_CODE(AFD_POLL, METHOD_BUFFERED)
#ifndef SIO_BASE_HANDLE
#define SIO_BASE_HANDLE 0x48000022
#endif
int afd_poll(SOCKET driver_socket,
AFD_POLL_INFO* poll_info,
OVERLAPPED* overlapped) {
IO_STATUS_BLOCK iosb;
IO_STATUS_BLOCK* iosb_ptr;
HANDLE event = NULL;
void* apc_context;
NTSTATUS status;
if (overlapped != NULL) {
/* Overlapped operation. */
iosb_ptr = (IO_STATUS_BLOCK*) &overlapped->Internal;
event = overlapped->hEvent;
/* Do not report iocp completion if hEvent is tagged. */
if ((uintptr_t) event & 1) {
event = (HANDLE)((uintptr_t) event & ~(uintptr_t) 1);
apc_context = NULL;
} else {
apc_context = overlapped;
}
} else {
/* Blocking operation. */
iosb_ptr = &iosb;
event = CreateEventW(NULL, FALSE, FALSE, NULL);
if (event == NULL)
return_error(-1);
apc_context = NULL;
}
iosb_ptr->Status = STATUS_PENDING;
status = NtDeviceIoControlFile((HANDLE) driver_socket,
event,
NULL,
apc_context,
iosb_ptr,
IOCTL_AFD_POLL,
poll_info,
sizeof *poll_info,
poll_info,
sizeof *poll_info);
if (overlapped == NULL) {
/* If this is a blocking operation, wait for the event to become
* signaled, and then grab the real status from the io status block.
*/
if (status == STATUS_PENDING) {
DWORD r = WaitForSingleObject(event, INFINITE);
if (r == WAIT_FAILED) {
DWORD error = GetLastError();
CloseHandle(event);
return_error(-1, error);
}
status = iosb_ptr->Status;
}
CloseHandle(event);
}
if (status == STATUS_SUCCESS)
return 0;
else if (status == STATUS_PENDING)
return_error(-1, ERROR_IO_PENDING);
else
return_error(-1, RtlNtStatusToDosError(status));
}
static SOCKET _afd_get_base_socket(SOCKET socket) {
SOCKET base_socket;
DWORD bytes;
if (WSAIoctl(socket,
SIO_BASE_HANDLE,
NULL,
0,
&base_socket,
sizeof base_socket,
&bytes,
NULL,
NULL) == SOCKET_ERROR)
return_error(INVALID_SOCKET);
return base_socket;
}
static ssize_t _afd_get_protocol_info(SOCKET socket,
WSAPROTOCOL_INFOW* protocol_info) {
int opt_len;
ssize_t id;
size_t i;
opt_len = sizeof *protocol_info;
if (getsockopt(socket,
SOL_SOCKET,
SO_PROTOCOL_INFOW,
(char*) protocol_info,
&opt_len) != 0)
return_error(-1);
id = -1;
for (i = 0; i < array_count(AFD_PROVIDER_GUID_LIST); i++) {
if (memcmp(&protocol_info->ProviderId,
&AFD_PROVIDER_GUID_LIST[i],
sizeof protocol_info->ProviderId) == 0) {
id = i;
break;
}
}
/* Check if the protocol uses an msafd socket. */
if (id < 0)
return_error(-1, ERROR_DEVICE_FEATURE_NOT_SUPPORTED);
return id;
}
WEPOLL_INTERNAL ssize_t afd_get_protocol(SOCKET socket,
SOCKET* afd_socket_out,
WSAPROTOCOL_INFOW* protocol_info) {
ssize_t id;
SOCKET afd_socket;
/* Try to get protocol information, assuming that the given socket is an AFD
* socket. This should almost always be the case, and if it is, that saves us
* a call to WSAIoctl(). */
afd_socket = socket;
id = _afd_get_protocol_info(afd_socket, protocol_info);
if (id < 0) {
/* If getting protocol information failed, it might be due to the socket
* not being an AFD socket. If so, attempt to fetch the underlying base
* socket, then try again to obtain protocol information. */
DWORD error = GetLastError();
if (error != ERROR_DEVICE_FEATURE_NOT_SUPPORTED)
return -1;
afd_socket = _afd_get_base_socket(socket);
if (afd_socket == INVALID_SOCKET || afd_socket == socket)
return_error(-1, error);
id = _afd_get_protocol_info(afd_socket, protocol_info);
if (id < 0)
return -1;
}
*afd_socket_out = afd_socket;
return id;
}
#include <stdlib.h>
WEPOLL_INTERNAL int api_global_init(void);
WEPOLL_INTERNAL int init(void);
#include <stdbool.h>
typedef struct queue_node queue_node_t;
typedef struct queue_node {
queue_node_t* prev;
queue_node_t* next;
} queue_node_t;
typedef struct queue {
queue_node_t head;
} queue_t;
WEPOLL_INTERNAL void queue_init(queue_t* queue);
WEPOLL_INTERNAL void queue_node_init(queue_node_t* node);
WEPOLL_INTERNAL queue_node_t* queue_first(const queue_t* queue);
WEPOLL_INTERNAL queue_node_t* queue_last(const queue_t* queue);
WEPOLL_INTERNAL void queue_prepend(queue_t* queue, queue_node_t* node);
WEPOLL_INTERNAL void queue_append(queue_t* queue, queue_node_t* node);
WEPOLL_INTERNAL void queue_move_first(queue_t* queue, queue_node_t* node);
WEPOLL_INTERNAL void queue_move_last(queue_t* queue, queue_node_t* node);
WEPOLL_INTERNAL void queue_remove(queue_node_t* node);
WEPOLL_INTERNAL bool queue_empty(const queue_t* queue);
WEPOLL_INTERNAL bool queue_enqueued(const queue_node_t* node);
typedef struct ep_port ep_port_t;
typedef struct poll_group_allocator poll_group_allocator_t;
typedef struct poll_group poll_group_t;
WEPOLL_INTERNAL poll_group_allocator_t* poll_group_allocator_new(
ep_port_t* port_info, const WSAPROTOCOL_INFOW* protocol_info);
WEPOLL_INTERNAL void poll_group_allocator_delete(poll_group_allocator_t* pga);
WEPOLL_INTERNAL poll_group_t* poll_group_acquire(poll_group_allocator_t* pga);
WEPOLL_INTERNAL void poll_group_release(poll_group_t* ds);
WEPOLL_INTERNAL SOCKET poll_group_get_socket(poll_group_t* poll_group);
/*
* A red-black tree is a binary search tree with the node color as an
* extra attribute. It fulfills a set of conditions:
* - every search path from the root to a leaf consists of the
* same number of black nodes,
* - each red node (except for the root) has a black parent,
* - each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/
/* clang-format off */
/* Macros that define a red-black tree */
#define RB_HEAD(name, type) \
struct name { \
struct type *rbh_root; /* root of the tree */ \
}
#define RB_INITIALIZER(root) \
{ NULL }
#define RB_INIT(root) do { \
(root)->rbh_root = NULL; \
} while (0)
#define RB_BLACK 0
#define RB_RED 1
#define RB_ENTRY(type) \
struct { \
struct type *rbe_left; /* left nodeent */ \
struct type *rbe_right; /* right nodeent */ \
struct type *rbe_parent; /* parent nodeent */ \
int rbe_color; /* node color */ \
}
#define RB_LEFT(elm, field) (elm)->field.rbe_left
#define RB_RIGHT(elm, field) (elm)->field.rbe_right
#define RB_PARENT(elm, field) (elm)->field.rbe_parent
#define RB_COLOR(elm, field) (elm)->field.rbe_color
#define RB_ROOT(head) (head)->rbh_root
#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
#define RB_SET(elm, parent, field) do { \
RB_PARENT(elm, field) = parent; \
RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
RB_COLOR(elm, field) = RB_RED; \
} while (0)
#define RB_SET_BLACKRED(black, red, field) do { \
RB_COLOR(black, field) = RB_BLACK; \
RB_COLOR(red, field) = RB_RED; \
} while (0)
#define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
(tmp) = RB_RIGHT(elm, field); \
if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \
RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
} \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_LEFT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
} while (0)
#define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
(tmp) = RB_LEFT(elm, field); \
if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \
RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
} \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_RIGHT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
} while (0)
/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, type, field, cmp) \
RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
#define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
RB_PROTOTYPE_INTERNAL(name, type, field, cmp, static unused_fn)
#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
attr void name##_RB_INSERT_COLOR(struct name *, struct type *); \
attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
attr struct type *name##_RB_REMOVE(struct name *, struct type *); \
attr struct type *name##_RB_INSERT(struct name *, struct type *); \
attr struct type *name##_RB_FIND(struct name *, struct type *); \
attr struct type *name##_RB_NFIND(struct name *, struct type *); \
attr struct type *name##_RB_NEXT(struct type *); \
attr struct type *name##_RB_PREV(struct type *); \
attr struct type *name##_RB_MINMAX(struct name *, int); \
\
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define RB_GENERATE(name, type, field, cmp) \
RB_GENERATE_INTERNAL(name, type, field, cmp,)
#define RB_GENERATE_STATIC(name, type, field, cmp) \
RB_GENERATE_INTERNAL(name, type, field, cmp, static unused_fn)
#define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \
attr void \
name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
{ \
struct type *parent, *gparent, *tmp; \
while ((parent = RB_PARENT(elm, field)) != NULL && \
RB_COLOR(parent, field) == RB_RED) { \
gparent = RB_PARENT(parent, field); \
if (parent == RB_LEFT(gparent, field)) { \
