[AArch64] Unroll SVE2 impls of NV{12,21}ToARGBRow

We can reuse most of the logic from the existing I422TORGB_SVE_2X macro
and simply amend the existing READNV_SVE macro to read twice as much
data.

Unrolling is primarily beneficial for little cores but also provides
some smaller benefits to larger cores as well.

            | NV12ToARGBRow_SVE2 | NV21ToARGBRow_SVE2
Cortex-A510 |             -48.0% |             -47.9%
Cortex-A520 |             -48.1% |             -48.2%
Cortex-A715 |             -20.4% |             -20.4%
Cortex-A720 |             -20.6% |             -20.6%
  Cortex-X2 |              -7.1% |              -7.3%
  Cortex-X3 |              -4.0% |              -4.3%
  Cortex-X4 |             -14.1% |             -14.3%
Cortex-X925 |              -8.2% |              -8.6%

Change-Id: I195005d23e743d7d46319220ad05ee89bb7385ae
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/6067148
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
This commit is contained in:
George Steed 2024-09-09 12:02:32 +01:00 committed by Frank Barchard
parent 03a935493d
commit 88a3472f52

View File

@ -68,15 +68,15 @@ extern "C" {
// We need a different predicate for the UV component to handle the tail. // We need a different predicate for the UV component to handle the tail.
// If there is a single element remaining then we want to load one Y element // If there is a single element remaining then we want to load one Y element
// but two UV elements. // but two UV elements.
#define READNV_SVE \ #define READNV_SVE_2X \
"ld1b {z0.h}, p1/z, [%[src_y]] \n" /* Y0Y0 */ \ "ld1b {z0.b}, p1/z, [%[src_y]] \n" /* Y0Y0 */ \
"ld1b {z1.h}, p2/z, [%[src_uv]] \n" /* U0V0 or V0U0 */ \ "ld1b {z2.b}, p2/z, [%[src_uv]] \n" /* U0V0 or V0U0 */ \
"inch %[src_y] \n" \ "incb %[src_y] \n" \
"inch %[src_uv] \n" \ "incb %[src_uv] \n" \
"prfm pldl1keep, [%[src_y], 448] \n" \ "prfm pldl1keep, [%[src_y], 448] \n" \
"prfm pldl1keep, [%[src_uv], 256] \n" \ "prfm pldl1keep, [%[src_uv], 256] \n" \
"trn1 z0.b, z0.b, z0.b \n" /* YYYY */ \ "trn2 z1.b, z0.b, z0.b \n" /* YYYY */ \
"tbl z1.b, {z1.b}, z22.b \n" /* UVUV */ "trn1 z0.b, z0.b, z0.b \n" /* YYYY */
#define READI210_SVE \ #define READI210_SVE \
"ld1h {z3.h}, p1/z, [%[src_y]] \n" \ "ld1h {z3.h}, p1/z, [%[src_y]] \n" \
@ -225,6 +225,27 @@ extern "C" {
"uqsub z18.h, z18.h, z27.h \n" /* R0 */ \ "uqsub z18.h, z18.h, z27.h \n" /* R0 */ \
"uqsub z22.h, z22.h, z27.h \n" /* R1 */ "uqsub z22.h, z22.h, z27.h \n" /* R1 */
#define NVTORGB_SVE_2X(bt_u, bt_v) \
"umulh z0.h, z24.h, z0.h \n" /* Y0 */ \
"umulh z1.h, z24.h, z1.h \n" /* Y1 */ \
"umull" #bt_u " z6.h, z30.b, z2.b \n" \
"umull" #bt_u " z4.h, z28.b, z2.b \n" /* DB */ \
"umull" #bt_v " z5.h, z29.b, z2.b \n" /* DR */ \
"umlal" #bt_v " z6.h, z31.b, z2.b \n" /* DG */ \
\
"add z17.h, z0.h, z26.h \n" /* G0 */ \
"add z21.h, z1.h, z26.h \n" /* G1 */ \
"add z16.h, z0.h, z4.h \n" /* B0 */ \
"add z20.h, z1.h, z4.h \n" /* B1 */ \
"add z18.h, z0.h, z5.h \n" /* R0 */ \
"add z22.h, z1.h, z5.h \n" /* R1 */ \
"uqsub z17.h, z17.h, z6.h \n" /* G0 */ \