tmp = RB_RIGHT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field); \
elm = gparent; \
continue; \
} \
if (RB_RIGHT(parent, field) == elm) { \
RB_ROTATE_LEFT(head, parent, tmp, field); \
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_RIGHT(head, gparent, tmp, field); \
} else { \
tmp = RB_LEFT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field); \
elm = gparent; \
continue; \
} \
if (RB_LEFT(parent, field) == elm) { \
RB_ROTATE_RIGHT(head, parent, tmp, field); \
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_LEFT(head, gparent, tmp, field); \
} \
} \
RB_COLOR(head->rbh_root, field) = RB_BLACK; \
} \
\
attr void \
name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, \
struct type *elm) \
{ \
struct type *tmp; \
while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
elm != RB_ROOT(head)) { \
if (RB_LEFT(parent, field) == elm) { \
tmp = RB_RIGHT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_LEFT(head, parent, tmp, field); \
tmp = RB_RIGHT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) && \
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) { \
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) { \
struct type *oleft; \
if ((oleft = RB_LEFT(tmp, field)) \
!= NULL) \
RB_COLOR(oleft, field) = RB_BLACK; \
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_RIGHT(head, tmp, oleft, field); \
tmp = RB_RIGHT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field); \
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_RIGHT(tmp, field)) \
RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK; \
RB_ROTATE_LEFT(head, parent, tmp, field); \
elm = RB_ROOT(head); \
break; \
} \
} else { \
tmp = RB_LEFT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_RIGHT(head, parent, tmp, field); \
tmp = RB_LEFT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) && \
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) { \
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) { \
struct type *oright; \
if ((oright = RB_RIGHT(tmp, field)) \
!= NULL) \
RB_COLOR(oright, field) = RB_BLACK; \
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_LEFT(head, tmp, oright, field); \
tmp = RB_LEFT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field); \
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_LEFT(tmp, field)) \
RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK; \
RB_ROTATE_RIGHT(head, parent, tmp, field); \
elm = RB_ROOT(head); \
break; \
} \
} \
} \
if (elm) \
RB_COLOR(elm, field) = RB_BLACK; \
} \
\
attr struct type * \
name##_RB_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *child, *parent, *old = elm; \
int color; \
if (RB_LEFT(elm, field) == NULL) \
child = RB_RIGHT(elm, field); \
else if (RB_RIGHT(elm, field) == NULL) \
child = RB_LEFT(elm, field); \
else { \
struct type *left; \
elm = RB_RIGHT(elm, field); \
while ((left = RB_LEFT(elm, field)) != NULL) \
elm = left; \
child = RB_RIGHT(elm, field); \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
} else \
RB_ROOT(head) = child; \
if (RB_PARENT(elm, field) == old) \
parent = elm; \
(elm)->field = (old)->field; \
if (RB_PARENT(old, field)) { \
if (RB_LEFT(RB_PARENT(old, field), field) == old) \
RB_LEFT(RB_PARENT(old, field), field) = elm; \
else \
RB_RIGHT(RB_PARENT(old, field), field) = elm; \
} else \
RB_ROOT(head) = elm; \
RB_PARENT(RB_LEFT(old, field), field) = elm; \
if (RB_RIGHT(old, field)) \
RB_PARENT(RB_RIGHT(old, field), field) = elm; \
if (parent) { \
left = parent; \
} \
goto color; \
} \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
} else \
RB_ROOT(head) = child; \
color: \
if (color == RB_BLACK) \
name##_RB_REMOVE_COLOR(head, parent, child); \
return (old); \
} \
\
/* Inserts a node into the RB tree */ \
attr struct type * \
name##_RB_INSERT(struct name *head, struct type *elm) \
{ \
struct type *tmp; \
struct type *parent = NULL; \
int comp = 0; \
tmp = RB_ROOT(head); \
while (tmp) { \
parent = tmp; \
comp = (cmp)(elm, parent); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
RB_SET(elm, parent, field); \
if (parent != NULL) { \
if (comp < 0) \
RB_LEFT(parent, field) = elm; \
else \
RB_RIGHT(parent, field) = elm; \
} else \
RB_ROOT(head) = elm; \
name##_RB_INSERT_COLOR(head, elm); \
return (NULL); \
} \
\
/* Finds the node with the same key as elm */ \
attr struct type * \
name##_RB_FIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = RB_ROOT(head); \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (NULL); \
} \
\
/* Finds the first node greater than or equal to the search key */ \
attr struct type * \
name##_RB_NFIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *res = NULL; \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) { \
res = tmp; \
tmp = RB_LEFT(tmp, field); \
} \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (res); \
} \
\
attr struct type * \
name##_RB_NEXT(struct type *elm) \
{ \
if (RB_RIGHT(elm, field)) { \
elm = RB_RIGHT(elm, field); \
while (RB_LEFT(elm, field)) \
elm = RB_LEFT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && \
(elm == RB_LEFT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && \
(elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
} \
\
attr struct type * \
name##_RB_PREV(struct type *elm) \
{ \
if (RB_LEFT(elm, field)) { \
elm = RB_LEFT(elm, field); \
while (RB_RIGHT(elm, field)) \
elm = RB_RIGHT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && \
(elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && \
(elm == RB_LEFT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
} \
\
attr struct type * \
name##_RB_MINMAX(struct name *head, int val) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *parent = NULL; \
while (tmp) { \
parent = tmp; \
if (val < 0) \
tmp = RB_LEFT(tmp, field); \
else \
tmp = RB_RIGHT(tmp, field); \
} \
return (parent); \
}
#define RB_NEGINF -1
#define RB_INF 1
#define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
#define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
#define RB_FIND(name, x, y) name##_RB_FIND(x, y)
#define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
#define RB_NEXT(name, x, y) name##_RB_NEXT(y)
#define RB_PREV(name, x, y) name##_RB_PREV(y)
#define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
#define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
#define RB_FOREACH(x, name, head) \
for ((x) = RB_MIN(name, head); \
(x) != NULL; \
(x) = name##_RB_NEXT(x))
#define RB_FOREACH_FROM(x, name, y) \
for ((x) = (y); \
((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
(x) = (y))
#define RB_FOREACH_SAFE(x, name, head, y) \
for ((x) = RB_MIN(name, head); \
((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
(x) = (y))
#define RB_FOREACH_REVERSE(x, name, head) \
for ((x) = RB_MAX(name, head); \
(x) != NULL; \
(x) = name##_RB_PREV(x))
#define RB_FOREACH_REVERSE_FROM(x, name, y) \
for ((x) = (y); \
((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
(x) = (y))
#define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \
for ((x) = RB_MAX(name, head); \
((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
(x) = (y))
/* clang-format on */
/* The reflock is a special kind of lock that normally prevents a chunk of
* memory from being freed, but does allow the chunk of memory to eventually be
* released in a coordinated fashion.
*
* Under normal operation, threads increase and decrease the reference count,
* which are wait-free operations.
*
* Exactly once during the reflock's lifecycle, a thread holding a reference to
* the lock may "destroy" the lock; this operation blocks until all other
* threads holding a reference to the lock have dereferenced it. After
* "destroy" returns, the calling thread may assume that no other threads have
* a reference to the lock.
*
* Attemmpting to lock or destroy a lock after reflock_unref_and_destroy() has
* been called is invalid and results in undefined behavior. Therefore the user
* should use another lock to guarantee that this can't happen.
*/
typedef struct reflock {
uint32_t state;
} reflock_t;
WEPOLL_INTERNAL int reflock_global_init(void);
WEPOLL_INTERNAL void reflock_init(reflock_t* reflock);
WEPOLL_INTERNAL void reflock_ref(reflock_t* reflock);
WEPOLL_INTERNAL void reflock_unref(reflock_t* reflock);
WEPOLL_INTERNAL void reflock_unref_and_destroy(reflock_t* reflock);
/* NB: the tree functions do not set errno or LastError when they fail. Each of
* the API functions has at most one failure mode. It is up to the caller to
* set an appropriate error code when necessary.
*/
typedef RB_HEAD(tree, tree_node) tree_t;
typedef struct tree_node {
RB_ENTRY(tree_node) node;
uintptr_t key;
} tree_node_t;
WEPOLL_INTERNAL void tree_init(tree_t* tree);
WEPOLL_INTERNAL void tree_node_init(tree_node_t* node);
WEPOLL_INTERNAL int tree_add(tree_t* tree, tree_node_t* node, uintptr_t key);
WEPOLL_INTERNAL int tree_del(tree_t* tree, tree_node_t* node);
WEPOLL_INTERNAL tree_node_t* tree_find(tree_t* tree, uintptr_t key);
WEPOLL_INTERNAL tree_node_t* tree_root(tree_t* tree);
typedef struct reflock_tree {
tree_t tree;
SRWLOCK lock;
} reflock_tree_t;
typedef struct reflock_tree_node {
tree_node_t tree_node;
reflock_t reflock;
} reflock_tree_node_t;
WEPOLL_INTERNAL void reflock_tree_init(reflock_tree_t* rtl);
WEPOLL_INTERNAL void reflock_tree_node_init(reflock_tree_node_t* node);
WEPOLL_INTERNAL int reflock_tree_add(reflock_tree_t* rlt,
reflock_tree_node_t* node,
uintptr_t key);
WEPOLL_INTERNAL reflock_tree_node_t* reflock_tree_del_and_ref(
reflock_tree_t* rlt, uintptr_t key);
WEPOLL_INTERNAL reflock_tree_node_t* reflock_tree_find_and_ref(
reflock_tree_t* rlt, uintptr_t key);
WEPOLL_INTERNAL void reflock_tree_node_unref(reflock_tree_node_t* node);
WEPOLL_INTERNAL void reflock_tree_node_unref_and_destroy(
reflock_tree_node_t* node);
typedef struct ep_port ep_port_t;
typedef struct poll_req poll_req_t;
typedef struct ep_sock {
tree_node_t tree_node;
queue_node_t queue_node;
} ep_sock_t;
WEPOLL_INTERNAL ep_sock_t* ep_sock_new(ep_port_t* port_info, SOCKET socket);
WEPOLL_INTERNAL void ep_sock_delete(ep_port_t* port_info,
ep_sock_t* sock_info);
WEPOLL_INTERNAL void ep_sock_force_delete(ep_port_t* port_info,
ep_sock_t* sock_info);
WEPOLL_INTERNAL int ep_sock_set_event(ep_port_t* port_info,
ep_sock_t* sock_info,
const struct epoll_event* ev);
WEPOLL_INTERNAL int ep_sock_update(ep_port_t* port_info, ep_sock_t* sock_info);
WEPOLL_INTERNAL int ep_sock_feed_event(ep_port_t* port_info,
OVERLAPPED* overlapped,
struct epoll_event* ev);
typedef struct ep_port ep_port_t;
typedef struct ep_sock ep_sock_t;
typedef struct ep_port {
HANDLE iocp;
poll_group_allocator_t*
poll_group_allocators[array_count(AFD_PROVIDER_GUID_LIST)];
tree_t sock_tree;
queue_t sock_update_queue;
queue_t sock_deleted_queue;
reflock_tree_node_t handle_tree_node;
CRITICAL_SECTION lock;
size_t active_poll_count;
} ep_port_t;
WEPOLL_INTERNAL ep_port_t* ep_port_new(HANDLE* iocp_out);
WEPOLL_INTERNAL int ep_port_close(ep_port_t* port_info);
WEPOLL_INTERNAL int ep_port_delete(ep_port_t* port_info);
WEPOLL_INTERNAL int ep_port_wait(ep_port_t* port_info,
struct epoll_event* events,
int maxevents,
int timeout);
WEPOLL_INTERNAL int ep_port_ctl(ep_port_t* port_info,
int op,
SOCKET sock,
struct epoll_event* ev);
WEPOLL_INTERNAL poll_group_t* ep_port_acquire_poll_group(
ep_port_t* port_info,
size_t protocol_id,
const WSAPROTOCOL_INFOW* protocol_info);
WEPOLL_INTERNAL void ep_port_release_poll_group(ep_port_t* port_info,
poll_group_t* poll_group);
WEPOLL_INTERNAL int ep_port_register_socket_handle(ep_port_t* port_info,
ep_sock_t* sock_info,
SOCKET socket);
WEPOLL_INTERNAL int ep_port_unregister_socket_handle(ep_port_t* port_info,
ep_sock_t* sock_info);
WEPOLL_INTERNAL ep_sock_t* ep_port_find_socket(ep_port_t* port_info,
SOCKET socket);
WEPOLL_INTERNAL void ep_port_request_socket_update(ep_port_t* port_info,
ep_sock_t* sock_info);
WEPOLL_INTERNAL void ep_port_cancel_socket_update(ep_port_t* port_info,
ep_sock_t* sock_info);
WEPOLL_INTERNAL void ep_port_add_deleted_socket(ep_port_t* port_info,
ep_sock_t* sock_info);
WEPOLL_INTERNAL void ep_port_remove_deleted_socket(ep_port_t* port_info,
ep_sock_t* sock_info);
static reflock_tree_t _epoll_handle_tree;
static inline ep_port_t* _handle_tree_node_to_port(
reflock_tree_node_t* tree_node) {
return container_of(tree_node, ep_port_t, handle_tree_node);
}
int api_global_init(void) {
reflock_tree_init(&_epoll_handle_tree);
return 0;
}
static HANDLE _epoll_create(void) {
ep_port_t* port_info;
HANDLE ephnd;
if (init() < 0)
return NULL;
port_info = ep_port_new(&ephnd);
if (port_info == NULL)
return NULL;
if (reflock_tree_add(&_epoll_handle_tree,
&port_info->handle_tree_node,
(uintptr_t) ephnd) < 0) {
/* This should never happen. */
ep_port_delete(port_info);
return_error(NULL, ERROR_ALREADY_EXISTS);
}
return ephnd;
}
HANDLE epoll_create(int size) {
if (size <= 0)
return_error(NULL, ERROR_INVALID_PARAMETER);
return _epoll_create();
}
HANDLE epoll_create1(int flags) {
if (flags != 0)
return_error(NULL, ERROR_INVALID_PARAMETER);
return _epoll_create();
}
int epoll_close(HANDLE ephnd) {
reflock_tree_node_t* tree_node;
ep_port_t* port_info;
if (init() < 0)
return -1;
tree_node = reflock_tree_del_and_ref(&_epoll_handle_tree, (uintptr_t) ephnd);
if (tree_node == NULL) {
err_set_win_error(ERROR_INVALID_PARAMETER);
goto err;
}
port_info = _handle_tree_node_to_port(tree_node);
ep_port_close(port_info);
reflock_tree_node_unref_and_destroy(tree_node);
return ep_port_delete(port_info);
err:
err_check_handle(ephnd);
return -1;
}
int epoll_ctl(HANDLE ephnd, int op, SOCKET sock, struct epoll_event* ev) {
reflock_tree_node_t* tree_node;
ep_port_t* port_info;
int r;
if (init() < 0)
return -1;
tree_node =
reflock_tree_find_and_ref(&_epoll_handle_tree, (uintptr_t) ephnd);
if (tree_node == NULL) {
err_set_win_error(ERROR_INVALID_PARAMETER);
goto err;
}
port_info = _handle_tree_node_to_port(tree_node);
r = ep_port_ctl(port_info, op, sock, ev);
reflock_tree_node_unref(tree_node);
if (r < 0)
goto err;
return 0;
err:
/* On Linux, in the case of epoll_ctl_mod(), EBADF takes precendence over
* other errors. Wepoll copies this behavior. */
err_check_handle(ephnd);
err_check_handle((HANDLE) sock);
return -1;
}
int epoll_wait(HANDLE ephnd,
struct epoll_event* events,
int maxevents,
int timeout) {
reflock_tree_node_t* tree_node;
ep_port_t* port_info;
int num_events;
if (maxevents <= 0)
return_error(-1, ERROR_INVALID_PARAMETER);
if (init() < 0)
return -1;
tree_node =
reflock_tree_find_and_ref(&_epoll_handle_tree, (uintptr_t) ephnd);
if (tree_node == NULL) {
err_set_win_error(ERROR_INVALID_PARAMETER);
goto err;
}
port_info = _handle_tree_node_to_port(tree_node);
num_events = ep_port_wait(port_info, events, maxevents, timeout);
reflock_tree_node_unref(tree_node);
if (num_events < 0)
goto err;
return num_events;
err:
err_check_handle(ephnd);
return -1;
}
#define _ERROR_ERRNO_MAP(X) \
X(ERROR_ACCESS_DENIED, EACCES) \
X(ERROR_ALREADY_EXISTS, EEXIST) \
X(ERROR_BAD_COMMAND, EACCES) \
X(ERROR_BAD_EXE_FORMAT, ENOEXEC) \
X(ERROR_BAD_LENGTH, EACCES) \