"uqsub z21.h, z21.h, z6.h \n" /* G1 */ \
"uqsub z16.h, z16.h, z25.h \n" /* B0 */ \
"uqsub z20.h, z20.h, z25.h \n" /* B1 */ \
"uqsub z18.h, z18.h, z27.h \n" /* R0 */ \
"uqsub z22.h, z22.h, z27.h \n" /* R1 */
#define I400TORGB_SVE \ #define I400TORGB_SVE \
"umulh z18.h, z24.h, z0.h \n" /* Y */ \ "umulh z18.h, z24.h, z0.h \n" /* Y */ \
"movprfx z16, z18 \n" \ "movprfx z16, z18 \n" \
@ -784,33 +805,36 @@ void I422AlphaToARGBRow_SVE2(const uint8_t* src_y,
: "cc", "memory", YUVTORGB_SVE_REGS); : "cc", "memory", YUVTORGB_SVE_REGS);
} }
static inline void NVToARGBRow_SVE2(const uint8_t* src_y, void NV12ToARGBRow_SVE2(const uint8_t* src_y,
const uint8_t* src_uv, const uint8_t* src_uv,
uint8_t* dst_argb, uint8_t* dst_argb,
const struct YuvConstants* yuvconstants, const struct YuvConstants* yuvconstants,
int width, int width) {
uint32_t nv_uv_start, uint32_t nv_u_start = 0xff00U;
uint32_t nv_uv_step) { uint32_t nv_u_step = 0x0002U;
uint32_t nv_v_start = 0xff01U;
uint32_t nv_v_step = 0x0002U;
uint64_t vl; uint64_t vl;
asm("cnth %0" : "=r"(vl)); asm("cntb %0" : "=r"(vl));
int width_last_y = width & (vl - 1); int width_last_y = width & (vl - 1);
int width_last_uv = width_last_y + (width_last_y & 1); int width_last_uv = width_last_y + (width_last_y & 1);
asm volatile( asm volatile(
"ptrue p0.b \n" // "ptrue p0.b \n" //
YUVTORGB_SVE_SETUP YUVTORGB_SVE_SETUP
"index z22.s, %w[nv_uv_start], %w[nv_uv_step] \n"
"dup z19.b, #255 \n" // A "dup z19.b, #255 \n" // A
"index z7.h, %w[nv_u_start], %w[nv_u_step] \n"
"index z23.h, %w[nv_v_start], %w[nv_v_step] \n"
"subs %w[width], %w[width], %w[vl] \n" "subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n" "b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate // Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead. // generation overhead.
"ptrue p1.h \n" "ptrue p1.b \n"
"ptrue p2.h \n" "ptrue p2.b \n"
"1: \n" // "1: \n" //
READNV_SVE NVTORGB_SVE RGBTOARGB8_SVE READNV_SVE_2X NVTORGB_SVE_2X(b, t) RGBTOARGB8_SVE_2X
"subs %w[width], %w[width], %w[vl] \n" "subs %w[width], %w[width], %w[vl] \n"
"st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n" "st4b {z16.b, z17.b, z18.b, z19.b}, p1, [%[dst_argb]] \n"
"add %[dst_argb], %[dst_argb], %[vl], lsl #2 \n" "add %[dst_argb], %[dst_argb], %[vl], lsl #2 \n"
"b.ge 1b \n" "b.ge 1b \n"
@ -819,11 +843,10 @@ static inline void NVToARGBRow_SVE2(const uint8_t* src_y,
"b.eq 99f \n" "b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail. // Calculate a predicate for the final iteration to deal with the tail.
"3: \n" "whilelt p1.b, wzr, %w[width_last_y] \n"
"whilelt p1.h, wzr, %w[width_last_y] \n" "whilelt p2.b, wzr, %w[width_last_uv] \n" //
"whilelt p2.h, wzr, %w[width_last_uv] \n" // READNV_SVE_2X NVTORGB_SVE_2X(b, t) RGBTOARGB8_SVE_2X
READNV_SVE NVTORGB_SVE RGBTOARGB8_SVE "st4b {z16.b, z17.b, z18.b, z19.b}, p1, [%[dst_argb]] \n"
"st2h {z16.h, z17.h}, p1, [%[dst_argb]] \n"
"99: \n" "99: \n"
: [src_y] "+r"(src_y), // %[src_y] : [src_y] "+r"(src_y), // %[src_y]
@ -833,33 +856,73 @@ static inline void NVToARGBRow_SVE2(const uint8_t* src_y,