X(ERROR_BAD_NETPATH, ENOENT) \
X(ERROR_BAD_NET_NAME, ENOENT) \
X(ERROR_BAD_NET_RESP, ENETDOWN) \
X(ERROR_BAD_PATHNAME, ENOENT) \
X(ERROR_BROKEN_PIPE, EPIPE) \
X(ERROR_CANNOT_MAKE, EACCES) \
X(ERROR_COMMITMENT_LIMIT, ENOMEM) \
X(ERROR_CONNECTION_ABORTED, ECONNABORTED) \
X(ERROR_CONNECTION_ACTIVE, EISCONN) \
X(ERROR_CONNECTION_REFUSED, ECONNREFUSED) \
X(ERROR_CRC, EACCES) \
X(ERROR_DEVICE_FEATURE_NOT_SUPPORTED, EPERM) \
X(ERROR_DIR_NOT_EMPTY, ENOTEMPTY) \
X(ERROR_DISK_FULL, ENOSPC) \
X(ERROR_DUP_NAME, EADDRINUSE) \
X(ERROR_FILENAME_EXCED_RANGE, ENOENT) \
X(ERROR_FILE_NOT_FOUND, ENOENT) \
X(ERROR_GEN_FAILURE, EACCES) \
X(ERROR_GRACEFUL_DISCONNECT, EPIPE) \
X(ERROR_HOST_DOWN, EHOSTUNREACH) \
X(ERROR_HOST_UNREACHABLE, EHOSTUNREACH) \
X(ERROR_INSUFFICIENT_BUFFER, EFAULT) \
X(ERROR_INVALID_ADDRESS, EADDRNOTAVAIL) \
X(ERROR_INVALID_FUNCTION, EINVAL) \
X(ERROR_INVALID_HANDLE, EBADF) \
X(ERROR_INVALID_NETNAME, EADDRNOTAVAIL) \
X(ERROR_INVALID_PARAMETER, EINVAL) \
X(ERROR_INVALID_USER_BUFFER, EMSGSIZE) \
X(ERROR_IO_PENDING, EINPROGRESS) \
X(ERROR_LOCK_VIOLATION, EACCES) \
X(ERROR_MORE_DATA, EMSGSIZE) \
X(ERROR_NETNAME_DELETED, ECONNABORTED) \
X(ERROR_NETWORK_ACCESS_DENIED, EACCES) \
X(ERROR_NETWORK_BUSY, ENETDOWN) \
X(ERROR_NETWORK_UNREACHABLE, ENETUNREACH) \
X(ERROR_NOACCESS, EFAULT) \
X(ERROR_NONPAGED_SYSTEM_RESOURCES, ENOMEM) \
X(ERROR_NOT_ENOUGH_MEMORY, ENOMEM) \
X(ERROR_NOT_ENOUGH_QUOTA, ENOMEM) \
X(ERROR_NOT_FOUND, ENOENT) \
X(ERROR_NOT_LOCKED, EACCES) \
X(ERROR_NOT_READY, EACCES) \
X(ERROR_NOT_SAME_DEVICE, EXDEV) \
X(ERROR_NOT_SUPPORTED, ENOTSUP) \
X(ERROR_NO_MORE_FILES, ENOENT) \
X(ERROR_NO_SYSTEM_RESOURCES, ENOMEM) \
X(ERROR_OPERATION_ABORTED, EINTR) \
X(ERROR_OUT_OF_PAPER, EACCES) \
X(ERROR_PAGED_SYSTEM_RESOURCES, ENOMEM) \
X(ERROR_PAGEFILE_QUOTA, ENOMEM) \
X(ERROR_PATH_NOT_FOUND, ENOENT) \
X(ERROR_PIPE_NOT_CONNECTED, EPIPE) \
X(ERROR_PORT_UNREACHABLE, ECONNRESET) \
X(ERROR_PROTOCOL_UNREACHABLE, ENETUNREACH) \
X(ERROR_REM_NOT_LIST, ECONNREFUSED) \
X(ERROR_REQUEST_ABORTED, EINTR) \
X(ERROR_REQ_NOT_ACCEP, EWOULDBLOCK) \
X(ERROR_SECTOR_NOT_FOUND, EACCES) \
X(ERROR_SEM_TIMEOUT, ETIMEDOUT) \
X(ERROR_SHARING_VIOLATION, EACCES) \
X(ERROR_TOO_MANY_NAMES, ENOMEM) \
X(ERROR_TOO_MANY_OPEN_FILES, EMFILE) \
X(ERROR_UNEXP_NET_ERR, ECONNABORTED) \
X(ERROR_WAIT_NO_CHILDREN, ECHILD) \
X(ERROR_WORKING_SET_QUOTA, ENOMEM) \
X(ERROR_WRITE_PROTECT, EACCES) \
X(ERROR_WRONG_DISK, EACCES) \
X(WSAEACCES, EACCES) \
X(WSAEADDRINUSE, EADDRINUSE) \
X(WSAEADDRNOTAVAIL, EADDRNOTAVAIL) \
X(WSAEAFNOSUPPORT, EAFNOSUPPORT) \
X(WSAECONNABORTED, ECONNABORTED) \
X(WSAECONNREFUSED, ECONNREFUSED) \
X(WSAECONNRESET, ECONNRESET) \
X(WSAEDISCON, EPIPE) \
X(WSAEFAULT, EFAULT) \
X(WSAEHOSTDOWN, EHOSTUNREACH) \
X(WSAEHOSTUNREACH, EHOSTUNREACH) \
X(WSAEINTR, EINTR) \
X(WSAEINVAL, EINVAL) \
X(WSAEISCONN, EISCONN) \
X(WSAEMSGSIZE, EMSGSIZE) \
X(WSAENETDOWN, ENETDOWN) \
X(WSAENETRESET, EHOSTUNREACH) \
X(WSAENETUNREACH, ENETUNREACH) \
X(WSAENOBUFS, ENOMEM) \
X(WSAENOTCONN, ENOTCONN) \
X(WSAENOTSOCK, ENOTSOCK) \
X(WSAEOPNOTSUPP, EOPNOTSUPP) \
X(WSAESHUTDOWN, EPIPE) \
X(WSAETIMEDOUT, ETIMEDOUT) \
X(WSAEWOULDBLOCK, EWOULDBLOCK)
errno_t err_map_win_error_to_errno(DWORD error) {
switch (error) {
#define X(error_sym, errno_sym) \
case error_sym: \
return errno_sym;
_ERROR_ERRNO_MAP(X)
#undef X
}
return EINVAL;
}
void err_set_win_error(DWORD error) {
if (error == 0)
error = GetLastError();
else
SetLastError(error);
errno = err_map_win_error_to_errno(error);
}
int err_check_handle(HANDLE handle) {
DWORD flags;
/* GetHandleInformation() succeeds when passed INVALID_HANDLE_VALUE, so check
* for this condition explicitly. */
if (handle == INVALID_HANDLE_VALUE)
return_error(-1, ERROR_INVALID_HANDLE);
if (!GetHandleInformation(handle, &flags))
return_error(-1);
return 0;
}
static bool _initialized = false;
static INIT_ONCE _once = INIT_ONCE_STATIC_INIT;
static int _winsock_global_init(void) {
int r;
WSADATA wsa_data;
r = WSAStartup(MAKEWORD(2, 2), &wsa_data);
if (r != 0)
return_error(-1);
return 0;
}
static BOOL CALLBACK _init_once_callback(INIT_ONCE* once,
void* parameter,
void** context) {
unused_var(once);
unused_var(parameter);
unused_var(context);
if (_winsock_global_init() < 0 || nt_global_init() < 0 ||
reflock_global_init() < 0 || api_global_init() < 0)
return FALSE;
_initialized = true;
return TRUE;
}
int init(void) {
if (!_initialized &&
!InitOnceExecuteOnce(&_once, _init_once_callback, NULL, NULL))
return -1; /* LastError and errno aren't touched InitOnceExecuteOnce. */
return 0;
}
#define X(return_type, attributes, name, parameters) \
WEPOLL_INTERNAL return_type(attributes* name) parameters = NULL;
NTDLL_IMPORT_LIST(X)
#undef X
int nt_global_init(void) {
HMODULE ntdll;
ntdll = GetModuleHandleW(L"ntdll.dll");
if (ntdll == NULL)
return -1;
#define X(return_type, attributes, name, parameters) \
name = (return_type(attributes*) parameters) GetProcAddress(ntdll, #name); \
if (name == NULL) \
return -1;
NTDLL_IMPORT_LIST(X)
#undef X
return 0;
}
#include <assert.h>
#include <malloc.h>
static const size_t _POLL_GROUP_MAX_SIZE = 32;
typedef struct poll_group_allocator {
ep_port_t* port_info;
queue_t poll_group_queue;
WSAPROTOCOL_INFOW protocol_info;
} poll_group_allocator_t;
typedef struct poll_group {
poll_group_allocator_t* allocator;
queue_node_t queue_node;
SOCKET socket;
size_t group_size;
} poll_group_t;
static int _poll_group_create_socket(poll_group_t* poll_group,
WSAPROTOCOL_INFOW* protocol_info,
HANDLE iocp) {
SOCKET socket;
socket = WSASocketW(protocol_info->iAddressFamily,
protocol_info->iSocketType,
protocol_info->iProtocol,
protocol_info,
0,
WSA_FLAG_OVERLAPPED);
if (socket == INVALID_SOCKET)
return_error(-1);
if (!SetHandleInformation((HANDLE) socket, HANDLE_FLAG_INHERIT, 0))
goto error;
if (CreateIoCompletionPort((HANDLE) socket, iocp, 0, 0) == NULL)
goto error;
poll_group->socket = socket;
return 0;
error:;
DWORD error = GetLastError();
closesocket(socket);
return_error(-1, error);
}
static poll_group_t* _poll_group_new(poll_group_allocator_t* pga) {
poll_group_t* poll_group = malloc(sizeof *poll_group);
if (poll_group == NULL)
return_error(NULL, ERROR_NOT_ENOUGH_MEMORY);
memset(poll_group, 0, sizeof *poll_group);
queue_node_init(&poll_group->queue_node);
poll_group->allocator = pga;
if (_poll_group_create_socket(
poll_group, &pga->protocol_info, pga->port_info->iocp) < 0) {
free(poll_group);
return NULL;
}
queue_append(&pga->poll_group_queue, &poll_group->queue_node);
return poll_group;
}
static void _poll_group_delete(poll_group_t* poll_group) {
assert(poll_group->group_size == 0);
closesocket(poll_group->socket);
queue_remove(&poll_group->queue_node);
free(poll_group);
}
SOCKET poll_group_get_socket(poll_group_t* poll_group) {
return poll_group->socket;
}
poll_group_allocator_t* poll_group_allocator_new(
ep_port_t* port_info, const WSAPROTOCOL_INFOW* protocol_info) {
poll_group_allocator_t* pga = malloc(sizeof *pga);
if (pga == NULL)
return_error(NULL, ERROR_NOT_ENOUGH_MEMORY);
queue_init(&pga->poll_group_queue);
pga->port_info = port_info;
pga->protocol_info = *protocol_info;
return pga;
}
void poll_group_allocator_delete(poll_group_allocator_t* pga) {
queue_t* poll_group_queue = &pga->poll_group_queue;
while (!queue_empty(poll_group_queue)) {
queue_node_t* queue_node = queue_first(poll_group_queue);
poll_group_t* poll_group =
container_of(queue_node, poll_group_t, queue_node);
_poll_group_delete(poll_group);
}
free(pga);
}
poll_group_t* poll_group_acquire(poll_group_allocator_t* pga) {
queue_t* queue = &pga->poll_group_queue;
poll_group_t* poll_group =
!queue_empty(queue)
? container_of(queue_last(queue), poll_group_t, queue_node)
: NULL;
if (poll_group == NULL || poll_group->group_size >= _POLL_GROUP_MAX_SIZE)
poll_group = _poll_group_new(pga);
if (poll_group == NULL)
return NULL;
if (++poll_group->group_size == _POLL_GROUP_MAX_SIZE)
queue_move_first(&pga->poll_group_queue, &poll_group->queue_node);
return poll_group;
}
void poll_group_release(poll_group_t* poll_group) {
poll_group_allocator_t* pga = poll_group->allocator;
poll_group->group_size--;
assert(poll_group->group_size < _POLL_GROUP_MAX_SIZE);
queue_move_last(&pga->poll_group_queue, &poll_group->queue_node);
/* TODO: free the poll_group_t* item at some point. */
}
#define _PORT_MAX_ON_STACK_COMPLETIONS 256
static ep_port_t* _ep_port_alloc(void) {
ep_port_t* port_info = malloc(sizeof *port_info);
if (port_info == NULL)
return_error(NULL, ERROR_NOT_ENOUGH_MEMORY);
return port_info;
}
static void _ep_port_free(ep_port_t* port) {
assert(port != NULL);
free(port);
}
static HANDLE _ep_port_create_iocp(void) {
HANDLE iocp = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 0);
if (iocp == NULL)
return_error(NULL);
return iocp;
}
ep_port_t* ep_port_new(HANDLE* iocp_out) {
ep_port_t* port_info;
HANDLE iocp;
port_info = _ep_port_alloc();
if (port_info == NULL)
goto err1;
iocp = _ep_port_create_iocp();
if (iocp == NULL)
goto err2;
memset(port_info, 0, sizeof *port_info);
port_info->iocp = iocp;
queue_init(&port_info->sock_update_queue);
queue_init(&port_info->sock_deleted_queue);
tree_init(&port_info->sock_tree);
reflock_tree_node_init(&port_info->handle_tree_node);
InitializeCriticalSection(&port_info->lock);
*iocp_out = iocp;
return port_info;
err2:
_ep_port_free(port_info);
err1:
return NULL;
}
static int _ep_port_close_iocp(ep_port_t* port_info) {
HANDLE iocp = port_info->iocp;
port_info->iocp = NULL;
if (!CloseHandle(iocp))
return_error(-1);
return 0;
}
int ep_port_close(ep_port_t* port_info) {
int result;
EnterCriticalSection(&port_info->lock);
result = _ep_port_close_iocp(port_info);
LeaveCriticalSection(&port_info->lock);
return result;
}
int ep_port_delete(ep_port_t* port_info) {
tree_node_t* tree_node;
queue_node_t* queue_node;
size_t i;
EnterCriticalSection(&port_info->lock);
if (port_info->iocp != NULL)
_ep_port_close_iocp(port_info);
while ((tree_node = tree_root(&port_info->sock_tree)) != NULL) {
ep_sock_t* sock_info = container_of(tree_node, ep_sock_t, tree_node);
ep_sock_force_delete(port_info, sock_info);
}
while ((queue_node = queue_first(&port_info->sock_deleted_queue)) != NULL) {
ep_sock_t* sock_info = container_of(queue_node, ep_sock_t, queue_node);
ep_sock_force_delete(port_info, sock_info);
}
for (i = 0; i < array_count(port_info->poll_group_allocators); i++) {
poll_group_allocator_t* pga = port_info->poll_group_allocators[i];
if (pga != NULL)
poll_group_allocator_delete(pga);
}
LeaveCriticalSection(&port_info->lock);
DeleteCriticalSection(&port_info->lock);
_ep_port_free(port_info);
return 0;
}
static int _ep_port_update_events(ep_port_t* port_info) {
queue_t* sock_update_queue = &port_info->sock_update_queue;
/* Walk the queue, submitting new poll requests for every socket that needs
* it. */
while (!queue_empty(sock_update_queue)) {
queue_node_t* queue_node = queue_first(sock_update_queue);
ep_sock_t* sock_info = container_of(queue_node, ep_sock_t, queue_node);
if (ep_sock_update(port_info, sock_info) < 0)
return -1;
/* ep_sock_update() removes the socket from the update list if
* successfull. */
}
return 0;
}
static void _ep_port_update_events_if_polling(ep_port_t* port_info) {
if (port_info->active_poll_count > 0)
_ep_port_update_events(port_info);
}
static int _ep_port_feed_events(ep_port_t* port_info,
struct epoll_event* epoll_events,
OVERLAPPED_ENTRY* iocp_events,
int iocp_event_count) {
int epoll_event_count = 0;
int i;
for (i = 0; i < iocp_event_count; i++) {
OVERLAPPED* overlapped = iocp_events[i].lpOverlapped;
struct epoll_event* ev = &epoll_events[epoll_event_count];
epoll_event_count += ep_sock_feed_event(port_info, overlapped, ev);
}
return epoll_event_count;
}
static int _ep_port_poll(ep_port_t* port_info,
struct epoll_event* epoll_events,
OVERLAPPED_ENTRY* iocp_events,
int maxevents,
DWORD timeout) {
ULONG completion_count;
if (_ep_port_update_events(port_info) < 0)
return -1;
port_info->active_poll_count++;
LeaveCriticalSection(&port_info->lock);
BOOL r = GetQueuedCompletionStatusEx(port_info->iocp,
iocp_events,
maxevents,
&completion_count,
timeout,
FALSE);
EnterCriticalSection(&port_info->lock);
port_info->active_poll_count--;
if (!r)
return_error(-1);
return _ep_port_feed_events(
port_info, epoll_events, iocp_events, completion_count);
}
int ep_port_wait(ep_port_t* port_info,
struct epoll_event* events,
int maxevents,
int timeout) {
OVERLAPPED_ENTRY stack_iocp_events[_PORT_MAX_ON_STACK_COMPLETIONS];
OVERLAPPED_ENTRY* iocp_events;
ULONGLONG due = 0;
DWORD gqcs_timeout;
int result;
/* Check whether `maxevents` is in range. */
if (maxevents <= 0)
return_error(-1, ERROR_INVALID_PARAMETER);
/* Decide whether the IOCP completion list can live on the stack, or allocate
* memory for it on the heap. */
if ((size_t) maxevents <= array_count(stack_iocp_events)) {
iocp_events = stack_iocp_events;
} else if ((iocp_events = malloc(maxevents * sizeof *iocp_events)) == NULL) {
iocp_events = stack_iocp_events;
maxevents = array_count(stack_iocp_events);
}
/* Compute the timeout for GetQueuedCompletionStatus, and the wait end
* time, if the user specified a timeout other than zero or infinite.