: [vl] "r"(vl), // %[vl] : [vl] "r"(vl), // %[vl]
[kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias]
[nv_uv_start] "r"(nv_uv_start), // %[nv_uv_start] [nv_u_start] "r"(nv_u_start), // %[nv_u_start]
[nv_uv_step] "r"(nv_uv_step), // %[nv_uv_step] [nv_u_step] "r"(nv_u_step), // %[nv_u_step]
[nv_v_start] "r"(nv_v_start), // %[nv_v_start]
[nv_v_step] "r"(nv_v_step), // %[nv_v_step]
[width_last_y] "r"(width_last_y), // %[width_last_y] [width_last_y] "r"(width_last_y), // %[width_last_y]
[width_last_uv] "r"(width_last_uv) // %[width_last_uv] [width_last_uv] "r"(width_last_uv) // %[width_last_uv]
: "cc", "memory", YUVTORGB_SVE_REGS, "p2"); : "cc", "memory", YUVTORGB_SVE_REGS, "p2");
} }
void NV12ToARGBRow_SVE2(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
uint32_t nv_uv_start = 0x02000200U;
uint32_t nv_uv_step = 0x04040404U;
NVToARGBRow_SVE2(src_y, src_uv, dst_argb, yuvconstants, width, nv_uv_start,
nv_uv_step);
}
void NV21ToARGBRow_SVE2(const uint8_t* src_y, void NV21ToARGBRow_SVE2(const uint8_t* src_y,
const uint8_t* src_vu, const uint8_t* src_vu,
uint8_t* dst_argb, uint8_t* dst_argb,
const struct YuvConstants* yuvconstants, const struct YuvConstants* yuvconstants,
int width) { int width) {
uint32_t nv_uv_start = 0x00020002U; uint32_t nv_u_start = 0xff01U;
uint32_t nv_uv_step = 0x04040404U; uint32_t nv_u_step = 0x0002U;
NVToARGBRow_SVE2(src_y, src_vu, dst_argb, yuvconstants, width, nv_uv_start, uint32_t nv_v_start = 0xff00U;
nv_uv_step); uint32_t nv_v_step = 0x0002U;
uint64_t vl;
asm("cntb %0" : "=r"(vl));
int width_last_y = width & (vl - 1);
int width_last_uv = width_last_y + (width_last_y & 1);
asm volatile(
"ptrue p0.b \n" //
YUVTORGB_SVE_SETUP
"dup z19.b, #255 \n" // A
"index z7.h, %w[nv_u_start], %w[nv_u_step] \n"
"index z23.h, %w[nv_v_start], %w[nv_v_step] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p1.b \n"
"ptrue p2.b \n"
"1: \n" //
READNV_SVE_2X NVTORGB_SVE_2X(t, b) RGBTOARGB8_SVE_2X
"subs %w[width], %w[width], %w[vl] \n"
"st4b {z16.b, z17.b, z18.b, z19.b}, p1, [%[dst_argb]] \n"
"add %[dst_argb], %[dst_argb], %[vl], lsl #2 \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p1.b, wzr, %w[width_last_y] \n"
"whilelt p2.b, wzr, %w[width_last_uv] \n" //
READNV_SVE_2X NVTORGB_SVE_2X(t, b) RGBTOARGB8_SVE_2X
"st4b {z16.b, z17.b, z18.b, z19.b}, p1, [%[dst_argb]] \n"
"99: \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_uv] "+r"(src_vu), // %[src_vu]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width) // %[width]
: [vl] "r"(vl), // %[vl]
[kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias]
[nv_u_start] "r"(nv_u_start), // %[nv_u_start]
[nv_u_step] "r"(nv_u_step), // %[nv_u_step]
[nv_v_start] "r"(nv_v_start), // %[nv_v_start]
[nv_v_step] "r"(nv_v_step), // %[nv_v_step]
[width_last_y] "r"(width_last_y), // %[width_last_y]
[width_last_uv] "r"(width_last_uv) // %[width_last_uv]
: "cc", "memory", YUVTORGB_SVE_REGS, "p2");
} }
// Dot-product constants are stored as four-tuples with the two innermost // Dot-product constants are stored as four-tuples with the two innermost