*/
if (timeout > 0) {
due = GetTickCount64() + timeout;
gqcs_timeout = (DWORD) timeout;
} else if (timeout == 0) {
gqcs_timeout = 0;
} else {
gqcs_timeout = INFINITE;
}
EnterCriticalSection(&port_info->lock);
/* Dequeue completion packets until either at least one interesting event
* has been discovered, or the timeout is reached.
*/
do {
ULONGLONG now;
result =
_ep_port_poll(port_info, events, iocp_events, maxevents, gqcs_timeout);
if (result < 0 || result > 0)
break; /* Result, error, or time-out. */
if (timeout < 0)
continue; /* _ep_port_wait() never times out. */
/* Check for time-out. */
now = GetTickCount64();
if (now >= due)
break;
/* Recompute timeout. */
gqcs_timeout = (DWORD)(due - now);
} while (gqcs_timeout > 0);
_ep_port_update_events_if_polling(port_info);
LeaveCriticalSection(&port_info->lock);
if (iocp_events != stack_iocp_events)
free(iocp_events);
if (result >= 0)
return result;
else if (GetLastError() == WAIT_TIMEOUT)
return 0;
else
return -1;
}
static int _ep_port_ctl_add(ep_port_t* port_info,
SOCKET sock,
struct epoll_event* ev) {
ep_sock_t* sock_info = ep_sock_new(port_info, sock);
if (sock_info == NULL)
return -1;
if (ep_sock_set_event(port_info, sock_info, ev) < 0) {
ep_sock_delete(port_info, sock_info);
return -1;
}
_ep_port_update_events_if_polling(port_info);
return 0;
}
static int _ep_port_ctl_mod(ep_port_t* port_info,
SOCKET sock,
struct epoll_event* ev) {
ep_sock_t* sock_info = ep_port_find_socket(port_info, sock);
if (sock_info == NULL)
return -1;
if (ep_sock_set_event(port_info, sock_info, ev) < 0)
return -1;
_ep_port_update_events_if_polling(port_info);
return 0;
}
static int _ep_port_ctl_del(ep_port_t* port_info, SOCKET sock) {
ep_sock_t* sock_info = ep_port_find_socket(port_info, sock);
if (sock_info == NULL)
return -1;
ep_sock_delete(port_info, sock_info);
return 0;
}
static int _ep_port_ctl_op(ep_port_t* port_info,
int op,
SOCKET sock,
struct epoll_event* ev) {
switch (op) {
case EPOLL_CTL_ADD:
return _ep_port_ctl_add(port_info, sock, ev);
case EPOLL_CTL_MOD:
return _ep_port_ctl_mod(port_info, sock, ev);
case EPOLL_CTL_DEL:
return _ep_port_ctl_del(port_info, sock);
default:
return_error(-1, ERROR_INVALID_PARAMETER);
}
}
int ep_port_ctl(ep_port_t* port_info,
int op,
SOCKET sock,
struct epoll_event* ev) {
int result;
EnterCriticalSection(&port_info->lock);
result = _ep_port_ctl_op(port_info, op, sock, ev);
LeaveCriticalSection(&port_info->lock);
return result;
}
int ep_port_register_socket_handle(ep_port_t* port_info,
ep_sock_t* sock_info,
SOCKET socket) {
if (tree_add(&port_info->sock_tree, &sock_info->tree_node, socket) < 0)
return_error(-1, ERROR_ALREADY_EXISTS);
return 0;
}
int ep_port_unregister_socket_handle(ep_port_t* port_info,
ep_sock_t* sock_info) {
if (tree_del(&port_info->sock_tree, &sock_info->tree_node) < 0)
return_error(-1, ERROR_NOT_FOUND);
return 0;
}
ep_sock_t* ep_port_find_socket(ep_port_t* port_info, SOCKET socket) {
ep_sock_t* sock_info = safe_container_of(
tree_find(&port_info->sock_tree, socket), ep_sock_t, tree_node);
if (sock_info == NULL)
return_error(NULL, ERROR_NOT_FOUND);
return sock_info;
}
static poll_group_allocator_t* _ep_port_get_poll_group_allocator(
ep_port_t* port_info,
size_t protocol_id,
const WSAPROTOCOL_INFOW* protocol_info) {
poll_group_allocator_t** pga;
assert(protocol_id < array_count(port_info->poll_group_allocators));
pga = &port_info->poll_group_allocators[protocol_id];
if (*pga == NULL)
*pga = poll_group_allocator_new(port_info, protocol_info);
return *pga;
}
poll_group_t* ep_port_acquire_poll_group(
ep_port_t* port_info,
size_t protocol_id,
const WSAPROTOCOL_INFOW* protocol_info) {
poll_group_allocator_t* pga =
_ep_port_get_poll_group_allocator(port_info, protocol_id, protocol_info);
return poll_group_acquire(pga);
}
void ep_port_release_poll_group(ep_port_t* port_info,
poll_group_t* poll_group) {
unused_var(port_info);
poll_group_release(poll_group);
}
void ep_port_request_socket_update(ep_port_t* port_info,
ep_sock_t* sock_info) {
if (queue_enqueued(&sock_info->queue_node))
return;
queue_append(&port_info->sock_update_queue, &sock_info->queue_node);
}
void ep_port_cancel_socket_update(ep_port_t* port_info, ep_sock_t* sock_info) {
unused_var(port_info);
if (!queue_enqueued(&sock_info->queue_node))
return;
queue_remove(&sock_info->queue_node);
}
void ep_port_add_deleted_socket(ep_port_t* port_info, ep_sock_t* sock_info) {
if (queue_enqueued(&sock_info->queue_node))
return;
queue_append(&port_info->sock_deleted_queue, &sock_info->queue_node);
}
void ep_port_remove_deleted_socket(ep_port_t* port_info,
ep_sock_t* sock_info) {
unused_var(port_info);
if (!queue_enqueued(&sock_info->queue_node))
return;
queue_remove(&sock_info->queue_node);
}
void queue_init(queue_t* queue) {
queue_node_init(&queue->head);
}
void queue_node_init(queue_node_t* node) {
node->prev = node;
node->next = node;
}
static inline void _queue_detach(queue_node_t* node) {
node->prev->next = node->next;
node->next->prev = node->prev;
}
queue_node_t* queue_first(const queue_t* queue) {
return !queue_empty(queue) ? queue->head.next : NULL;
}
queue_node_t* queue_last(const queue_t* queue) {
return !queue_empty(queue) ? queue->head.prev : NULL;
}
void queue_prepend(queue_t* queue, queue_node_t* node) {
node->next = queue->head.next;
node->prev = &queue->head;
node->next->prev = node;
queue->head.next = node;
}
void queue_append(queue_t* queue, queue_node_t* node) {
node->next = &queue->head;
node->prev = queue->head.prev;
node->prev->next = node;
queue->head.prev = node;
}
void queue_move_first(queue_t* queue, queue_node_t* node) {
_queue_detach(node);
queue_prepend(queue, node);
}
void queue_move_last(queue_t* queue, queue_node_t* node) {
_queue_detach(node);
queue_append(queue, node);
}
void queue_remove(queue_node_t* node) {
_queue_detach(node);
queue_node_init(node);
}
bool queue_empty(const queue_t* queue) {
return !queue_enqueued(&queue->head);
}
bool queue_enqueued(const queue_node_t* node) {
return node->prev != node;
}
void reflock_tree_init(reflock_tree_t* rlt) {
tree_init(&rlt->tree);
InitializeSRWLock(&rlt->lock);
}
void reflock_tree_node_init(reflock_tree_node_t* node) {
tree_node_init(&node->tree_node);
reflock_init(&node->reflock);
}
int reflock_tree_add(reflock_tree_t* rlt,
reflock_tree_node_t* node,
uintptr_t key) {
int r;
AcquireSRWLockExclusive(&rlt->lock);
r = tree_add(&rlt->tree, &node->tree_node, key);
ReleaseSRWLockExclusive(&rlt->lock);
return r;
}
reflock_tree_node_t* reflock_tree_del_and_ref(reflock_tree_t* rlt,
uintptr_t key) {
tree_node_t* tree_node;
reflock_tree_node_t* rlt_node;
AcquireSRWLockExclusive(&rlt->lock);
tree_node = tree_find(&rlt->tree, key);
rlt_node = safe_container_of(tree_node, reflock_tree_node_t, tree_node);
if (rlt_node != NULL) {
tree_del(&rlt->tree, tree_node);
reflock_ref(&rlt_node->reflock);
}
ReleaseSRWLockExclusive(&rlt->lock);
return rlt_node;
}
reflock_tree_node_t* reflock_tree_find_and_ref(reflock_tree_t* rlt,
uintptr_t key) {
tree_node_t* tree_node;
reflock_tree_node_t* rlt_node;
AcquireSRWLockShared(&rlt->lock);
tree_node = tree_find(&rlt->tree, key);
rlt_node = safe_container_of(tree_node, reflock_tree_node_t, tree_node);
if (rlt_node != NULL)
reflock_ref(&rlt_node->reflock);
ReleaseSRWLockShared(&rlt->lock);
return rlt_node;
}
void reflock_tree_node_unref(reflock_tree_node_t* node) {
reflock_unref(&node->reflock);
}
void reflock_tree_node_unref_and_destroy(reflock_tree_node_t* node) {
reflock_unref_and_destroy(&node->reflock);
}
/* clang-format off */
static const uint32_t _REF = 0x00000001;
static const uint32_t _REF_MASK = 0x0fffffff;
static const uint32_t _DESTROY = 0x10000000;
static const uint32_t _DESTROY_MASK = 0xf0000000;
static const uint32_t _POISON = 0x300DEAD0;
/* clang-format on */
static HANDLE _keyed_event = NULL;
int reflock_global_init(void) {
NTSTATUS status =
NtCreateKeyedEvent(&_keyed_event, ~(ACCESS_MASK) 0, NULL, 0);
if (status != STATUS_SUCCESS)
return_error(-1, RtlNtStatusToDosError(status));
return 0;
}
void reflock_init(reflock_t* reflock) {
reflock->state = 0;
}
static void _signal_event(const void* address) {
NTSTATUS status =
NtReleaseKeyedEvent(_keyed_event, (PVOID) address, FALSE, NULL);
if (status != STATUS_SUCCESS)
abort();
}
static void _await_event(const void* address) {
NTSTATUS status =
NtWaitForKeyedEvent(_keyed_event, (PVOID) address, FALSE, NULL);
if (status != STATUS_SUCCESS)
abort();
}
static inline uint32_t _sync_add_and_fetch(volatile uint32_t* target,
uint32_t value) {
static_assert(sizeof(*target) == sizeof(long), "");
return InterlockedAdd((volatile long*) target, value);
}
static inline uint32_t _sync_sub_and_fetch(volatile uint32_t* target,
uint32_t value) {
uint32_t add_value = -(int32_t) value;
return _sync_add_and_fetch(target, add_value);
}
static inline uint32_t _sync_fetch_and_set(volatile uint32_t* target,
uint32_t value) {
static_assert(sizeof(*target) == sizeof(long), "");
return InterlockedExchange((volatile long*) target, value);
}
void reflock_ref(reflock_t* reflock) {
uint32_t state = _sync_add_and_fetch(&reflock->state, _REF);
unused_var(state);
assert((state & _DESTROY_MASK) == 0); /* Overflow or destroyed. */
}
void reflock_unref(reflock_t* reflock) {
uint32_t state = _sync_sub_and_fetch(&reflock->state, _REF);
uint32_t ref_count = state & _REF_MASK;
uint32_t destroy = state & _DESTROY_MASK;
unused_var(ref_count);
unused_var(destroy);
if (state == _DESTROY)
_signal_event(reflock);
else
assert(destroy == 0 || ref_count > 0);
}
void reflock_unref_and_destroy(reflock_t* reflock) {
uint32_t state = _sync_add_and_fetch(&reflock->state, _DESTROY - _REF);
uint32_t ref_count = state & _REF_MASK;
assert((state & _DESTROY_MASK) ==
_DESTROY); /* Underflow or already destroyed. */
if (ref_count != 0)
_await_event(reflock);
state = _sync_fetch_and_set(&reflock->state, _POISON);
assert(state == _DESTROY);
}
#define _KNOWN_EPOLL_EVENTS \
(EPOLLIN | EPOLLPRI | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | \
EPOLLRDBAND | EPOLLWRNORM | EPOLLWRBAND | EPOLLRDHUP)
typedef struct _poll_req {
OVERLAPPED overlapped;
AFD_POLL_INFO poll_info;
} _poll_req_t;
typedef enum _poll_status {
_POLL_IDLE = 0,
_POLL_PENDING,
_POLL_CANCELLED
} _poll_status_t;
typedef struct _ep_sock_private {
ep_sock_t pub;
_poll_req_t poll_req;
poll_group_t* poll_group;
SOCKET afd_socket;
epoll_data_t user_data;
uint32_t user_events;
uint32_t pending_events;
_poll_status_t poll_status;
bool delete_pending;
} _ep_sock_private_t;
static DWORD _epoll_events_to_afd_events(uint32_t epoll_events) {
/* Always monitor for AFD_POLL_LOCAL_CLOSE, which is triggered when the
* socket is closed with closesocket() or CloseHandle(). */
DWORD afd_events = AFD_POLL_LOCAL_CLOSE;
if (epoll_events & (EPOLLIN | EPOLLRDNORM))
afd_events |= AFD_POLL_RECEIVE | AFD_POLL_ACCEPT;
if (epoll_events & (EPOLLPRI | EPOLLRDBAND))
afd_events |= AFD_POLL_RECEIVE_EXPEDITED;
if (epoll_events & (EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND))
afd_events |= AFD_POLL_SEND | AFD_POLL_CONNECT;
if (epoll_events & (EPOLLIN | EPOLLRDNORM | EPOLLRDHUP))
afd_events |= AFD_POLL_DISCONNECT;
if (epoll_events & EPOLLHUP)
afd_events |= AFD_POLL_ABORT;
if (epoll_events & EPOLLERR)
afd_events |= AFD_POLL_CONNECT_FAIL;
return afd_events;
}
static uint32_t _afd_events_to_epoll_events(DWORD afd_events) {
uint32_t epoll_events = 0;
if (afd_events & (AFD_POLL_RECEIVE | AFD_POLL_ACCEPT))
epoll_events |= EPOLLIN | EPOLLRDNORM;
if (afd_events & AFD_POLL_RECEIVE_EXPEDITED)
epoll_events |= EPOLLPRI | EPOLLRDBAND;
if (afd_events & (AFD_POLL_SEND | AFD_POLL_CONNECT))
epoll_events |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
if (afd_events & AFD_POLL_DISCONNECT)
epoll_events |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
if (afd_events & AFD_POLL_ABORT)
epoll_events |= EPOLLHUP;
if (afd_events & AFD_POLL_CONNECT_FAIL)
epoll_events |= EPOLLERR;
return epoll_events;
}
static int _poll_req_submit(_poll_req_t* poll_req,
uint32_t epoll_events,
SOCKET socket,
SOCKET driver_socket) {
int r;
memset(&poll_req->overlapped, 0, sizeof poll_req->overlapped);
poll_req->poll_info.Exclusive = FALSE;
poll_req->poll_info.NumberOfHandles = 1;
poll_req->poll_info.Timeout.QuadPart = INT64_MAX;
poll_req->poll_info.Handles[0].Handle = (HANDLE) socket;
poll_req->poll_info.Handles[0].Status = 0;
poll_req->poll_info.Handles[0].Events =
_epoll_events_to_afd_events(epoll_events);
r = afd_poll(driver_socket, &poll_req->poll_info, &poll_req->overlapped);
if (r != 0 && GetLastError() != ERROR_IO_PENDING)
return_error(-1);
return 0;
}
static int _poll_req_cancel(_poll_req_t* poll_req, SOCKET driver_socket) {
OVERLAPPED* overlapped = &poll_req->overlapped;
if (!CancelIoEx((HANDLE) driver_socket, overlapped)) {
DWORD error = GetLastError();
if (error == ERROR_NOT_FOUND)
return 0; /* Already completed or canceled. */
else
return_error(-1);
}
return 0;
}
static void _poll_req_complete(const _poll_req_t* poll_req,
uint32_t* epoll_events_out,
bool* socket_closed_out) {
const OVERLAPPED* overlapped = &poll_req->overlapped;
uint32_t epoll_events = 0;
bool socket_closed = false;
if ((NTSTATUS) overlapped->Internal == STATUS_CANCELLED) {
/* The poll request was cancelled by CancelIoEx. */
} else if (!NT_SUCCESS(overlapped->Internal)) {
/* The overlapped request itself failed in an unexpected way. */
epoll_events = EPOLLERR;
} else if (poll_req->poll_info.NumberOfHandles < 1) {
/* This overlapped request succeeded but didn't report any events. */
} else {
/* Events related to our socket were reported. */
DWORD afd_events = poll_req->poll_info.Handles[0].Events;
if (afd_events & AFD_POLL_LOCAL_CLOSE)
socket_closed = true; /* Socket closed locally be silently dropped. */
else
epoll_events = _afd_events_to_epoll_events(afd_events);
}
*epoll_events_out = epoll_events;
*socket_closed_out = socket_closed;
}
static inline _ep_sock_private_t* _ep_sock_private(ep_sock_t* sock_info) {
return container_of(sock_info, _ep_sock_private_t, pub);
}
static inline _ep_sock_private_t* _ep_sock_alloc(void) {
_ep_sock_private_t* sock_private = malloc(sizeof *sock_private);
if (sock_private == NULL)
return_error(NULL, ERROR_NOT_ENOUGH_MEMORY);
return sock_private;
}
static inline void _ep_sock_free(_ep_sock_private_t* sock_private) {
free(sock_private);
}
static int _ep_sock_cancel_poll(_ep_sock_private_t* sock_private) {
assert(sock_private->poll_status == _POLL_PENDING);
if (_poll_req_cancel(&sock_private->poll_req,
poll_group_get_socket(sock_private->poll_group)) < 0)
return -1;
sock_private->poll_status = _POLL_CANCELLED;
sock_private->pending_events = 0;
return 0;
}
ep_sock_t* ep_sock_new(ep_port_t* port_info, SOCKET socket) {
SOCKET afd_socket;
ssize_t protocol_id;
WSAPROTOCOL_INFOW protocol_info;
poll_group_t* poll_group;
_ep_sock_private_t* sock_private;
if (socket == 0 || socket == INVALID_SOCKET)
return_error(NULL, ERROR_INVALID_HANDLE);
protocol_id = afd_get_protocol(socket, &afd_socket, &protocol_info);
if (protocol_id < 0)
return NULL;
poll_group =
ep_port_acquire_poll_group(port_info, protocol_id, &protocol_info);
if (poll_group == NULL)
return NULL;
sock_private = _ep_sock_alloc();
if (sock_private == NULL)
goto err1;
memset(sock_private, 0, sizeof *sock_private);
sock_private->afd_socket = afd_socket;
sock_private->poll_group = poll_group;
tree_node_init(&sock_private->pub.tree_node);
queue_node_init(&sock_private->pub.queue_node);
if (ep_port_register_socket_handle(port_info, &sock_private->pub, socket) <
0)
goto err2;
return &sock_private->pub;
err2:
_ep_sock_free(sock_private);
err1:
ep_port_release_poll_group(port_info, poll_group);
return NULL;
}
static void _ep_sock_delete(ep_port_t* port_info,
ep_sock_t* sock_info,
bool force) {
_ep_sock_private_t* sock_private = _ep_sock_private(sock_info);
if (!sock_private->delete_pending) {
if (sock_private->poll_status == _POLL_PENDING)
_ep_sock_cancel_poll(sock_private);
ep_port_cancel_socket_update(port_info, sock_info);
ep_port_unregister_socket_handle(port_info, sock_info);
sock_private->delete_pending = true;
}
/* If the poll request still needs to complete, the ep_sock object can't
* be free()d yet. `ep_sock_feed_event()` or `ep_port_close()` will take care
* of this later. */
if (force || sock_private->poll_status == _POLL_IDLE) {
/* Free the sock_info now. */
ep_port_remove_deleted_socket(port_info, sock_info);
ep_port_release_poll_group(port_info, sock_private->poll_group);
_ep_sock_free(sock_private);
} else {
/* Free the socket later. */
ep_port_add_deleted_socket(port_info, sock_info);
}
}
void ep_sock_delete(ep_port_t* port_info, ep_sock_t* sock_info) {
_ep_sock_delete(port_info, sock_info, false);
}
void ep_sock_force_delete(ep_port_t* port_info, ep_sock_t* sock_info) {
_ep_sock_delete(port_info, sock_info, true);
}
int ep_sock_set_event(ep_port_t* port_info,
ep_sock_t* sock_info,
const struct epoll_event* ev) {
_ep_sock_private_t* sock_private = _ep_sock_private(sock_info);
/* EPOLLERR and EPOLLHUP are always reported, even when not requested by the
* caller. However they are disabled after a event has been reported for a
* socket for which the EPOLLONESHOT flag as set. */
uint32_t events = ev->events | EPOLLERR | EPOLLHUP;
sock_private->user_events = events;
sock_private->user_data = ev->data;
if ((events & _KNOWN_EPOLL_EVENTS & ~sock_private->pending_events) != 0)
ep_port_request_socket_update(port_info, sock_info);
return 0;
}
int ep_sock_update(ep_port_t* port_info, ep_sock_t* sock_info) {
_ep_sock_private_t* sock_private = _ep_sock_private(sock_info);
bool socket_closed = false;
assert(!sock_private->delete_pending);
if ((sock_private->poll_status == _POLL_PENDING) &&
(sock_private->user_events & _KNOWN_EPOLL_EVENTS &
~sock_private->pending_events) == 0) {
/* All the events the user is interested in are already being monitored
* by the pending poll request. It might spuriously complete because of an
* event that we're no longer interested in; if that happens we just
* submit another poll request with the right event mask. */
} else if (sock_private->poll_status == _POLL_PENDING) {
/* A poll request is already pending, but it's not monitoring for all the
* events that the user is interested in. Cancel the pending poll request;
* when it completes it will be submitted again with the correct event
* mask. */
if (_ep_sock_cancel_poll(sock_private) < 0)
return -1;
} else if (sock_private->poll_status == _POLL_CANCELLED) {
/* The poll request has already been cancelled, we're still waiting for it
* to return. For now, there's nothing that needs to be done. */
} else if (sock_private->poll_status == _POLL_IDLE) {
SOCKET driver_socket = poll_group_get_socket(sock_private->poll_group);
if (_poll_req_submit(&sock_private->poll_req,
sock_private->user_events,
sock_private->afd_socket,
driver_socket) < 0) {
if (GetLastError() == ERROR_INVALID_HANDLE)
/* The socket is broken. It will be dropped from the epoll set. */
socket_closed = true;
else
/* Another error occurred, which is propagated to the caller. */
return -1;
} else {
/* The poll request was successfully submitted. */
sock_private->poll_status = _POLL_PENDING;
sock_private->pending_events = sock_private->user_events;
}
} else {
/* Unreachable. */
assert(false);
}
ep_port_cancel_socket_update(port_info, sock_info);
/* If we saw an ERROR_INVALID_HANDLE error, drop the socket. */
if (socket_closed)
ep_sock_delete(port_info, sock_info);
return 0;
}
int ep_sock_feed_event(ep_port_t* port_info,
OVERLAPPED* overlapped,
struct epoll_event* ev) {
_ep_sock_private_t* sock_private =
container_of(overlapped, _ep_sock_private_t, poll_req.overlapped);
ep_sock_t* sock_info = &sock_private->pub;
uint32_t epoll_events;
bool socket_closed;
int ev_count = 0;
sock_private->poll_status = _POLL_IDLE;
sock_private->pending_events = 0;
if (sock_private->delete_pending) {
/* Ignore completion for overlapped poll operation if the socket is pending
* deletion; instead, delete the socket. */
ep_sock_delete(port_info, sock_info);
return 0;
}
_poll_req_complete(&sock_private->poll_req, &epoll_events, &socket_closed);
/* Filter events that the user didn't ask for. */
epoll_events &= sock_private->user_events;
/* Clear the event mask if EPOLLONESHOT is set and there are any events
* to report. */
if (epoll_events != 0 && (sock_private->user_events & EPOLLONESHOT))
sock_private->user_events = 0;
/* Fill the ev structure if there are any events to report. */
if (epoll_events != 0) {
ev->data = sock_private->user_data;
ev->events = epoll_events;
ev_count = 1;
}
if (socket_closed)
/* Drop the socket from the epoll set. */
ep_sock_delete(port_info, sock_info);
else
/* Put the socket back onto the attention list so a new poll request will
* be submitted. */
ep_port_request_socket_update(port_info, sock_info);
return ev_count;
}
static inline int _tree_compare(tree_node_t* a, tree_node_t* b) {
if (a->key < b->key)
return -1;
else if (a->key > b->key)
return 1;
else
return 0;
}
RB_GENERATE_STATIC(tree, tree_node, node, _tree_compare);
void tree_init(tree_t* tree) {
RB_INIT(tree);
}
void tree_node_init(tree_node_t* node) {
memset(node, 0, sizeof *node);
}
int tree_add(tree_t* tree, tree_node_t* node, uintptr_t key) {
tree_node_t* existing_node;
node->key = key;
existing_node = RB_INSERT(tree, tree, node);
if (existing_node != NULL)
return -1;
return 0;
}
int tree_del(tree_t* tree, tree_node_t* node) {
tree_node_t* removed_node;
removed_node = RB_REMOVE(tree, tree, node);
if (removed_node == NULL)
return -1;
else
assert(removed_node == node);
return 0;
}
tree_node_t* tree_find(tree_t* tree, uintptr_t key) {
tree_node_t lookup;
memset(&lookup, 0, sizeof lookup);
lookup.key = key;
return RB_FIND(tree, tree, &lookup);
}
tree_node_t* tree_root(tree_t* tree) {
return RB_ROOT(tree);
}
void* util_safe_container_of_helper(void* ptr, size_t offset) {
if (ptr == NULL)
return NULL;
else
return (char*) ptr - offset;
}